

SANDIA REPORT

SAND2005-6917
Unlimited Release
Printed November, 2005

Understanding the Effects of
Microarachtectural parameters on the
Uniprocessor Performance of Sandia
Scientific Applications

DANA HARDIN

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

 i

UNDERSTANDING THE EFFECTS OF MICROARCHITECTURAL PARAMETERS

ON THE UNIPROCESSOR PERFORMANCE OF

SANDIA SCIENTIFIC APPLICATIONS

BY

DANA HARDIN, B.S.

A thesis submitted to the Graduate School

in partial fulfillment of the requirements

for the degree

Master of Science in Electrical Engineering

New Mexico State University

Las Cruces, New Mexico

June 2005

 ii

“Understanding the Effects of Microarchitectural Parameters of the Uniprocessor

Performance of Sandia Scientific Applications,” a thesis prepared by Dana Janae Hardin

in partial fulfillment of the requirements for the degree, Master of Science in Electrical

Engineering, has been approved and accepted by the following:

Linda Lacey

Dean of the Graduate School

Jeanine Cook

Chair of the Examining Committee

Date

Committee in charge:

 Dr. Jeanine Cook, Chair

 Dr. Steve Stochaj

 Dr. Erik DeBenedictis

 iii

VITA

March 27, 1980 Born at Hobbs, New Mexico

1998 Graduated from Lovington High School,

 Lovington, New Mexico

1998-2000 Associate of Science, New Mexico Junior College

Hobbs, New Mexico

2000-2003 Bachelor of Science, Electrical Engineering

New Mexico State University

Las Cruces, New Mexico

2003-2005 Graduate Assistant

College of Engineering

New Mexico State University

Field of Study

Major Field: Electrical Engineering (Computer Engineering)

 iv

ABSTRACT

UNDERSTANDING THE EFFECTS OF MICROARCHITECTURAL PARAMETERS

ON THE UNIPROCESSOR PERFORMANCE OF

SANDIA SCIENTIFIC APPLICATIONS

Master of Science in Electrical Engineering

New Mexico State University

Las Cruces, New Mexico, 2005

Dr. Jeanine Cook, Chair

Designing the best performing microprocessor for a class of applications involves

researching the impact of each major design decision and exploring innovative methods

to best solve the application specific challenges. The class of large scientific applications

executed at Sandia National Laboratories present unique characteristics and challenges

for microprocessor performance optimization. This thesis investigates bottlenecks

limiting the performance of SNL’s large scientific applications and proposes

configurations and techniques to improve performance. Initially, the cache hierarchy was

proposed to a major bottleneck to the overall performance of these applications, however

we present evidence, through simulation, that even perfect cache behavior (no cache

stalls) does not greatly improve performance. Moreover, simulations with a “super”

microarchitecture, configured with nearly infinite resources, show only modest

 v

performance gains. Since other types of benchmarks achieve IPC rates of hundreds,

even tens of thousands of instructions per cycle with this “super” configuration, the

performance reduction from instruction-level dependency stalling was the next potential

bottleneck explored. Our simulation of the instruction-level dependency stalls in the

SNL benchmark for the default Alpha configuration reveals that on average each

instruction incurs more than 5.5 stall cycles waiting for the resolution of instruction-level

dependencies. Classifying each stall by instruction type indicates that most stalling

occurs from floating-point and load instructions. Possible techniques to reduce the

stalling caused by these instructions are discussed. Finally, we present the best

performing finite cache configurations for the SNL benchmark and performance results

from a bypass caching technique designed to exclude large matrices and vectors from the

cache hierarchy in order to prevent cache pollution.

 vi

Table of Contents

List of Tables……………………………………………………………………………viii

List of Figures…………………………………………………………………………….ix

1 INTRODUCTION….………………………………………………………………….1

 1.1 The Cube Benchmark……………………………………………………………..1

 1.2 Performance Evaluation……………………………………………………….…..5

 1.2.1 Analytical Modeling……………………………………………………….6

 1.2.2 Direct Measurement……………………………………………………..…6

 1.2.3 Simulation………………………………………………………………….7

 1.3 SimpleScalar Simulators…………………………………………………………...8

2 RELATED WORK…………………………………………………………………...13

 2.1 Performance Analysis………………………………………………………….....13

 2.2 Performance Improvement Techniques…………………………………………..18

 2.2.1 Itanium2 Processor……………………………………………………..…19

 2.2.2 Selective Fill Data Cache………………………………………………....22

 2.2.3 Load Redundancy…………………………………………………...……26

 2.2.4 Split and Victim Caches…………………………………………………..28

3 METHODOLOGY………………………………………………………………...…32

 3.1 Performance Analysis Tools and Metrics………………………………………...32

 3.2 Problem Size……………………………………………………………………...35

 3.2.1 Problem Size Results for the Alpha Configuration……………………….37

 3.2.2 Problem Size Results for the Itanium2 Processor………………………...42

 3.3 Performance and Bottleneck Analysis……………………………………...…….45

 vii

 3.3.1 Investigating the Cache Bottleneck……………………………………....47

 3.3.2 The Integer Issue Queue and Other Architectural Bottlenecks……….….51

 3.3.3 Instruction-level Dependency Bottleneck………………………………...54

 3.3.4 Reducing Instruction-level Dependency……………………………….…61

 3.4 Performance Results and Conclusions…………………………………………....65

4 IMPROVING CACHE PERFORMANCE……………………………...……………66

 4.1 Cache Configuration Effects of Performance…………………………………….69

 4.2 Cache Bypassing……………………………………………………………….....73

5 CONCLUSION……………………………………………………………………….77

REFERENCES……….……………………………………………………….…………80

APPENDIX A………………………………………………………………………...….82

 viii

List of Tables

Table 1.1: ALPHA 21264 configuration for sim-alpha……………………………...…..10

Table 3.1: Itanium2 configuration for sim-alpha...34

Table 3.2: Average performance statistics for sim-alpha………………………………..46

Table 3.3: “Super” configuration……………………………………………………..….52

Table 3.4: IPC achieved by sim-alpha and sim-outorder with “super” configuration…...53

Table 4.1: Recommended cache configuration for sparse matrix multiplication………..67

Table 4.2: IPC and cache miss rates for various cache configurations……………..……72

 ix

List of Figures

Figure 1.1: CRS format example………………………………………………………….3

Figure 1.2: VBR format example………………………………………………………….4

Figure 1.3: ALPHA 21264 block diagram…………………………………………...…..10

Figure 1.4: Explanation of different cache configurations………………………………11

Figure 2.1: Itanium2 block diagram……………………………………………..……….21

Figure 2.2: VPR benchmark results of Selective Fill Data Cache method………………24

Figure 2.3: MCF benchmark results of SFDC method……………………...……...……24

Figure 2.4: Parser benchmark results of SFDC method…………………………………25

Figure 2.5: GZIP benchmark results of SFDC method……………………………….….25

Figure 3.1: Visualization of 3D “cube” benchmark mesh………………………….……36

Figure 3.2: Sim-alpha performance (IPC) for varying width and depth…..………..……38

Figure 3.3: Sim-alpha performance (cache miss rates) varying width and depth………..38

Figure 3.4: IPC and number of instructions for equal equations…………………….…..39

Figure 3.5: Number of equations versus problem size………………………..…………40

Figure 3.6: Performance of Itanium2-type configuration on sim-alpha………...……….42

Figure 3.7: Performance of Itanium2 processor………………..43

Figure 3.8: Itanium2 performance for varying degrees of freedom (40x40)…….………44

Figure 3.9: Itanium2 performance for varying degrees of freedom (300x1)…………….45

Figure 3.10: Sim-alpha IPC for problem size 55x55x1 (Alpha configuration)…….........48

Figure 3.11: Sim-alpha IPC for problem size 55x55x1 (infinite cache)…………………48

Figure 3.12: Sim-alpha IPC for fma3d (Alpha configuration)…………………………..50

Figure 3.13: Sim-alpha IPC for fma3d (infinite cache)………………………………….50

 x

Figure 3.14: Average number of total stall cycles for sim-alpha (“cube” 55x55x1)….…55

Figure 3.15: Instruction Mix for sim-alpha (“cube” 55x55x1)…………………………..56

Figure 3.16: Reorder buffer stalls by instruction for sim-alpha (“cube” 55x55x1)…..….57

Figure 3.17: Instruction Mix for sim-alpha (fma3d)……………………………………..58

Figure 3.18: Fma3d reorder buffer stalls by instruction……………………………..…..58

Figure 3.19: Instruction Mix for Itanium2 processor (“cube” 55x55x1)………………...60

Figure 3.20: Total stalls collect from Itanium2 processor (“cube” 55x55x1)……...……60

Figure 3.21: Loop unrolling technique applied to “cube” inner loop………………..…..62

Figure 3.22: Software pipelining technique applied to the “cube” inner loop………...…64

Figure 4.1: Bandwidth of sparse matrix M………………………………………………68

Figure 4.2: Cache hit ratio for cache configurations varying block size from [27]……...69

Figure 4.3: Cache performance for caches with varying block sizes……………………70

Figure 4.4: Cache performance for caches with varying associativity……………..……71

Figure 4.5: Cache performance for caches with varying sizes…………………………..71

Figure 4.6: Cache bypassing performance results…………………………………….…74

 1

1 INTRODUCTION

 Ideal computers would be designed to perform well on each and every type of

program or application to be executed. However, the truth in life and computer

architecture is that everything is a trade-off. Computers optimized for specific tasks may

exhibit degraded performance for other workloads. In some arenas, such as personal

computing, performance needs to be good for various types of applications. On the other

hand, most scientific applications tend to execute mostly tight-looped, repetitive

computations. Optimizing computers for these tight-looped computations would improve

performance for those executing several of these applications daily.

 To efficiently solve large scientific problems, a group of microprocessors each

optimized for scientific computing is needed. The intent of this research is to understand

the major performance constraints of scientific computing and to determine how to

optimize the performance of these workloads at the uniprocessor level. Understanding

and improving uniprocessor performance is an integral step in developing a prescription

for better overall performance of scientific applications executed on supercomputers.

1.1 The Cube Benchmark

 Benchmarks are programs specifically designed or chosen to measure and

compare performance on different computers. Uni-processor benchmarks are divided

into two classes (integer, floating-point). Integer benchmarks perform the majority of

operations on 32-bit words, and similarly floating-point benchmarks concentrate on

single-precision floating point decimal operations (also 32-bits). The non-profit

 2

corporation SPEC, Standard Performance Evaluation, was established to approve and

maintain a standardized set of relevant benchmarks that can be applied to the newest

generation of high-performance computers [1]. SPEC has created a suite of floating point

benchmarks that serve as a standard representative of the key characteristics of scientific

workloads. Likewise, Sandia National Laboratories (SNL) also has developed a

scientific benchmark, initially created to verify linear solver libraries and the Finite

Element Interface (FEI). FEI is a platform allowing applications to interface with

multiple solvers needed in different types of scientific computations.

 According to SPEC standards, a potential benchmark must meet the following

specified criteria to be included in their suite of benchmarks. First, the benchmarks must

be commonly used and utilize a significant portion of the hardware resources. They must

solve important and relevant technical problems and produce valid results to be published

in a respectable publication. Finally, they require benchmarks to be maintainable and

pertinent to computer designers and vendors [1].

 The cube test benchmark developed by SNL employs the Trilinos library of

solvers to perform finite element analysis (FEA). FEA is a common technique for

modeling complex structures and calculating the response of the model/structure to

different conditions by solving a set of simultaneous equations. The cube test method

starts with the creation of a cube model (8-node hexahedral) with the user specified

dimensions and degrees of freedom. The number of degrees of freedom represents the

number of statistics (i.e. physical properties like temperature, distance, etc) collected at

each node of the cube mesh and is responsible for the density of the mesh.

In the next step, the cube is divided into smaller elements connected at specified

node points and is arranged into either a Compressed Row Storage (CRS) or Variable

 3

Block Row (VBR) format depending on user preference. The CRS format arranges the

nonzero elements of a matrix in an array of values that is contiguous in memory. The

array is paired with two descriptive vectors; one that provides the column number of each

nonzero element and another vector that stores the locations in value array that represent

the first in each row [2]. An example of a matrix arranged in CRS format is shown in

Figure 1.1 below:

 Matrix A

 Values = [A B C D E F G H]

 Column Index = [1 3 1 2 3 5 3 4]

 Row Pointers = [1 3 7 8 9]

Figure 1.1: Example matrix A displayed in CRS format

CRS reduces the necessary memory storage locations from one location for each element

of the cube (width * height * depth) to 2 times the number of nonzeros elements added to

the width plus 1 (2 * nnz + W +1). In the example above, the memory locations would

reduced from 25 to 22 with the CRS formatting. The benefits of CRS formatting are

contiguous nonzero elements and less memory space, and the only drawback is the

introduction of indirect memory accessing to the array.

 VBR provides an efficient way to arrange sparse matrices according to clusters or

blocks of nonzero data. The VBR format organizes matrices or cube meshes into six

arrays including:

Row pointer array (rptr) - pointing to the first row number of each block row

 1 2 3 4 5
1 A 0 B 0 0
2 C D E 0 F
3 0 0 0 0 0
4 0 0 G 0 0
5 0 0 0 J 0

 4

Column pointer array (cptr) - pointing to the first column number of each block column

Value array (val) - containing the entries of the matrix

Index array (indx) - pointing to the beginning of each block entry stored in val

Block index array (bindx) – pointing to the block column indices of the nonzero blocks

Block pointer array (bptr) – pointing to the beginning of each block row in bindx and val

 Matrix B

rptr = [1 3 4 6]

cprt = [1 4 6 7 9]

val = [a b c d e f i j g h k l m n o p q]

indx = [1 7 9 11 12 14 18]

bindx = [1 3 2 3 3 4]

bptr = [1 3 5 7]

VBR Matrix B

 1 2 3 4

1 B1 B2

2 B3 B4

3 B5 B6

Figure 1.2: Example Matrix B displayed in VBR format

The VBR format, although used less frequently than CRS, helps the sparse matrix solvers

to perform the kernel matrix operations more efficiently on the block entries [3].

Preconditioning is a technique by which the cube (system of equations) is

transformed into an equivalent representation that converges more rapidly than the

 1 2 3 4 5 6 7 8

1 A C E I

2 B D F J

3 G H K

4 L N P

5 M O Q

 5

original mesh. After preconditioning the “cube” with SNL’s main multigrid (ML)

preconditioning package, the large system of linear equations is solved [4]. Sandia’s

Aztec00 solver library provides several Krylov iterative solvers. Krylov iterative solving

techniques work to minimize the residual (or error) with each iterative approximation to

rapidly converge on a solution.

 The “cube” test problem has been evaluated and meets the specified requirements

of a benchmark according to SPEC standards. FEA is an important technique in

modeling and solving large-scale scientific problems of large dimensions and degrees of

freedom for Sandia National Labs and other scientific organizations. A benefit of the

“cube” test problem is that it can be sized according to the amount of resources available,

allowing the user to determine how rigorously it taxes the architecture. FEA is a

commonly employed technique for solving and modeling various types of structures and

environments such as thermal analysis, heat transfer, frequency analysis, fluid flow,

motion simulation, and electromagnetic interactions. Because of the frequent use and the

importance of FEA, the results of the “cube” test program as well as the functionality of

all the preconditioners and solvers have been carefully validated and documented.

Finally, a technique to optimize the performance of the “cube” test problem and the

scientific workloads that it represents will be useful to organizations like Sandia that run

large numbers of these applications on a daily basis.

1.2 Performance Evaluation Strategies

 The performance of particular benchmarks on microprocessors can be evaluated

through one or a combination of three primary methods – analytical modeling,

 6

measurement, and simulation [5]. It is important to realize that each performance

analysis method possesses its own strengths and shortcomings. Therefore, there is no one

preferred evaluating technique; the choice is made based on the resources and time

available and the accuracy needed.

1.2.1 Analytical Modeling

 Analytical models replicate microprocessor and cache architectures in order to

predict performance. These models accomplish this modeling through mathematical

equations that describe hardware behavior. Analytical models aim to describe the

hardware behavior using a mathematical equation. Describing such a complex system

mathematically is not an easy task. While analytical modeling surpasses the other

methods in simplicity of implementation and time of execution, these models have a hard

time matching the accuracy of simulators or real measurements. Analytical models are

fast and useful for reducing the design space to the best configuration of major structures

within a processor, but are typically not very accurate at predicting overall performance.

1.2.2 Direct Measurement

 Measurement methods are most commonly used to evaluate and compare the

performance of different architectures and systems. Since the performance

measurements are obtained from real, already manufactured machines, this technique is

used to compare different architectures against each other. Many would argue that the

results from measurement techniques are more accurate than other approximating

techniques (simulation and modeling). However, variations in runtime factors such as

 7

scheduling and workload requirements create difficultly in recreating the same

experimental environment on different systems at different times in order to achieve an

accurate comparison [6].

 Direct measurement methods are useful for determining how architectures and

caches actually perform with real workloads, but are limited to working systems and the

performance monitoring capabilities of those systems. Direct measurement results are

also limited by the number of performance counters available for a particular

architecture. The performance counters on modern processors are able to track

performance metrics program execution. Most modern architectures provide between 2

and 8 performance counters while some, like the Power4 architecture, provide up to 18

counters. The complexity of modern computer architectures forces designers to move

beyond measurement to predict and test performance before the designs are fabricated.

1.2.3 Simulation

 Simulators are software models of computer systems that provide a reconfigurable

architecture and are used to predict the performance of microprocessors. Because

simulators are only models that attempt to replicate the behavior of real hardware, the

accuracy of simulation analysis depends on the ability of the model to mimic the

functioning of the desired configuration. Simulation results must always be considered a

non-perfect representation of the true performance. Nonetheless, modern simulators are

meticulously validated against real hardware and remain an essential part of the process

to understand and improve the performance of microprocessors.

 The two main types of architectural simulators are trace-driven and execution-

driven simulators. Trace-driven simulators execute a list of events or instructions that are

 8

either collected from the execution of a workload on a native system or are a generated

synthetic list called traces. Trace-driven simulators gain some efficiency from executing

a list of instructions already decoded and ordered, but the simulators still take substantial

time when executing lengthy traces generated by real applications. Research is being

done on the reduction and sampling of traces to improve the effectiveness of trace-driven

simulations, but the greatest drawback to trace-driven simulation remains the inability of

a trace to capture any speculatively executed instructions [7, 8].

 Execution-driven simulators model actual processor functionality, and are

therefore the most accurate of microprocessor simulators. However, because modern

processors are superscalar, speculative, and execute out-of-order, these simulators are

increasingly complex and take an excessively large amount of execution time. Cycle-

accurate (or timing class) describes a branch of execution-driven simulators that execute

real programs or benchmarks and collect performance data at every processor clock

cycle. Often, detailed cycle-accurate behavior is necessary for exploring design decisions

or for understanding why programs perform better or worse during certain portions of

their execution [9].

1.3 SimpleScalar Simulators

 Developing and validating an execution-driven micro-architecture simulator is

difficult and time-consuming. Few of these complex simulators are available to the

research community; most academic researchers rely on a suite of simulators called

SimpleScalar [9], which is freely available for non-profit research. The SimpleScalar

suite was collaboratively developed by SimpleScalar LCC, the University of Michigan,

 9

and the University of Texas with funding from the National Science Foundation and the

Defense Advanced Research Projects Agency. SimpleScalar tools are widely used and

respected in the research community. One third of all top computer architecture

conference papers published in 2002 used SimpleScalar simulators [9].

 The suite of SimpleScalar simulators includes several types of processor

simulators of varying granularity and accuracy. Only two of the processor simulators

provided by SimpleScalar (sim-outorder and sim-alpha) implement detailed, cycle-

accurate modeling of out-of-order, speculative execution performed by the popular

superscalar (multiple issue) processors. These simulators, though time costly, produce

the cycle-by-cycle modeling necessary to understand the performance characteristics of

Sandia’s “cube” benchmark.

 Sim-alpha is a validated model of the ALPHA 21264 processor with a simulation

net error of 15% across 22 SPECCPU 2000 benchmarks. Figure 1.3 and Table 1.1 on the

next page shows features of the ALPHA 21264 architecture implemented and

configurable in sim-alpha [10]. Sim-alpha provides the benefit of modeling the dynamics

of a manufactured microprocessor at a detailed, cycle-accurate level.

 10

Figure 1.3: Block diagram of ALPHA 21264 architecture [10]

Feature Default Configuration

Issue Width 4 instructions

Issue Queues 20-entry integer, 15-entry floating point

Reorder Buffer 80-entry buffer for tracking in flight instructions

Memory Management

Unit

128-entry, fully associative data translation buffer

128-entry, fully associative instruction translation buffer

Functional Units 4 integer units that operate on specific class of instructions

2 pipelined floating point units, one for multiplication

Register File 80-entry integer, 31 architectural regs, 41 renaming, 8 PAL

72 floating regs, 31 architectural, 41 renaming

Instruction Cache (L1) 64KB, virtually addressed, 2-way set associative with set

predictor

Data Cache (L1) 64KB virtually addressed, physically tagged dual-read-

ported

L2 Cache 2MB virtually addressed, physically tagged, direct mapped

Branch Predictor 1024, 2-level local predictor

4096-entry global predictor with 2-bit saturating counters

4096-entry choice predictor choosing between above

Victim Buffer 8-entry victim data buffer

Load Queue 32-entry load queue

Store Queue 32-entry store queue

Address File 8-entry miss address file

Table 1.1: Features of ALPHA 21264 for configuration in sim-alpha

 11

The sim-alpha configuration contains several types of caches and buffers. Figure

1.4 below shows the mapping of a main memory block into different types of cache

configurations. Fully associative caches (a) and buffers allow any memory block to be

placed in any cache location. In direct mapped caches (b), each memory block can be

mapped to only one location in the cache (found by the memory block address MOD the

number of cache blocks). Set-associative caches (c) contain sets to which memory blocks

are mapped (found by the memory block address MOD the number of cache sets). Figure

1.3 shows how the Memory Block 12 maps into three types of cache configurations. The

highlighted blocks represent locations to which the Memory Block 12 may be mapped.

Memory Block 12 may be placed into any location of the fully associative cache.

However, Memory Block 12 may only be placed into Block 4 of the direct mapped cache

and only Block 0 or 1 (Set 0) of the 2-way Set-associative cache.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Main Memory

Types of Caches

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

(a) Fully Associative (b) Direct mapped (c) 2-way Set-associative

Figure 1.4: Mapping of blocks from main memory to different cache configurations

 12

 The remainder of this thesis is organized as follows: Chapter 2 examines other

methods of optimizing the performance of workloads. Chapter 3 describes the approach

to identifying the major performance constraints of the “cube” test problems and results

of corresponding optimizations. Chapter 4 presents the technique and results of smart

caching. Lastly, Chapter 5 summarizes the results and conclusions of this thesis.

 13

2 RELATED WORK

As the complexity of microprocessor design increases, the processes of analyzing

performance and pinpointing bottlenecks have evolved from just following logical

hunches to detailed performance investigations. Performance evaluation techniques often

differ from company to company and within the academic community as well. A

standard, systematic approach to analyze and compare the performance of processor

designs would be useful, but the vast difference existing between the various designs and

implementations of microprocessors makes the task of developing such an approach a

daunting one. Therefore, performance analysis and bottleneck identification have

become an art form of choosing and combining reputable techniques and procedures that

will result in accurate and informative results. The following chapter describes several

approaches to workload performance analysis and presents techniques for improving the

performance of microprocessors.

2.1 Performance Analysis

According to literature from PAID (Performance Analysis and Its Impact of

Design) workshops held at the International Symposium on Computer Architecture, there

are common elements of performance analysis that transcend genre. The workshops

provide a platform to share advances in performance studies and establish some key

methods to accurately analyze microprocessors. References from the PAID workshops

identified CPI (cycles per instruction), path length (dynamic instruction count) and

execution time as the primary components in determining the net execution cost (T) of a

 14

particular program [11]. The net execution cost (T) is often used to measure architectural

performance because it includes effects from the architectural organization (measured in

CPI), the instruction set architecture (ISA) and compilation (effect seen in path length),

and the clock speed (inverse of seconds per cycle).

T = (path length) x CPI x (seconds per cycle)

 Another concept arising from the PAID workshops, called separable components,

describes the processes of separating components such as CPI into more expressive

components. Separating CPI into two quantities that add up to the total CPI, such as

infinite-cache CPI and FCE (finite-cache effects), helps to quantify the effect on CPI of

the finite cache size decision [11]. This separation technique isolates and clearly

demonstrates the impact of design choices on performance. The workshops also

emphasize the importance of determining upper bounds on performance calculated with

infinite queues, resources, and bandwidths. In addition to upper bounds, resource limit

tests identify performance limits imposed by the actual finite resource sizes. These tests

are performed by modeling or simulating all infinite resources except the test resource

(actual size). By isolating components and resources, performance characteristic and

bottlenecks become easier to identify.

 The Scientific Computing Group at Los Alamos National Laboratory (LANL)

characterizes workloads at the instruction level to demonstrate how aspects of micro-

architectures will affect the performance [12]. These calculated parameters of the

workload are used to estimate performance bottlenecks. On-chip performance counters,

as compared to detailed simulations, provide a relatively fast and accurate method of

measuring the instruction-level characteristics. The five instruction-level parameters (#

of fp instructions, int instructions, memory instructions, L1 cache misses, and L2 cache

 15

misses) are measured in terms of λ, a ratio of the total number of completed instructions

to a subset of completed instructions (like completed floating point instructions, etc). In

the first level of analysis, the L1 cache is assumed to be infinite and the growth rate, G, of

queues (number of entries – number of exits) is tracked in terms of the average issue rates

described above (λx), the ideal instruction issue rate of the microprocessor (β), and the

hardware-defined dispatch rate from that queue (∆x).

Gx = β - ∆x

 λx

Positive growth rates indicate bottlenecks arising without cache constraints, branching

effects, or data dependencies and in this approach are considered to comprise the lower

bounds for CPI (upper bounds for IPC). Multiple positive growth rates limit the number

of in-flight instructions possible in the given architecture.

 The second and third levels of this characterization and bottleneck detection

technique both include cache limitations in the equation. The second level calculates the

parameter Q, the maximum number of outstanding cache misses for a particular workload

and architecture.

Q = (outstanding memory instructions) * λm (completed inst. / completed memory inst.)

λL1 (complete inst. / # L1 cache misses)

The parameter Q indicates the value of extending the number of outstanding cache misses

supported by the architecture. Finally, the third step observes the change in λ with

increased cache size. Increasing the cache size should increase λ until the point at which

a larger cache will not improve performance.

 The instruction-level characterization method described above offers a quick and

concise approach to identifying performance bottlenecks using performance counters and

key parameters. The equations derived from these parameters clearly quantify and

 16

highlight hardware constraints of the microprocessor. The method also provides a rough

estimate for the best performing on-chip cache size. And, while the overall results of this

approach are validated with results from empirical and statistical models, [12] noted that

to improve the accuracy and usefulness of this method, the effects of branching and data

dependency must be considered.

Real world applications and benchmarks are useful tools for performance studies

especially for comparing the overall performance of different architectures. However,

the complexity of these unique workloads makes it hard to pinpoint the cause(s) of

performance bottlenecks. This difficulty prompted the creation of an adaptable synthetic

benchmark specifically designed to help researchers and developers identify and quantify

bottlenecks of specific architectures.

Synthetic benchmarks are artificial programs that are statistically representative of

real world applications, but provide the added versatility of user-defined parameters for

controlling the benchmark’s behavior. For example, the adaptable synthetic benchmark,

sqmat, represents the behavior of matrix multiplication and linear solvers with four user-

defined parameters for isolating microprocessor bottlenecks [13]. The four variable

parameters include the working-set size (N), the computational intensity (M), the level of

indirection or noncontiguous memory access (I) and the irregularity of memory access

(S). The sqmat benchmark operates on a number of matrices each of size NxN. The

number of matrices, L, is chosen to create an array big enough to exceed the size of the

cache. The elements of the matrices are placed in memory according to the user-defined

irregularity (S). Each matrix is accessed on the order of M
2
 times with some degree of

irregularity (I).

 17

Varying the values of the parameters allows the user to better represent different

types of workloads. High computation intensity (M) characterizes workloads solving

dense matrices, whereas lower computational intensity and a reduced working-set (N)

better represent dense matrix-vector or vector-vector operations. High indirection (I) and

irregularity (S) are found in workloads using Finite Element solvers for dense matrices.

 This synthetic benchmark was used to compare the performance of scientific

workloads on four modern microprocessors - Itanium2, Opteron, Power3, and Power4.

In this case, performance is measured in terms of the algorithmic peak performance (AP)

based on the effective maximum FLOP (floating point operation per second) rate for each

microprocessor. For workloads containing high computational intensity, defined as the

ratio of floating point operations to load/store operations, Power3 and Itanium2 perform

the best. However, the performance of Itanium2 decreases significantly with decreased

computational intensity indicating a bottleneck between the registers and cache for

floating point operations, perhaps caused by Itanium2’s L1 cache which excludes floating

point data.

Large working-set sizes test the effects of working with a data set that exceeds the

register set. The results of this test indicate that Power3 handles register spills more

efficiently. The test of indirection, chosen to mimic the compressed row format (CRS) of

sparse matrices, checks for bottlenecks in memory bandwidth and instruction fetching.

Indirection is introduced by compressed formatting method because a single access to

matrix data requires gathering information from three compressed arrays (in CRS format)

stored in three different memory locations instead of one access to the original,

consolidated matrix. The Opteron, Power3 and Power4 each adequately handle the

introduced indirection. The Itanium2, however, suffers a slowdown in performance of

 18

between 1.5 to 5.4 times due to the introduced indirection, a slowdown unexplained by

[11]. The final test of irregular memory access patterns examines the effect of cache

misses on the architecture. Itanium2 handles cache misses effectively surpassing the

Opteron in a close second.

Detailed results of this performance study are presented in [13], however the

above results demonstrate the effectiveness of using synthetic benchmarks to isolate and

identify the source of performance degradation. Synthetic benchmarks characterize only

a narrow spectrum of workload behaviors as compared to real applications or

benchmarks. Therefore, the results of the sqmat benchmark performance studies are

useful for bottleneck detection, but are best used in conjunction with other forms of

performance analysis.

2.2 Performance Improvement Techniques

 Commonly explored formulas for improving performance of high-volume

scientific workloads consist of increasing resources such as functional units (arithmetic

logic units), registers and especially the cache. Intel’s Itanium processor was developed

using the above approach to better manage high-volume scientific workloads [14,15,16,

17]. However, the vast quantity of data and operations performed by these workloads

often overwhelms on-chip caches, even large caches, preventing optimal performance.

Techniques to help reduce memory-access latencies by reducing cache pollution and

unnecessary accesses include selective fill [18], load redundancy [19], and split and

victim caches [20,21] explained in detail in the following sections. Also, in 2002, Cray

released a shared-memory multi-vector processor (X1) that implemented a technique

 19

called scalar caching [22]. This remainder of this chapter will examine and report the

performance improvements of the techniques and implementations.

2.2.1 Itanium2 Processor

 The Itanium processor was developed by Intel to better meet the computing needs

of the high-performance technical computing and large enterprise communities. The

design concept by Intel for the Itanium supplied a generous amount of resources along

with powerful compilers optimized for parallel execution. This approach termed EPIC

(Explicitly Parallel Instruction Computing) was created to exploit and extract the inherent

parallelism that exist in most scientific, looping workloads. Unlike most processors

categorized as either CISC (Complex Instruction Set Computers) or RISC (Reduced

Instruction Set Computers), Itanium 2 decodes words (or long instruction strings each

containing several instructions) making it the first general use processor in the realm of

VLIW (Very Long Instruction Word) processors. Scalability, ability to maintain

performance in a multi-processor environment, is another feature necessary for scientific

supercomputing. Itanium was developed to perform as the key component of large scale,

supercomputing systems.

 In 2004, Intel joined with manufacturer California Digital and the University of

California at Lawrence Livermore National Laboratory (LLNL) to build a supercomputer

composed of 4,000 Itanium2 processors [14]. Hal Graboske, Deputy Director of Science

and Technology of LLNL says of the project:

 “Thunder (the above mention supercomputer project) will serve a critical role

 supporting the Lab’s mission to drive unclassified science and technology for

 20

 multiple program areas. Intel Itanium 2 processors address capacity and

 capability issues facing national security and science programs, with a long-term

 goal to develop a viable path to petaFLOP’s-scale computing. [14]”

Organizations like NASA and companies including Wells Fargo Bank have also chosen

the Itanium2 to fulfill their diverse computing needs.

 The extensive resource enhancements implemented on the Itanium processor

include three-levels of generous on-chip cache, an enlarged register file, more functional

units and among others a bus system developed for efficient multiple processor

communications. The three (physically indexed and tagged, non-blocking) caches

include split level one data and instruction caches each 16KB, 4-way set-associative, and

double ported with 64-byte lines. The L1 instruction cache is fully pipelined supplying

six instructions per cycle. The L1 data cache supports two simultaneous loads and stores

and also does not cache floating-point data, only integer. The 256KB, 8-way set-

associative L2 cache is unified and stores instructions and all types of data memory.

Finally, the on-chip L3 cache is customer specified with sizes ranging from 1.5 to 9MB.

The single ported L3 cache is 12-way set-associative, fully pipelined and has a maximum

transfer rate of 32GB per cycle [15].

 Other significant expansions include the register file which has 128 registers, 64-

bit general registers for integer storage, 128 floating-point registers each 82-bits wide, 64

one-bit predicate registers, and 8 branch registers also 64-bits. The Itanium2 processor

provides 21 execution units - 6 multimedia units, 6 integer units, 2 floating-point units, 3

branch units, and 4 load/store units. These robust structures exist to assist in the 64-bit, 1

GHz processing of the six to eight parallel instructions/operations per cycle [15].

 21

Figure 2.1: Itanium2 block diagram [16]

 Performance studies on the Itanium2 processor with 3M of L3 cache show that an

Altix system with 64 (Itanium2) processors compared against the same configuration of

Hewlett Packard 750MHz PA-8700 processors and 1 GHz, UltraSPARC III Cu

processors performs 3.94 and 1.95 times faster, respectively, on SPEC 2000 floating-

point benchmarks [17]. On the uniprocessor level, however, the Itanium 2 performs only

0.57 times faster than the 1.15GHz Alpha 21364 and 0.23 times better than the 1.7 GHz

IBM POWER4 processor also on SPECfp 2000 [18]. These statistics speak volumes

about the scalability of the Itanium2 performance, but this processor built to perform on

floating-point workloads does not exhibit the expected performance improvement on the

uni-processor level. This observation will be confirmed and discussed in later chapters.

 22

2.2.2 Selective Fill Data Cache

 Many researchers believe that the key to overcoming the performance bottleneck

observed in most scientific applications can be accomplished by improving the

performance of the cache. Even substantial on-chip caches, like in Intel’s Itanium2, can

become polluted by the massive amounts of data processed in these workloads. The idea

of a selective fill cache operates on the notion that minimizing the cache pollution

enables the cache to benefit from the expected temporal locality exhibited in scientific

processing. The Selective Fill Data Cache (SFDC) method dynamically filters data with

low temporal locality and prevents it from caching [19].

 The Selective Fill Data Cache is implemented in hardware by three modifications

and additions. First, the existing data cache is concatenated with an additional “used” bit

per block, similar to a dirty bit. The “used” bit for a particular block is cleared upon a

new block entering that position in the cache and set if the block is accessed again while

in the cache.

 Next, an additional and separate direct-mapped cache with the same number of

sets as the data cache functions as the Cache Fill Policy Table (CFPT). The CFPT holds

the tags of the recently evicted blocks that were not reused while in the cache.

Furthermore, the table also utilizes a two bit saturating counter to count how many times

a particular block is evicted without reuse for the purpose of profiling access patterns.

Entries in the CFPT are replaced when a new block (not in the table) is evicted from the

data cache. All block tags residing in the CFPT are not allowed back into the cache [16].

 Thirdly, a bypass buffer is added to hold blocks that must bypass the data cache.

The small cache buffer, like a victim buffer, sits between the data cache and the next

 23

level of memory (L2 cache) and is intended to hold bypassed blocks close at hand for a

short time to reduce the risk of mispredicting blocks that should have been cached.

Experimentation shows that buffers bigger than 1/16
th

 the size of the data cache exhibit

diminishing returns.

 The SimpleScalar 3.0 tool set is used to test the effectiveness of the Selective Fill

Data Cache technique among 4 SPEC2000 integer benchmarks - 175.vpr, 181.mcf,

197.parser, and 164.gzip. Four configurations of L1 Data Cache (8K and 16K direct-

mapped, 8K and 16 2-way set-associative) are simulated with no modifications, using

SFDC, and with a victim cache equivalent to the bypass buffer. The SFDC method

shows slight improvement over the other methods for the mcf benchmark, the benchmark

that exhibited the highest miss rates. The parser benchmark results display that the SFDC

method actually degraded the performance of the 8K direct-mapped cache compared to

the un-modified data cache. Also, the simple victim cache produces lower miss rates

than either the un-modified or the SFDC across the board for the parser, vpr, and gzip

benchmarks [19]. The complete results for the SFDC are shown below in Figure1.

While the concept of the Selective Fill Data Cache is interesting and promising, this

result shows that simple alternatives are currently more advantageous and SFDC requires

further investigation and improved implementation.

 24

VPR Benchmark Results

0

0.01

0.02

0.03

0.04

0.05

0.06

8K-direct 8K-2way 16K-direct 16K-2way

Configuration

M
is

s
 R

a
te Base Config

SFDC

Victim

Figure 2.2: VPR benchmark results of Selective Fill Data Cache method and victim

cache miss rates [19]

MCF Benchmark Results

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165

0.17

0.175

8K-direct 8K-2way 16K-direct 16K-2way

Configuration

M
is

s
 R

a
te Base Config

SFDC

Victim

Figure 2.3: MCF benchmark results of SFDC method and victim cache miss rates [19]

 25

Parser Benchmark Results

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

8K-direct 8K-2way 16K-direct 16K-2way

Configuration

M
is

s
 R

a
te Base Config

SFDC

Victim

Figure 2.4: Parser benchmark results of SFDC method and victim cache miss rates [19]

GZIP Benchmark Results

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

8K-direct 8K-2way 16K-direct 16K-2way

Configuration

M
is

s
 R

a
te Base Config

SFDC

Victim

Figure 2.5: GZIP benchmark results of SFDC method and victim cache miss rates [19]

 26

2.2.3 Load Redundancy

Another alternative for improving cache memory performance reduces the

number of redundant loads. Load instructions often take more time to execute than any

other instruction because they must incur the access penalty of the cache, and the

occasional memory latency, in order to complete. While avoiding loads altogether is

impossible and impractical, reducing redundant loads reduces execution time while

preserving the correct functioning of the program.

[20] defines load redundancy as the act of reloading a value into a register that

already contains that same value. The amount of load redundancy existing in a

benchmark or program can be calculated by stepping through the executing program with

the GNU debugger, counting redundant loads. Of the SPEC95 benchmarks compiled

with optimization, lisp and ijpeg exhibited the highest (22.81% of loads) and lowest

redundancy (14.18%), respectively.

A load within the malloc function produced the most redundancy in some

benchmarks. In this case, the redundancy that could be eliminated with smarter

programming was not resolved by the compiler. Many times redundancy arises from

subroutines that contain complicated controls and are not easily optimized by compilers.

The maximum performance achieved by eliminating all redundant loads and the

expected performance increase by implementing a load redundancy predictor are

calculated across four SPEC95 benchmarks. By modifying SimpleScalar to detect and

bypass redundant loads, the SPEC95 benchmarks demonstrate the expected performance

increase within each program. Each of the 4 SPEC95 benchmarks tested contained a load

redundancy percentage between 14.19% (ipeg) and 22.81% (lisp). The IPC of the

modified and normal SimpleScalar execution of the benchmarks showed that bypassing

 27

all redundant loads increased IPC from 2% to 10% across the benchmarks. This metric

serves as the upper bound for increasing performance with this method [20].

 A more realistic implementation of eliminating load redundancy is simulated by

adding a load predictor (a modification of a branch predictor) that compares a decoded

load instruction to the instruction addresses stored in a prediction table. The prediction

table holds recently executed load instructions. Therefore, if the current load matches a

load in the table, the load is bypassed. Various table prediction sizes are tested, and those

with over 128 sets (each with 2 entries) showed diminishing returns. Results from this

implementation show increased IPC from 1% to 8% when compared against normal

simulation of the benchmarks [20]. These results may be slightly optimistic considering

the simulated results charged no penalty to resolve missed predicted loads.

 This method of improving performance is a simple hardware implementation that

resolves load redundancies missed by gcc compiler optimizations. While the actual

performance gains are modest, the simplicity of this hardware method makes it attractive.

For those working with highly redundant programs, this technique may actually be easier

than modifying a compiler to prevent the redundancies. In conclusion, the load

redundancy results reveal that a slight performance increase can be achieved by reducing

redundant loads, but it also proves that load redundancy is not the leading cause of the

performance degradation in cache and memory latencies.

 28

2.2.4 Split and Victim Caches

Researches have strived to design cache memory able to exploit the natural access

patterns that exist in most workloads. Temporal locality describes the tendency of

programs to re-reference a location in the cache that has recently been referenced.

Spatial locality explains the high probability of accessing data nearby data just recently

accessed. Cache design choices like block size and associativity (number of blocks in

set) each exploit different locality. Larger blocks of data brought into the cache on a miss

help caches take advantage of spatial locality by bringing in more nearby data on each

access. Caches with more blocks per set best serve temporally local programs by

allowing more recently accessed data blocks to remain in each set. However, because

access tendencies change considerably between different programs and even in different

phases of a single program, a single cache and configuration often never achieves optimal

performance.

 A common technique to improve cache performance and to better accommodate

changing access patterns involves splitting the first level of data cache into two separate

caches. Each separate cache is configured to best manage the data stored in that cache.

Several split cache types and schemes have been simulated to test the effectiveness of

each arrangement [21]. The first example split cache configuration (DUAL) consists of

two independent cache organizations. One cache with bigger block size for spatially

local data and another with one word blocks for temporally local data. In the DUAL

scheme, data is classified as either spatial, temporal, or neither at runtime using a

hardware history table. Spatial and temporal data are cached in their respective caches

while data exhibiting neither is bypassed to the next level of memory. The Split

 29

Temporal Spatial Data Cache (STS) [21] method uses the same configuration as above,

but classifies data during compilation and attaches counters to data to check locality and

correct data mislabel during compilation.

 Another approach to splitting the data caches comes from the trend that data

arrays and structures tend to be more spatially local, whereas scalar data exhibits more

temporal locality. For this reason, the Scalar-Array Data Cache [21] caches array and

scalar data separately. In this case, the compiler classifies data signaling the controller to

put the data into the corresponding cache. Another method, the Cacheable Non-

Allocatable Model (CNA) [21], classifies data as cacheable or non-cacheable depending

on a predication counter that holds the cache hit history of data access instructions.

Instructions commonly causing cache misses will therefore not be cached again. A

modified CNA cache scheme, the Memory Address Table (MAT) [21], stores the reuse

information of each kilobyte block in a direct-mapped hardware table used to determine

whether or not data should be cached.

 Finally, data cache memory can be divided into one large main cache and a

smaller cache (called a Victim cache) acting as a buffer before data is stored to the next

level of cache or main memory [21]. Similar to the Victim cache, a Filter cache is a

small cache buffer that holds the most frequently referenced data blocks as indicated by a

counter associated with each block. The ABC (Allocation by Conflict) [21] victim

caches check an extra conflict bit to decide whether to evict a block on a conflict miss.

Every cache hit to a block resets the conflict bit, and recently hit blocks (conflict bit equal

to zero) remain in the main cache on a miss while the blocks that cause the miss will be

deposited into the small buffer cache.

 30

 To compare the relative performance of the cache enhancement techniques

described above, one configuration from each approach is simulated with identical

conditions and benchmarks. A modification of the DUAL cache configuration, called the

Nontemporal Streaming Cache (NTS) [21], dynamically routes data between the two split

level one data caches. NTS allocates one cache for data that is strictly temporal and

another cache to hold data that exhibits both temporal and spatial locality tendencies.

NTS was chosen to represent caches that separate data according to locality because it is

widely used and documented. In [21], the Victim cache scheme used for comparison

consists of a large, direct-mapped main cache (16Kbytes) with a fully associative cache

buffer (2-Kbytes). Lastly, the MAT cache represents those configurations that cache

scalar data in a separate cache from array or structure data.

 When comparing each split cache configuration to an equivalent single cache, the

Victim cache shows the greatest speedup for direct mapped caches among integer

(speedup of 7.68 over single cache) and floating point (speedup of 3.67) SPEC

benchmarks. NTS performed best in four way set-associative caches with a speedup of

10.29, while the Victim cache still demonstrated greater speedup (3.78) among the SPEC

floating point benchmarks. Although the MAT scheme showed improvement, especially

with increased block sizes, it did not improve cache performance as much as the NTS or

the Victim cache setup [21].

 One study researched the effects of combining the techniques of the MAT cache,

Victim cache, and stream buffer [22]. The stream buffer, in this case a 10 line, fully

associative cache, serves as a place to store prefetched data brought in on a missed cache

block. This integrated solution implements a 4-Kbyte direct-mapped Scalar cache, a 4-

Kbyte direct-mapped cache, 8 line fully-associative Victim cache, and the stream buffer

 31

mentioned above. This configuration achieved a 55 % improvement over a single cache

configuration of the same size executed on SPEC floating point benchmarks [21].

 Moreover, the Cray X1 (a shared-memory multi-vector processor) is one example

of a working system that implements the concept of a separate cache for scalar data. The

Cray X1 system has a strictly scalar, level one data cache of size 16 KB. The 2 MB non-

scalar cache, called the E-cache, contains all the vector data references and also all the

references that miss the scalar cache [23]. Performance studies demonstrate the Cray X1

“achieved high raw performance relative to the Power (IBM) systems for the

computationally intensive applications”, but other systems still completed with faster

runtimes [24]. Though the X1’s performance is certainly attributed to many architectural

components and design attributes, the results prove that split cache configurations are an

achievable, workable solution to be explored.

 32

3 Methodology for Performance Analysis

3.1 Performance Analysis Tools and Metrics

 The previous chapter describes several methods and formulas for measuring the

performance of microprocessors and for identifying the bottlenecks limiting their

performance. Most of these methods look first at Cycles Per Instruction (or IPC) to

gauge overall performance. Calculating or simulating the maximum IPC provides an

upper bound for comparison and identification of bottlenecks. The theoretical upper

bound of IPC comes from the maximum number of instructions the architecture can

issue/commit per cycle. However, the more commonly used measure of maximum IPC

comes from the IPC calculated or simulated with no cache misses or access penalties

(assuming infinite cache), no branching effects, and no data dependency stalls. Beyond

IPC, the utilization and performance metrics of major components and queues become

important for specific bottleneck identification.

 The “cube” test benchmark previously introduced serves as the primary

benchmark for performance evaluation for this research. This benchmark provides the

opportunity to observe the performance of a fully functioning finite-element analysis tool

without the hassle of providing actual input data. The test problem solves a system of

equations associated with a mesh of arbitrarily chosen data points. Upon the

recommendation of SNL, the mesh will always be organized according to the CRS format

type and ML will be used to precondition each mesh before solving. The size, shape and

density of the mesh are user-defined parameters allowing the user to determine the

physical dimensions of the cube mesh and in turn how intensely the benchmark taxes the

architecture of the microprocessor. Performance results from the “cube” benchmark are

 33

compared to results from SPEC2000 benchmark fmad3, characterized by similar

functioning. The benchmark fma3d is a finite element method, written in Fortran,

designed to simulate in the inelastic transient dynamic response of three-dimension

objects subjected to suddenly applied loads [1]. Results from the fma3d benchmark will

serve as a comparison for the results of the “cube” benchmark, reinforcing the

performance results for FEA and scientific workloads.

 Performance data is collected from the sim-alpha simulator, also described in a

previous chapter, along with verification by means of another cycle-accurate

SimpleScalar simulator, sim-outorder. Another important method of verification includes

comparing simulator results with similar performance metrics of current microprocessors.

For this reason, the configuration file describing sim-alpha’s architecture is modified to

best resemble the Itanium2 microprocessor, allowing performance data to be compared.

Although the Itanium2 has a VLIW architecture, major structures in the architecture such

as registers, caches, and queue sizes can be imitated for a general comparison of

performance. The architecture features of the Itanium2 and their representation in the

sim-alpha configuration are shown in Table 3.1.

 34

Itanium
Configuration of

sim-alpha Itanium 2 Architecture

Architecture SuperScalar VLIW

Processing Out-of-order In-order

Fetch Width 6 6

Commit Width 6 6
Physical Integer

Registers 128 128
Physical Floating-

point Registers 128 128

Functional Units 12 11

Cache Configuration 2 Levels 3 Levels

DL1
256 KB 8-way set-

associative
16 KB, 4-way set-associative

(no floating point access)

L2
1.5 MB, 12-way
set-associative 256 KB, 8-way set-associative

L3 none 3 MB, 12-way set-associative

Table 3.1: Itanium 2 configuration on sim-alpha versus standard Itanium 2 architecture

The Itanium2 microprocessor was chosen for this comparison for a variety of

reasons. The Itanium2 was developed largely for the purpose of improving performance

of scientific workloads much like the “cube” benchmark and others. Also, the Itanium2

architecture provides a generous number of performance counters allowing for the

collection of several performance statistics simultaneously. And, because cycle-accurate

simulators, like sim-alpha, take several days, even weeks to complete a simulation, the

Itanium2 provides a platform on which several problems sizes and configurations can be

efficiently tested and analyzed (in real time). Thus, the Itanium2 provides a better

coverage of the “cube” benchmark analysis and is useful in identifying information about

specific areas where more detailed information, from simulators, is necessary.

Performance counters, if available, offer the quickest and perhaps the most accurate

means of gathering initial performance information for a particular application or

benchmark. Simulators, conversely, contribute more detailed performance data with the

 35

added capability of modifying architectural features to observe their effect on

performance. When used in conjunction, these two performance evaluation tools are

powerful resources.

The organization of this chapter is as follows: Section 3.2 describes the process

of choosing the most appropriate problem sizes for complete performance analysis and

comparison. Section 3.3 presents the performance and bottleneck analysis methodology

and results. Section 3.4 summarizes the results of this method, the conclusions arising

from these results, and our plans for further research.

3.2 Problem Size

 The capability of simulating a great variety of problem sizes, shapes and densities

provides for excellent performance coverage and mounds of performance data. The only

limitation to uni-processor problem size selection is processor memory. The performance

analysis of the “cube” benchmark is performed on a Beowulf cluster of eight machines.

Each of the eight machines utilizes 2GHz, dual AMD processors with 2GB RAM. To

avoid over running the 2GB of RAM and thereby suspending operation of the “cube”

benchmark, problems sizes which require over 1M resulting equations will be excluded.

The three user-defined parameters that determine problem size include the width (W),

depth (D), and the number of the degrees of freedom (DofPerNode). The number of

equations resulting from problem sizes with parameters mentioned above is found using

the following equations [4]:

 36

NNodes = the number of nodes in a mesh

NEqns = the total number of equations for a particular problem size

NNodes = (W+1) * (W+1) * (D+1)

NEqns = NNodes * DofPerNode

Figure 3.1: Visualization of 3 dimensional “cube” benchmark mesh from [4]

 Each mesh created by the “cube” benchmark exists in three dimensions. The

width and depth are the only dimensions of the 3D object that can be specified by the

user with the assumption that the height is always equal to the user-defined width. The

other user-defined parameter, DofPerNode, describes the number of parameters (in FEA,

the number of physical properties or attributes) monitored at each node. Increasing the

number of degrees of freedom per node makes for a denser mesh, more equations and

higher computational intensity.

 37

3.2.1 Problem size results for Alpha configuration

While it is impossible to simulate every potential size, shape, and density of a

mesh, gaining insight about the performance trends among different configurations is

important. Results from Itanium2, along with comparable simulations from sim-alpha

(Alpha and Itanium2 configuration), are used to measure performance among different

problem sizes. To better understand the effects of varying W, D and DofPerNode on

performance, the number of equations for a mesh is held constant. Two problem sizes,

each with a constant number of equations, are evaluated with for varying W, D, and Dof.

The two problem sizes, equations equaling 175,616 and 274,625, are chosen to

overwhelm (operate on a mesh with more nodes/values than can be stored in the cache)

the DL1 cache and L2 cache respectively. The following Figure 3.2 shows the results of

varying the W, D, and DofPerNode on IPC as a measure of overall performance for the

Alpha configuration.

 38

Sim-alpha IPC for Problems With Equal Equations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1x43903x1,

1x68655x1

27x223x1,

31x267x1

55x55x1,

64x64x1

78x27x1,

91x31x1

295x1x1,

369x1x1

Width x Depth x DofPerNode

IP
C Eqns = 175,616

Eqns = 274,625

Figure 3.2: Sim-alpha performance (in term of highest IPC) for varying width and depth

with equal equations

Equal Equations = 175,616

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1x43903x1 27x223x1 55x55x1 78x27x1 295x1x1

Width x Depth x DofPerNode

IP
C

 o
r

C
a
c
h

e
 M

is
s

 R
a
te

IPC

DL1 Miss Rates

L2 Miss Rates

Figure 3.3: Sim-alpha performance (in terms of highest IPC and lowest cache miss rates)

varying width and depth with equal equations

 39

Figure 3.4: IPC and # of instructions for equations = 175,616

IPC of Different Problem Shapes

0

0.5

1

1.5

2

2.5

1 5001 10001 15001 20001 25001 30001

1x43903x1

55x5 5x1

0

1

2

3

1 5001 10001 15001 20001 25001 30001

55x55x1

7 8 x2 7 x1

0
0.5

1
1.5

2
2.5

1 5001 10001 15001 20001 25001 30001

78x27x1

2 7x22 3x1

0

1

2

3

1 5001 10001 15001 20001 25001 30001

27x223x1

0
0.5

1
1.5

2
2.5

1 5001 10001 15001 20001 25001 30001

Instructions (in Millions)

297x1x1

 40

0

5

10

15

20

25

30

35

40

1x43903x1 27x223x1 55x55x1 78x27x1 295x1x1

Problem Size

In
s
tr

c
u

ti
o

n
s
/C

y
c
le

s
 (

in
 B

il
li
o

n
s
)

Instructions

Cycles

Figure 3.5: Number of instructions and cycles executed by each problem size,

equations = 175,616

Figure 3.3 reveals the trends of overall performance and caches miss rates among

different shapes of meshes with a constant number of equations. Figure 3.2 displays the

highest IPC achieved by the problems with the largest width and smallest depth. The

improvement in IPC produced by problems with larger widths than depths appears to be

caused by a significant decrease in L2 cache miss rates. Even though the decrease in the

L2 miss rate is very drastic, the resulting increase in IPC is only 0.22 instructions per

cycle. Also, Figures 3.4 and 3.5 reveal that although the problem 295x1x1 achieves the

highest IPC, it also requires the most instructions to complete. Therefore, the problem

1x43903x1 will actually execute more quickly than the other problems on this

architecture. Thus, the Figures demonstrate that the problems with larger depths

complete faster and the problems with larger widths better utilize the architecture by

completing more instructions per cycle.

 41

The results of the problem size simulations indicate little change in IPC among

problems with different dimensions. In addition, the maximum difference in IPC among

the two problem sizes (equations equal 175,616 and 274,625) is less than 0.034

instructions per cycle as seen in Figure 3.2. However, the number of cycles executed by

different problem sizes and shapes does vary greatly. Even so, our research is focused on

improving the microarchitectural performance at the uniprocessor level, thus our

concentration will be on improving IPC. Because the two problem sizes exhibit such

similar performance behavior in terms of IPC, the performance of these problems can be

represented by one simulation of either of the problem sizes and any of the shapes

simulated above. Therefore, all subsequent simulations will be performed on the problem

with equations equal to 175,616 and W=55, D=55, and Dof =1. Validation for our choice

of Dof=1 will be presented below in the Itanium2 results section.

 42

3.2.2 Problem size results for the Itanium2 processor

Performance of Itanium2-type Configuration of Sim-alpha

0

0.2

0.4

0.6

0.8

1

1.2

1x43903x1 27x223x1 55x55x1 78x27x1 295x1x1

Width x Depth x DofPerNode

DL1 Miss Rate

L2 Miss Rate

IPC

Figure 3.6: IPC and cache miss rates for Itanium2-type configuration of sim-alpha

 43

Problem Width Depth Dof

0 1 300 1
1 5 173 1
2 10 128 1
3 50 59 1
4 75 48 1
5 100 41 1
6 150 31 1
7 300 24 1

Figure 3.7: IPC and cache miss rates for Itanium2, varying width and depth with

equations = 181,202

 Figures 3.6 and 3.7 are used to validate the results shown in Figure 3.3 (Alpha

configuration) showing performance trends among problems of different shapes. Figure

3.6 displays the performance of the sim-alpha simulator configured to mimic the

Itanium2 processor. Figure 3.7 presents the actual results from the “cube” benchmark

executed on the Itanium2 processor. Both Figures 3.6 and 3.7 show the same trends as

the Alpha configuration results shown in Figure 3.3. The problems with the greatest

width, smallest depth achieve the best performance in terms of IPC, but overall again the

performance variation among problems of different shapes is less than 0.6 instructions

per cycle.

 In addition, the results of an Itanium2 problem size study varying the degrees of

freedom provides the evidence leading to our decision to concentrate on a problem size

with Dof=1, shown in Figures 3.8 and 3.9. This study is performed on the Itanium2

processor because problems can be evaluated on the Itanium2 in a fraction of the time it

takes to simulate the same problem on the sim-alpha simulator. Using the Itanium2

processor, many problem sizes, shapes and varying degrees of freedom can be simulated

in a matter of days, instead of weeks with a simulator. Also, the similarity in results

 44

collected from the Itanium2 processor and the sim-alpha simulator provides validation of

these results and confidence in using data from each method. Figures 3.8 and 3.9 below

indicate some variation in performance caused by changing the degrees of freedom of the

“cube” benchmark, but the y-axis scales reveal that this variation is very small.

Therefore, our subsequent studies will be performed on problem with one degree of

freedom.

Degrees of Freedom

Figure 3.8: Itanium2 IPC and cache miss rates of CRS matrix W=40, D=40 with varying

degrees of freedom

 45

Degrees of Freedom

Figure 3.9: Itanium2 IPC and cache miss rates of CRS matrix W=300, D=1 with varying

degrees of freedom

3.3 Performance and Bottleneck Analysis

The next step in analyzing the performance of the “cube” test problem is to identify

the bottlenecks preventing maximum performance of the workload. A good place to start

the investigation of these potential bottlenecks is to observe the behavior of each major

structure and queue simulated under default conditions in sim-alpha. The table below

shows the average performance and utilization of each major structure and queue in the

sim-alpha architecture calculated for two different problem sizes (number of equations)

each with 5 variations of W, D and DofPerNode (10 total simulations).

 46

Architectural Structure
Average
Statistics Statistic Definition

L1 Data Cache 0.07079 Miss Rate

L2 Cache 0.47072 Miss Rate
Data Translation Look-aside Buffer
(TLB) 0.00013 Miss Rate

Branch Predictor 0.01073 Miss Predict Rate

Integer Issue Queue 10.12167 Average Number of Instructions in Queue

Floating-point Issue Queue 1.32417 Average Number of Instructions in Queue

Load Queue 4.81939 Average Number of Instructions in Queue

Store Queue 1.93474 Average Number of Instructions in Queue

Function Unit Utilization 0.36786 Percent Utilization of Functional Units

Instructions Per Cycle 1.16264 Instructions Completed Per Cycle

Table 3.2: Average performance statistics for sim-alpha simulations

 As shown in Table 3.2, the average IPC is far below the maximum IPC of 4, the

theoretical maximum for this superscalar architecture with a 4 instruction fetch width.

Table 3.2 also indicates 4 areas of potential architectural bottlenecks - the DL1 cache, the

L2 cache, the Integer Issue queue, and high instruction-level dependencies (indicated by

low functional unit utilization). Due to the high disparity between cache and memory

latencies, the impact of a 47 percent L2 cache miss rate can greatly affect the overall

performance. Even a 7 percent DL1 cache miss rate can impact performance because a

miss to DL1 must incur the DL1 miss penalty plus the L2 hit time, assuming the cache

block resides in the L2 cache. Therefore, both the DL1 and L2 caches are both potential

bottlenecks. The DTLB and branch predictor rates both indicate about 99 percent

accuracy or better and show no indications of hindering performance. The Integer Issue

Queue is the only queue with average entries above half of the total capacity. While an

average of half capacity is not alarming, since the IIQ is the most frequented of all the

queues, it is also considered a potential bottleneck. Finally, the function unit utilization

proves that the functional units themselves are not limiting performance, but the low

 47

utilization suggests a potential instruction-level bottleneck. Programs that are bound by

dependencies (i.e. programs containing a high percentage of instructions that depend on

previous instructions to complete) often exhibit low functional unit utilization because

waiting instructions can not be issued to the functional unit until the dependencies have

been resolved. Therefore, the low performance of the “cube” benchmark may be caused

by these instruction-level dependencies.

3.1.1 Investigating the Cache Bottleneck

Because so much research has been devoted to improving the cache performance

in microprocessor, the potential cache bottleneck was the natural place to begin our

bottleneck research. As described in the previous chapter, there are many proposed

techniques for improving cache performance among scientific workloads represented by

the cube benchmark. However, before implementing and testing the effectiveness of

such methods, it is important to assess the actual impact of caching on the overall

performance of the cube test problem. The maximum performance of the benchmark

without cache delays is simulated by replacing the caches with a perfect cache model. In

sim-alpha, the configuration file provides the option of choosing a perfect L2 cache.

While sim-alpha does not simulate a truly perfect L1 data cache, nearly perfect cache

performance (miss rates less than 1 percent of accesses) is achieved by making the DL1

over 64MB. The gain in IPC without cache interference is shown in Figure 3.11 below:

 48

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 10001 11001 12001 13001 14001 15001 16001

Instructions (in Millions)

IP
C

55x55x1

Figure 3.10: Sim-alpha IPC for Problem Size 55x55x1 with default

Alpha cache configuration

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 10001 11001 12001 13001 14001 15001 16001

Instructions (in Millions)

IP
C

55x55x1 with perfect cache

Figure 3.11: Sim-alpha IPC for Problem Size 55x55x1 with 65M DL1,

infinite L2 cache configuration

 49

 Figures 3.10 and 3.11 demonstrate the overall performance improvement

achieved by simulating nearly perfect cache behavior for the entire cache hierarchy. This

‘close to perfect’ cache behavior is characterized by incurring no L2 cache misses and

only a 0.66 percent DL1 miss rate. The average IPC rate of the processor simulated with

“infinite” cache only increases by 0.2885 instructions per cycle from the default cache

configuration. The average IPC of the default configuration is 1.1548 instructions per

cycle compared to 1.4433 instructions per cycle for the perfect cache configuration. The

small performance gain accomplished by eliminating almost all cache misses suggests

that cache behavior is not the most significant bottleneck existing for the “cube”

benchmark. This conclusion is surprising due to the extensive research devoted to

improving cache behavior for scientific workloads. Also, the implications of this result

help shift our efforts and priorities of performance analysis from caching to other areas of

potential bottlenecks.

 The following Figures 3.12 and 3.13 display the performance in IPC of the

SPEC00 benchmark fma3d for the default Alpha configuration and a simulated perfect

cache. The fma3d benchmark displays similar performance behavior to the “cube”

benchmark. The performance of both FEA benchmarks improves only slightly with

“perfect” cache performance. The fma3d performance increases from 1.561 instructions

per cycle to 1.8446 instructions per cycle no cache misses. While the overall

performance of fma3d is minimally better than the “cube” benchmark, the 0.2836 IPC

increase from the perfect cache configuration on the fma3d benchmark almost exactly

matches the IPC increase from the same configuration on the “cube” benchmark.

 50

Figure 3.12: Sim-alpha IPC for SPEC00 fma3d with default Alpha cache configuration

Figure 3.13: Sim-alpha IPC for SPEC00 fma3d with perfect cache configuration

 51

3.1.2 The Integer Issue Queue and Other Architectural Bottlenecks

 Similarly, to estimate the effects of the finite Integer Issue Queue, simulations are

performed with the IIQ queue increased from 20-entries to 40-entries. However, this

change in configuration shows no improvement on overall performance or no change in

the average queue occupancy for both the “cube” and fma3d benchmarks. Finally, a

‘super’ architecture is simulated on sim-alpha and sim-outorder to estimate the maximum

possible IPC of the “cube” benchmark, shown in Figure 3.3 below. This “super”

configuration aims to eliminate the effects of architectural bottlenecks by providing more

resources than need by the application. Although the “super” configurations are

unrealistic compared to even the largest microprocessors currently available, the

simulations help gauge the upper bound on performance achievable for a particular

program. The following table describes the “super” configurations for sim-alpha and

sim-outorder.

 52

Configuration Sim-outorder Sim-alpha

Fetch Queue Size 32 8

Fetch Speed 1 1

Branch Prediction Config 2 level Alpha

Branch Prediction Size 32 KB 32 KB

Decode Width 32 12

Issue Width 32 12

Commit Width 32 22

Reorder Buffer Size 256 160

Load/Store Queue Size 32 64

L1 Data Cache 512 KB 64 MB

L2 Data Cache 4 M Perfect

L1 Instruction Cache 256 KB 64 MB

Instruction TLB 512 KB 8 KB

Data TLB 1 M 8 KB

Int ALU's 16 4

Int Mult/Div 8 4

Memory ports 4 2

Floating Point ALU's 16 2

Floating Point Mult/Div 8 2
Table 3.3: “Super” configuration for sim-alpha and sim-outorder

“Super” configurations are implemented in both sim-alpha and sim-outorder to

demonstrate two estimates of peak performance. Because sim-alpha simulates a more

complicated, realistic architecture, there are limits to its super configuration. For

example, sim-alpha executes the clustering of instructions issued to the function units as

performed in the ALPHA 21264. This clustering schedules the issuing of instructions to

specific functions units in order to minimize producer/consumer delays. Adding

functions units to the sim-alpha simulator would require a major modification of this

clustering technique. The sim-alpha configuration described in Table 3.2 is the best

configuration executable on our version of the sim-alpha simulator. Table 3.2 also shows

that sim-outorder allows more freedom in modifying resources due to its simple

architecture. A configuration similar to our sim-outorder “super” configuration has been

 53

used in the research of other benchmarks achieving IPC values up to 10, 000 instruction

per cycle for the SPEC95 ijpeg benchmark [25].

Configuration IPC

sim-alpha

Base 1.1548

Super 1.609

sim-outorder

Base 1.54

Super 2.08

Super with bigger branch predictor 3.09
Super with even bigger branch predictor
no cache misses
No TBL misses 4.05
Super with even bigger branch predictor
no cache misses
no TBL misses
double integer and floating point functional units 4.4
Super with even bigger branch predictor
no cache misses
no TBL misses
double integer and floating point functional units
32 memory ports 4.73
Super with even bigger branch predictor
no cache misses
no TBL misses
quadruple integer and double floating point functional units
32 memory ports
1 cycle functional unit latencies 4.98

Table 3.4: IPC achieved with sim-alpha and sim-outorder ‘super’ configurations for CRS

matrix W=55, D=55, Dof=1

 The sim-alpha “super” configuration showed modest performance gains due to

limited configuration flexibility. The best sim-outorder configuration achieves an IPC

rate of almost 5 instructions per cycle. The over 2x speedup of this configuration with

almost no architectural constraints estimates the maximum performance achieved by

eliminating the bottlenecks. The SPEC00 benchmark executing finite-element analysis,

 54

fma3d, also achieves limited improvement with the “super” configuration, improving

only 1.8 instructions per cycle from its base IPC of 1.561.

The “super” configuration does enable both the “cube” benchmark and fma3d to

achieve better overall performance, but performance is still far below ideal. After

quantifying the effects of potential architectural bottlenecks, it is important to understand

the bottlenecks within the benchmark itself. As noted before in Table 3.2, the functional

units appear to be under-utilized indicating a possible instruction-level dependency

bottleneck. Quantifying the effect of this instruction-level bottleneck is an essential part

in understanding the performance of the “cube” benchmark.

3.1.3 Instruction-level Dependency Bottleneck

 The degree of instruction-level dependency existing in the cube benchmark is

calculated by measuring the number of cycles each instruction spends waiting on a

previous instruction to complete. Out-of-order execution, used in sim-alpha, sim-

outorder, and the Itanium2 processor, allows instructions to be executed by the functional

units out of program order. This type of execution works to eliminate wasted cycles by

keeping the functional units busy and executing independent instructions (instructions

that don’t depend of the execution of previous instructions) during idle cycles. However,

to preserve correct program execution, instructions must be committed (saved) in

program order. Therefore, in programs with high levels of instruction-level dependency,

instructions may spend several cycles in the reorder buffer waiting for a previous

instruction commit.

 55

 During simulation, tracking the number of cycles each instruction spends waiting

to be issued to the functional units and to commit in the reorder buffer quantifies the

existence of instruction-level dependency during each phase of the cube benchmark,

shown in Figure 3.14. The cycles are also grouped by instruction-type to identify which

type of instructions spend the most time waiting at the top of the reorder buffer to

commit. These instruction types are responsible for holding up subsequent instructions

and are the main cause of this instruction-level bottleneck. Figure 3.15 displays those

instructions causing the most waiting time in the reorder buffer.

Instruction-level Dependency Stalls for CRS Matrix (W=55, D=55, Dof=1)

0

1

2

3

4

5

6

1 2001 4001 6001 8001 10001 12001 14001 16001

Instructions (in Millions)

C
y
c

le
s Reorder Buffer Stalls

Issue to FU stalls

Total stalls

Figure 3.14: Average number of cycles each instruction waits to issue and commit for

sim-alpha

 The graph above shows the overall average wait for each instruction to issue to

the functional units and to commit from the reorder buffer is approximately 5.58 cycles.

The average graph peaks during an initial and also jumps up and continues to increase

during the solve phase starting around 10 billion instructions. The average wait for each

 56

instruction to issue to the functional units is approximately 1.78 cycles. The average wait

for each instruction in the reorder buffer is 3.8 cycles. Because of the low functional unit

utilization, the average wait to issue can be attributed to instruction-level dependencies.

Only instructions with all operands available can issue to the functional units. Therefore,

if an instruction is depending on the previous instruction for an operand, the instruction

will wait to be issued until the previous instruction has produced the needed operand.

This is another example of an instruction-level dependency stall.

Instruction Mix - CRS Matrix 55x55x1

0

1

2

3

4

5

6

7

stores loads branches fp other

Instruction Type

In
s

tr
u

c
ti

o
n

s
 i

n
 B

il
li

o
n

s

Figure 3.15: Number of each instruction type executed in the “cube” benchmark

(Instruction Mix)

 57

Percentage of Stall Cycles Caused by Each Instruction Type (CRS Matrix 55x55x1)

3%

43%

7%

47%

0%

stores

loads

branches

fp

other

Figure 3.16: Reorder buffer stalls caused by instruction type in sim-alpha (55x55x1)

 Figure 3.15 categorizes the number of each instruction that is executed by the

“cube” benchmark. The major of the instructions executed fall into the load or other

category. However, Figure 3.16 indicates that the most of the stalling in reorder buffer is

caused by floating point instructions and load instructions. These results are consistent

with the operations performed in the main kernel of the solve phase performed by the

cube benchmark. This kernel, found in the Trillinos Aztec solver library (azgmres.c),

performs spare matrix multiplication. Consider the simple sparse matrix multiplication, y

= A * x. This operation requires the loading of each value of the matrix A (the cube

mesh in the cube benchmark) and the vector x (values are reused). Then, each element of

A is multiplied the appropriate x value and saved in the vector y. Each matrix multiply is

a floating point operation which account for most of the stall cycles in the reorder buffer.

 58

Intruction Mix - fma3d

0

20

40

60

80

100

120

140

stores loads branches fp other

Instruction Type

In
s

tr
u

c
ti

o
n

s
 i

n
 B

il
li
o

n
s

Figure 3.17: Number of each instruction type executed in the fma3d benchmark

(Instruction Mix)

Percentage of Stall Cycles Caused by Each Instruction Type (fma3d)

1%

56%

2%

41%

0%

stores

loads

branches

fp

other

Figure 3.18: Fma3d reorder buffer stalls caused by instruction type

 59

Figure 3.17, categorizing the instructions causing stall cycles in the SPEC00 benchmark

fma3d, shows results very similar to the “cube” benchmark. Floating point and load

instruction still cause the major of the stall in the reorder buffer, but in the fma3d

benchmark the loads account for more stall than the floating point instructions (Figure

3.18). These results identifying floating point and load instructions as the major

contributors to instruction-level stalls for the “cube” and fma3d benchmarks are verified

by statistics gathered by the Itanium2 performance counters.

Figure 3.19 presents the instruction mix for the “cube” benchmark collected by

the Itanium2 processor. The instruction mix in similar to the “cube” instruction mix from

sim-alpha, however the more floating point operations are performed by the sim-alpha

simulator and more branches are executed by the Itanium2 processor. These differences

occur due to the differences the hardware, compilers and instruction set architectures

(ISA). The ISA describes the aspects of the computer architecture visible to a

programmer, including the instruction and data types, addressing modes, memory

architecture, exception handling and others. Figure 3.20 identifies the major contributors

to stalling in the Itanium2 processor. And even with the differences in the two processor

types and ISAs, the figure confirms that loads and floating point operations are still the

major operations causing stall in the execution of the “cube” benchmark.

 60

CRS Instruction Mix

0%

10%

20%

30%

40%

50%

60%

70%

1x45000x1

55x55x1

300x1x1

1x45000x1 17.628% 5.168% 15.181% 3.858% 58.165%

55x55x1 18.283% 4.050% 14.166% 5.893% 57.608%

300x1x1 14.984% 12.464% 14.354% 0.922% 57.276%

Loads Stores Branches Floating Point Other

Figure 3.19: Number of each instruction type executed in the “cube” benchmark on the

Itanium2 processor for 3 equal equation problems (Instruction Mix)

Stall Percentage CRS

0%

10%

20%

30%

40%

50%

60%

70%

1x45000x1

55x55x1

330x1x1

1x45000x1 37.046% 18.683% 4.689% 1.007% 37.469% 0.000% 1.106%

55x55x1 23.247% 12.360% 4.148% 0.688% 58.805% 0.001% 0.751%

330x1x1 63.882% 6.742% 2.647% 0.410% 25.920% 0.000% 0.399%

D-cache

stalls

Branch

mispredict

stalls

Instruction

Miss Stalls
RSE stalls

Floating

Point unit

Stalls

GR

Scoreboardi

ng

Front-End

Flushes

Figure 3.20: “Cube” benchmark dependency stalls collect from Itanium2 processor for 3

equal equation problems

 61

3.1.4 Reducing Instruction-level Dependency

Instruction-level dependency chains cause delays in the execution and processing

of instructions and therefore stifling performance. Many times, this instruction-level

dependency arises in scientific computing due to the tight loop computation method used

to solve scientific problems. Recurrences are computations or microprocessor

instructions whose value for one iteration depends directly previous iterations. For

example, the equation

sum = sum + x

demonstrates recurrence. Loop unrolling is a technique used to overcome the

dependency chains caused by recurrences and other dependencies. Loop unrolling

consists of unrolling (moving outside the loop) several iterations of a loop to make

available more independent instructions. Consider the loop unrolling technique as

applied to the inner loop of matrix multiplication used in each of the solvers available in

the “cube” benchmark.

for(i = 0; i <NumMyRows_; i++) {

 for(j = 0; j < NumEntries; j++)

 sum += RowValues[j] * xp[RowIndices[j]];

}

yp[i] = sum;

In this loop, NumMyRows equals the number of rows in the cube. NumEntries is the

number of nonzero entries per row of the cube. And, the core multiplication involves an

element from the cube (RowValues[j]) and the corresponding element from the

multiplication vector (xp[RowIndices[j]]). The following example shows the technique

of loop unrolling applied to the inner matrix multiplication loop of the “cube”

benchmark.

 62

 Core Loop Example Latencies of Operations

 load RowValues[j] Instructions Clock cycles

 load RowIndices[j] FP op to FP op 3

 mult RV[j] RI[j] FP op to Store op 2

 add sum (RV[j] + RI[j]) Load op to FP op 1

 Load op to Store op 0

 Normal execution Loop Unrolling Technique

 (4 loop iterations with stalls) (4 loop iterations with stalls)

1 load RV[j] 1 load RV[j]

2 load RI[j] 2 load RI[j]

3 stall 3 load RV[j+1]

4 mult RV[j] RI[j] 4 load RI[j+1]

5 stall 5 load RV[j+2]

6 stall 6 load RI[j+2]

7 add sum (RV[j] + RI[j]) 7 load RV[j+3]

8 load RV[j+1] 8 load RI[j+3]

9 load RI[j+1] 9 mult RV[j] RI[j]

10 stall 10 mult RV[j+1] RI[j+1]

11 mult RV[j+1] RI[j+1] 11 mult RV[j+2] RI[j+2]

12 stall 12 mult RV[j+3] RI[j+3]

13 stall 13 add sum (RV[j] + RI[j])

14 add sum (RV[j+1] + RI[j+1]) 14 add sum (RV[j+1] + RI[j+1])

15 load RV[j+2] 15 add sum (RV[j+2] + RI[j+2])

16 load RI[j+2] 16 add sum (RV[j+3] + RI[j+3])

17 stall

18 mult RV[j+2] RI[j+2]

19 stall

20 stall

21 add sum (RV[j+2] + RI[j+2])

22 load RV[j+3]

23 load RI[j+3]

24 stall

25 mult RV[j+3] RI[j+3]

26 stall

27 stall

28 add sum (RV[j+3] + RI[j+3])

Figure 3.21: Loop unrolling technique applied to “cube” inner loop

 63

Figure 3.21 demonstrates how the loop unrolling technique in this case reduces the

execution by 12 cycles. Compilers play a major role in decreasing dependency chains

through scheduling and loop unrolling. Generic compilers perform some loop

optimizations, but workload-specific loop optimizations could help to eliminate stalling

causing by instruction-level dependencies. Workload-specific optimizations would allow

the compiler to perform the exact amount of loop unrolling need to best improve the

performance of that particular workload.

 Another compiler technique used to reduce stalls caused by instruction-

level dependencies is called software pipelining or symbolic loop unrolling. Software

pipelining overcomes dependencies by including instructions from different iterations in

the main loop, making them independent of other instructions in the loop. Figure 3.22

below shows the software pipeline technique applied to the inner loop matrix

multiplication of the “cube” benchmark. The software pipelining technique includes a

section of startup code that must be executed before the pipelined inner loop and a

section of cleanup code to be complete after the inner loop. The inner loop includes four

independent instructions that can be executed simultaneously with any dependency stalls.

In this case, the software pipelining technique reduces the execution cycles from

the 63 cycles of the original loop to the 36 cycles of the software pipelined loop, 1.7

times faster. This technique of software pipelining is already performed in some

compiler optimizations, however our executables were not compiled with an optimization

including this technique. Future work will include recompiling with a compiler

optimization employing software pipelining and simulating the performance

enhancement resulting. Also, we plan to use these compiler optimizations in conjunction

with cache enhancement techniques in an attempt to maximize performance.

 64

Core Loop Example Latencies of Operations

load1 RowValues[j] Instructions Clock cycles

load2 RowIndices[j] FP op to FP op 3

mult RV[j] RI[j] FP op to Store op 2

add sum (RV[j] + RI[j]) Load op to FP op 1

 Load op to Store op 0

Software Pipelining
(9iterations)

startup code:

 load RowValues[j]

 load RowIndices[j]

 load RowValues[j+1]

 mult RV[j] RI[j]

 load RowIndices[j+1]

 load RowValues[j+2]

inner loop:

for(i=0; i<NumMyRows_,
i++)

 for(j=0; j<NumEntries, j++)

 load RV[j+3]

 load RI[j+2]

 add sum (RV[j]+RI[j])

 mult RV[j+1] RI[j+1]

cleanup code:

 load RI[j+8]

 mult RV[j+7] RI[j+7]

 mult RV[j+8] RI[j+8]

 add sum (RV[j+6]+RI[j+6])

 add sum (RV[j+7]+RI[j+7])

 add sum (RV[j+8]+RI[j+8])

j j+1 j+2 j+3 j+4 j+5 j+6 j+7 j+8

load1 load1 load1 load1 load1 load1 load1 load1 load1

load2 load2 load2 load2 load2 load2 load2 load2 load2

mult mult mult mult mult mult mult mult mult

add add add add add add add add add

Figure 3.22: Software pipelining technique applied to the “cube” inner loop

 65

3.4 Performance Results and Conclusions

The results from our analysis of the “cube” benchmark and the potential bottlenecks

hindering its performance proved successful in eliminating the caches and other

architectural structures as the major bottlenecks to the “cube” performance. However,

the instruction-level dependency existing in the “cube” benchmark does prevail as the

most significant bottleneck to the microprocessor performance of this scientific

workload. In future work, instruction-level modifications or compiler optimizations such

as workload-specific loop unrolling techniques are potential solutions to overcoming this

instruction-level dependency bottleneck.

Moreover, the cache behavior in terms of miss rates was not considered a major

bottleneck to performance, however determining the best performing cache configuration

for the “cube” benchmark and other similar scientific workloads is an important

consideration for microprocessor designers. The perfect cache simulated in this chapter

is not a viable option for microprocessor design; therefore the next chapter will explore

the best cache configuration for workloads represent by the “cube” test problem.

 66

4 IMPROVING CACHE PERFORMANCE

Although the results from the previous chapter indicated that cache behavior was

not the most significant performance bottleneck plaguing the finite element analysis of

sparse matrices, choosing the best cache configuration for these scientific computations

remains an important design decision. Previous simulations demonstrated the maximum

performance achievable with a simulated ‘infinite’ cache. And because “infinite” cache

does not exist, comparing the performance of realistic cache configurations and their

effect on overall performance must be determined.

Most cache performance studies pertain to general purpose programs; however

two studies described in the following paragraphs investigate cache performance of

sparse matrix computations with an emphasis on 3-D finite element analysis. In [26],

cache performance in terms of cache hit rates are examined for the parameters of cache

size, associativity, block size, write policy, one-cycle write operation, and the number of

read and write ports. Caches sizes are varied from 512 B to 128 KB. The associativity is

varied from direct-mapped to 4-way set-associative, and block sizes range from 8 to 128

bytes. Simulations of the sparse matrix multiplication performed with iterative linear

solvers, on preconditioned matrices stored according to a compact storage format, are

evaluated on the Thor simulator. Thor is an event-driven functional simulator developed

at Stanford and based on the CSIM simulator out of the University of Colorado at

Boulder. The simulation results are based on the average hit rates for 8 input mesh sizes,

including 2 real finite element problems acquired from Lockheed Palo Alto Research

Laboratory. The summary of these simulations suggest the following cache configuration

for sparse matrix computations as shown in Table 4.1:

 67

Organization Direct-mapped

Size 1-8 KB

Write Policy
Write-back,

1 cycle

Block Size 128 B

Read Ports 1

Write Ports 1

Table 4.1: Recommended Cache Configuration for Sparse Matrix Computations [26]

Another study of the effects of sparse matrix multiplication on caches by [27]

analytically examines the cache access behavior of these workloads. The analysis

assumes multiplication is performed on the sparse matrix (M) arranged in storage-by-row

format, its description index vectors (I and D), the multiplication vector (X), and the

resulting vector (Y). The vector I stores the non-zero column positions and D stores the

non-zero row positions.

Sparse Matrix Multiplication Format: Y = M * X

This research focuses primarily on the cache access behavior of the matrix M and vectors

I and X because vectors Y and D exhibit high spatial and temporal locality and account

for a small percentage of cache misses. The column vector, I, is accessed many more

times than the row vector, D, because matrix multiplication is performed by row. Row

multiplication requires only one access to the row vector, D, and many accesses to the

column vector, I. Matrix M and vector I demonstrate no temporal locality because each

element is only accessed one time. Because of their size compared to the other vectors,

both M and I may cause cache pollution hindering the exploitation of the locality found

in the other vectors. Vector X shows the most potential for the exploitation of additional

 68

temporal locality depending on the size of the vector, the impact of interference from the

matrix M, and the parameters of the cache configuration.

 Detailed analytical equations and simulations help quantify the effects of cache

parameters and organization on the performance of caches during the computation of

sparse matrix multiplication. These analytic calculations prove that when the bandwidth

of matrix M is smaller than the cache size, the cache hit rate improves due to greater

exploitation of temporal and spatial localities. The matrix bandwidth, WB, is defined as

the width in columns of the non-zero diagonal terms of the sparse matrix, M.

Figure 4.1: Bandwidth, WB, of sparse matrix M from [27]

Also, increasing the line (block) size of the cache improves the overall cache hit rate for

line sizes up to 64 bytes (maximum size for this study). However, the vector X shows a

maximum hit rate at a line size of 8 bytes and then decreases along the parabolic curve

for larger line sizes. The matrices with higher densities (less average distance between

non-zero elements) show greater hit rates for each cache configuration considered

benefiting from the temporal and spatial localities of X.

 69

 Block size in powers of 2 (Bytes)

Figure 4.2: Cache hit ratio for cache configurations with block sizes from 0 to 64B taken

from [27]

Finally, this research suggests that the blocking-by-diagonal formatting technique (rather

than storage-by-row) provides better reuse of the vector X and a better parallelization

platform for multi-processor computing. Blocking-by-diagonal involves splitting the

original banded sparse matrix on the diagonal resulting in smaller submatrices each with

smaller bandwidths. The smaller bandwidths of these submatrices decrease the burden

on each local cache and improve local cache hit rates.

4.1 Cache Configuration Effects on Performance

 In order to compare the cache behavior of the cube3 benchmark to the sparse

matrix computation results summarized above, the DL1 and L2 cache miss rates for

various cache configurations are presented. The miss rates for this study are collected

from a CRS, pre-conditioned mesh with dimensions of width 55, height 55 and depth 55

and one degree of freedom per node. With this constant problem size, the DL1 and L2

cache sizes, associativities, and block sizes are varied.

 70

Varying Cache Block (CRS matrix W=55, D=55, Dof=1)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

half blk, 32B reg, 64B double blk, 128B perfect cache

Block Size

M
is

s
 R

a
te

 o
r

IP
C

 R
a
te

DL1

L2

IPC

Figure 4.3: Cache miss rates and IPC rates for caches with varying cache block size

 Figure 4.3 shows the cache miss rates and the IPC rates for the default sim-alpha

cache sizes with varying block sizes. The block size, 128B, appears to be the best

performing block size configuration as indicated by the highest IPC rate and the lowest

L2 cache miss rate. The DL1 cache miss rate for 128B block size is slightly higher than

the other block sizes, but not significantly. The 64B block size may be more appropriate

for the smaller DL1 cache, but overall the best performance is achieved by the

configuration with 128B block size.

 71

Varying Associativity (CRS matrix W=55,D=55, Dof=1)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

perfect cache direct mapped 2-way 4-way 8-way

Associativity

C
a
c

h
e
 M

is
s
 R

a
te

 o
r

IP
C

 R
a
te

DL1

L2

IPC

Figure 4.4: Cache miss rates and IPC rates for caches with varying associativity

Varying Cache Size (CRS matrix W=55, D=55, Dof=1)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

32K, 1M 65K, 2M 128K, 4M 256K, 8M

Cache Size

C
a
c

h
e
 M

is
s
 R

a
te

 o
r

IP
C

 R
a
te

DL1

L2

IPC

Figure 4.5: Cache miss rates and IPC rates for varying cache sizes

 72

 Associativity seems to have little impact on performance in terms of IPC as

demonstrated in Figure 4.4, but the L2 cache incurs the least misses with the direct-

mapped configuration and the DL1 with a 4-way set-associative cache. A 2-way set-

associative DL1 and direct mapped L2 cache are the cache configurations used in the

Alpha 21264 microprocessor. The DL1 cache size of 256KB and L2 cache size of 8MB

together demonstrate the best performance in terms of IPC and the DL1 miss rate of all

the four cache sizes simulated, according to Figure 4.5. The results of the cache

configuration performance study are summarized in Table 4.2, with the best rate for each

structure bolded and the best overall configuration option highlighted.

Cache DL1 L2 IPC

Block Size

half blk, 32B 0.0619 0.6481 1.0765

reg, 64B 0.0382 0.6034 1.1548

double blk, 128B 0.0731 0.4972 1.2054

perfect cache 0.0066 0 1.4433

Associativity

direct mapped 0.0554 0.519 1.1421

2-way 0.0382 0.614 1.1502

4-way 0.0378 0.622 1.1521

8-way 0.0373 0.6926 1.1274

Cache Size

32K, 1M 0.0599 0.5531 1.1249

65K, 2M 0.0382 0.6034 1.1548

128K, 4M 0.0334 0.6705 1.1547

256K, 8M 0.032 0.6492 1.1728

Table 4.2: Simulated cache miss rates and IPC rates for various cache configurations

 73

4.2 Cache Bypassing

 Another method of cache optimization described in Chapter 2 involves

strategically excluding large matrices and arrays (that are only accessed one time during

the solve phase of finite-element analysis and sparse matrix multiplication) from the

cache. All instructions involving these array elements would operate directly to and from

main memory. This bypassing of the cache prevents cache pollution caused by the

elements of large arrays that are never reused in the execution of the program. Some

methods described in Chapter 2 dynamically determine which memory accesses to cache

or not, and others create a separate cache exclusively for these array elements.

 To quantify the effectiveness of this bypassing cache optimization, the memory

addresses of the matrix describing the problem of the cube3 benchmark are statically

marked for exclusion from both levels of cache. To determine the exact memory location

of the matrix in cube3 test problem, an address print statement is placed after the storage

optimization, just before the solve phase in the Epetra_CrsMatrix.cpp file of the Trilinos

solver package.

double * tmp = All_Values_;
 for (i=0; i<NumMyRows_; i++) {

 int NumEntries = NumEntriesPerRow_[i];
 for (j=0; j<NumEntries; j++)//{
 tmp[j] = Values_[i][j];

 /* INSERTED PRINT STATEMENT */
 printf("%p\n",&Values_[i][j]);

}
 if (Values_[i] !=0)
 delete [] Values_[i];
 Values_[i] = tmp;
 tmp += NumEntries;

 }

 74

These addresses are hard-coded into the simulator at the point of the cache access, in files

writeback.c and commit.c of sim-alpha. When one of these addresses is requested by an

instruction, the bypass tells the simulator to go directly to memory for the data and

prevents the data from being stored in the cache. The bypass counter tracks the number

of memory accesses bypassed by the caches. The final counter result should equal the

number of matrix elements bypassed times the number of iterations of the solver because

we are bypassing the matrix elements that are only accessed one time per iteration.

Performance (IPC) with Cache Bypassing

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 6 11 16 21 26 31 36 41 46 51

Instructions (in Millions)

IP
C

 R
a
te

No bypassing

Bypass lat 1

Bypass mem lat

Figures 4.6: Cache bypassing performance results measured by IPC

 Figure 4.6 shows the effect of the cache bypassing on IPC for a small 8x8x3

“cube” problem. The first line plots the IPC of the original 8x8x3 problem with no cache

bypassing. The next line shows the effect of the bypassing with an unrealistically low

memory latency of one cycle. This low memory latency is plotted to show the effects of

 75

the bypassing. The figure shows that the bypassing does affect the performance in terms

of IPC, in this case positively because each access to the bypassed addresses costs only

one cycle (instead of the 12 cycles actually needed to access memory). The third line

implements the actual memory latency of 12 cycles, and the graph indicates the decrease

in IPC caused by this change. While this line represents the most realistic

implementation of the cache bypassing technique, other factors may be causing IPC to

decrease in this case.

First, the problem size is relatively small and the matrix we are bypassing is

actually a manageable size to the Alpha cache configuration. Therefore, the execution

with no bypassing benefits from cache matrix element from one iteration to the next.

However, when scaled to bigger problems, the matrix elements would be forced to reside

in memory with or without cache bypassing, and the bypassing would not decrease

performance, but only allow for the reuse of other, smallest elements in the cache. Also,

in this initial test of the cache bypassing technique, the addresses are excluded from the

cache in the entire execution of the “cube” benchmark. However, a more accurate

implementation would only exclude the addresses during the solve phase of execution

because initial matrix formation and conditioning may benefit from caching. Also, we

obtained the addresses from the “cube” benchmark after the initial phases, just before the

solve phase, so to exclude the addresses before the solve phase may cause erroneous

addresses to be excluded. The second phase of the cache bypassing implementation that

includes (a) scaling the method to larger problem sizes and (b) bypassing addresses only

during the solve phase was postponed in light of the perfect cache results indicating that

cache behavior was not the most significant performance bottleneck.

 76

Furthermore, the approach of statically defining the memory addresses of the

large matrix to exclude from the cache is a simple way to evaluate the effectiveness of

this technique of cache optimization. However, static definitions are not a practical

implementation for a variety of workloads and processor platforms. Future work on this

technique includes adding attributes to the source code of the cube3 benchmark to

dynamically signal which memory accesses should be placed in the cache and which

should be stored strictly in main memory. This dynamic implementation provides a more

universal solution for optimizing finite-element and sparse matrix multiplication solvers.

 77

5 CONCLUSION

Designing the best performing microprocessor for a class of applications involves

researching the impact of each major design decision and exploring innovative methods

to best solve the application specific challenges. The class of large scientific applications

executed at Sandia National Laboratories present unique characteristics and challenges

for microprocessor performance optimization. This thesis investigates the

microarchitectural bottlenecks limiting the performance of SNL’s large scientific

applications and proposes configurations and techniques to improve performance.

 The cache configuration has traditionally been considered one of the major

bottlenecks to scientific workload performance, and therefore much research has been

devoted to cache improvement techniques. Our simulations of the “cube” test problem,

(W=55, D=55, Dof=1) used to represent scientific applications used at SNL, suggest the

following cache hierarchy for the best overall benchmark performance:

• DL1 - 256KB, 2-way set-associative, 64B block size

• L2 – 8MB, direct-mapped, 128B block size

However, our simulations also indicate that cache behavior is not the main bottleneck

limiting performance.

A technique of cache bypassing that prevents matrix cache blocks and other one-

time use cache blocks from entering the cache hierarchy was simulated to determine the

performance gains of reducing polluting the cache. The cache bypassing technique

implemented for this research did not improve performance as expected. Because the

cache hierarchy was not the most significant performance barrier, improvements to the

 78

technique were not explored. However, the cache bypass technique will be revisited in

future work.

After ruling out the cache as the major performance bottleneck, other micro-

architectural bottlenecks were explored. Using configurations for the SimpleScalar

simulators, sim-alpha and sim-outorder, to simulate perfect cache behavior, we observed

a performance increase of only 0.28 instructions per cycle over the IPC of the same

problem with the default Alpha cache configuration. Simulating a perfect cache serves to

eliminate all stalling caused by cache misses. Since removing all cache stalls does not

significantly improve the overall performance of the benchmark, the cache configuration

does not appear to be the main factor limiting performance.

 A “super” microprocessor configuration with immense resources was simulated to

remove all architectural restraints on microprocessor performance. The 3.44 IPC

achieved with the best configuration shows that additional microprocessor resources do

help performance, but not as much as expected. Since other types of benchmarks achieve

IPC rates of hundreds, even tens of thousands of instructions per cycle with the “super”

configuration, the performance reduction from instruction-level dependency stalling was

next potential bottleneck explored.

Our simulation of instruction-level dependency stalls in the “cube” benchmark for

the default Alpha configuration reveals that on average an instruction waits 1.78 cycles to

be issued to a functional unit and waits 3.8 cycles in the reorder buffer before being

committed. This average 5.58 cycle stall per instruction due to dependencies constitutes

a significant performance bottleneck. The average stall cycle increases to over 7 cycles

per instruction for the “cube” benchmark simulated with the “super” architectural

configuration. Classifying each stall by instruction type indicates that most stalling

 79

occurs from floating-point and load instructions. The result seems reasonable since one

of the main kernels in the “cube” benchmark to perform sparse matrix multiplication

involves these instructions. Workload-specific loop unrolling and other compiler

techniques are possible solutions to reducing the stalling caused by instruction-level

dependencies. Our future work includes researching and implementing these techniques

to reduce instruction-level dependencies and improve overall performance.

 80

REFERENCES

[1] ”Standard performance evaluation corporation (SPEC),” http://www.spec.org.

[2] “Compressed Row Storage,”

http://netlib2.cs.utk.edu/linalg/html_templates/node91.html.

[3] “Sun S3L 4.0 Software Programming Guide,”

http://www.sun.com/products-n-solutions/hardware/docs/html/817-0086-10/prog-

sparse-support.html.

[4] The “cube” test problem document

[5] L. Hu and I. Gorton, “Performance Evaluation for Parallel Systems: A Survey,”

 University of NSW, Sydney 2052 Australia, pp. 1-56, Oct. 1997.

[6] R. Jain, “The Art of Computer Systems Performance Analysis: Techniques for

 Experimental Design, Measurement, Simulation, and Modeling,” Wiley-

 Interscience, New York, NY, April 1991.

[7] J. Fu, and J. Patel, “Trace Driven Simulation using Sampled Traces,” Proc. 27
th

 Ann. Hawaii Int’l Conf. on System Sciences, pp. 211-220, 1994.

[8] R. Uhlig and R. Mudge, “Trace-Driven Memory Simulation: A Survey,” ACM

 Computing Surveys, vol. 29, no. 2, pp. 129-169, June 1997.

[9] “SimpleScalar Simulators,” http://www.simplescalar.com.

[10] R Desikan, D. Burger, S. Keckler, and T. Austin, “Sim-alpha: a Validated,

 Execution-Driven Alpha 21264 Simulator,” Tech Report TR-01-23, Dept. of

 Computer Science, University of Texas.

[11] P. Bose and T. Conte, “Performance Analysis and Its Impact on Design,”

pp. 41-49, IEEE Computer, 1998.

[12] Y. Luo and K.W. Cameron, “Instruction-level Characterization of Scientific

Computing Applications Using Hardware Performance Counters,” Scientific

Computing Group, Los Alamos National Laboratory, 1998.

[13] G. Griem, L. Oliker, J. Shalf, and K. Yelick, “Identifying Performance

Bottlenecks on Modern Microarchitectures using an Adaptable Probe,” in

Proceedings of the 18
th

 International Parallel and Distributed Processing

Symposium, pp. 255, IEEE Computer Society, 2004.

[14] “Sustainable Performance Scaling for High-end Enterprise and

 Technical Computing, Intel Itanium 2 Processor,” White Paper, Intel Corporation,

 2004.

 81

[15] “Intel Itanium 2 Processor,” Hardware Developer’s Manual, July 2002.

[16] Block diagram source

[17] “SGI Altix 3000 with New Itanium 2 Processor Leads Competition on HPC

 Benchmarks,” Silicon Graphics, Inc, June 24, 2003.

[18] “SGI® Altix™ 3000,” Intel® Itanium® 2-based (Madison) Benchmark Results

 June 2003.

[19] A. Dharia, P. Rodriguez, and R. Verret, “Selective Fill Data Cache,” Rice

University, 2003.

[20] S. Chaki and D. Mazzoni, “Investigating Load Redundancy,” Carnegie Mellon

 University, 1999.

[21] J. Sahuquillo and A. Pont, “Splitting the Data Cache: A Survey,” pp. 30-35, IEEE

Concurrency, 2000.

[22] A. Naz, M. Rezaei, K. Kavi, and P. Sweany, “Improving Data Cache Performance

with Integrated Use of Split Caches, VictimCache and Stream Buffers,”

Department of Computer Science and Engineering, University of North Texas,

2004.

[23] “Cray X1 System,”

http://www.nas.nasa.gov/Users/Documentation/X1/hardware.html#cache.

[24] L. Oliker, R. Biswas, J. Borrill, A. Canning, J. Carter, M.J. Djomehri, H. Shan,

and D. Skinner, “A Performance Evaluation of the Cray X1 for Scientific

Applications,” http://crd.lbl.gov/~oliker/papers/vecpar_2004.pdf.

[25] D. Albonesi, R. Balasubramonian, S. Dropsho, S. Dwarkadas, E. Friedman, M.

Huang, V. Kursun, G. Magklis, M. Scott, G. Semeraro, P. Bose, A.

Buyuktosunogiu, P. Cook, and S. Schuster, “Dynamically Tuning Processor

Resources with Adaptive Processing,” pp. 49-58, IEEE Computer, 2003.

[26] V.E. Taylor, “Sparse Matrix Computations: Implications for Cache Design,” in

Proceedings of the 1992 ACM/IEEE conference on Supercomputing, pp. 598-607,

1992.

[27] O. Temam and W. Jalby, “Characterizing the Behavior of Sparse Algorithms on

Caches,” in Proceedings of the 1992 ACM/IEEE conference on Supercomputing,

pp. 578-587, 1992.

 1

APPENDIX A

1 CRS 55x55x1 – Interval IPC Graphs

Sim-alpha CRS 55x55x1 Interval IPC

0

0.5

1

1.5

2

2.5

3

3.5

4

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 10001 11001 12001 13001 14001 15001 16001

Instructions (in Millions)

IP
C

fma3d ref - Interval IPC

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

1 2001 4001 6001 8001 10001 12001 14001 16001 18001 20001 22001

Instructions (in Millions)

IP
C

 2

CRS 55x55x1 - Interval IPC

Sim-alpha Itanium Configuration

0

0.5

1

1.5

2

2.5

3

3.5

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 10001 11001 12001 13001 14001 15001 16001

Intructions (in Millions)

IP
C

CRS 55x55x1 – Interval IPC

(Itanium2 Processor)

 3

2 CRS Degrees of Freedom = 1

CRS 1x43903x1

CRS 27x223x1

 4

CRS 55x55x1

CRS 78x27x1

 5

CRS 295x1x1

 6

CRS 40x1x1

CRS 40x24x1

CRS 40x40x1

 7

CRS 72x1x1

CRS 72x36x1

 8

CRS 72x72x1

3 CRS Degrees of Freedom = 3

 9

CRS 40x1x3

CRS 40x24x3

CRS 40x40x3

 10

CRS 72x1x3

 11

CRS 72x36x3

CRS 72x72x3

4 VBR Degrees of Freedom = 1

 12

VBR 40x1x1

VBR 40x40x1

VBR 72x1x1

 13

VBR 72x72x1

	Hardin_thesis.pdf
	TITLE_TOC.PDF
	THESIS.PDF
	APPENDIX.PDF

