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Abstract

This report describes an approach for extending the one-dimensional turbulence (ODT)
model of Kerstein [6] to treat turbulent flow in three-dimensional (3D) domains. This model,
here called ODTLES, can also be viewed as a new LES model. In ODTLES, 3D aspects of
the flow are captured by embedding three, mutually orthogonal, one-dimensional ODT domain
arrays within a coarser 3D mesh. The ODTLES model is obtainedby developing a consistent
approach for dynamically coupling the different ODT line sets to each other and to the large
scale processes that are resolved on the 3D mesh. The model isimplemented computationally
and its performance is tested and evaluated by performing simulations of decaying isotropic
turbulence, a standard turbulent flow benchmarking problem.
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ODTLES:
A Model for 3D Turbulent Flow Based

on One-dimensional Turbulence
Modeling Concepts

1 Introduction

1.1 Modeling Turbulent Flow

Turbulent flow phenomenology is central to a remarkably widerange of engineering problems, in-
cluding many, such as nuclear weapon physics, climate change, and commercial power conversion
applications, that are relevant to key DOE missions. However, despite many years of intensive
research, turbulence modeling remains a notoriously difficult problem. Cant [2] recently noted
that computational fluid dynamics (CFD) is by far the largestuser of high-performance computing
in engineering, and argues that the premier scientific challenge confronting the fluids engineering
community is to gain a greater understanding of turbulence and its consequences in engineering
applications. Although it is tempting to hope that advancesin computing speed and hardware will
soon enable the direct numerical simulation (DNS) of such problems and thereby avoid the is-
sue of modeling altogether, in reality, the extreme range oflength and time scales associated with
high-Reynolds-number flows will continue to limit the use ofDNS (at least for the foreseeable
future) to rather simple conditions at relatively low Reynolds numbers. Thus, turbulence models
will continue to be indispensable tools in engineering analysis for many years to come.

The two most commonly used approaches for computationally modeling turbulent flow are (1)
the Reynolds-averaged Navier-Stokes (RANS) approach, and(2) the large eddy simulation (LES)
approach. The key difference between these models is that inRANS, the model equations are
derived by ensemble or time averaging the governing Navier-Stokes equations, whereas in LES
the model equations are obtained by a spatial filtering operation. In either case, special terms are
introduced through the derivation process that must be represented with some additional closure
model in order to solve the equations. Although RANS methodsare widely used and are of great
value in many engineering problems, experience over many decades has clearly demonstrated the
inherent limitations of the approach, particularly as a predictive tool. Thus as computing power
has increased, so also has interest in the LES approach.

In LES, the spatial filtering step masks motions smaller thana specified filtering length scale, but
the large-scale three-dimensional unsteadiness not captured from RANS calculations is resolved.
Although this leads to computational demands that are much larger than RANS, the cost can be
worth it because the unsteadiness captured by LES is one of the most important features of many
flows. The challenge introduced by eliminating the small scales is the need to model the non-linear
‘subgrid scale’ terms which represent the effects of unresolved physics on the resolved flow scales.
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Unfortunately, the accurate modeling of these terms has proven particularly difficult for all but the
simplest of flows. Long-standing efforts to develop an adequate closure, and the difficulties that
have been encountered, are well documented (e.g. [9, 10]). Of particular note is a recent study
that analyzed in detail the requirements for accurate closure for turbulent channel flow [14]. It
was concluded that it is insufficient solely to capture the transfer of energy from grid-resolved
to subgrid scales, and therefore that eddy-viscosity modeling, which addresses only this aspect
of the interaction between grid-resolved and subgrid scales, is inadequate. At a minimum, the
closure must also capture the subgrid transport (in particular, wall-normal transport in near-wall
flow), subgrid stresses, and subgrid intercomponent transfer due to pressure effects. No traditional
closure approach currently being pursued can demonstrablycapture these effects in principle, let
alone represent them accurately.

Another, more recently developed, turbulence model is the one-dimensional-turbulence (ODT)
model of Kerstein [6, 7]. This model, and the concepts it has introduced, is at the core of the new
approach developed here for LES.

ODT is a method for simulating the turbulent transport and dynamic fluctuations in velocity
and fluid properties that one might measure along a one-dimensional (1D) line of sight through
3D turbulent flow. In contrast to RANS and LES, the ODT equations are not derived directly
from the Navier-Stokes equations. In the 1D dynamical system defined by the ODT model, the
effects of turbulent 3D eddies associated with real fluid floware modeled by 1D fluid-element re-
arrangements, denoted eddy events, that occur over a range of length scales and with frequencies
that depend on event length scales and instantaneous flow states. The first ODT formulation [6]
involved simulation of a single velocity component evolving on a line. A more recent formulation
[7] introduced the evolution of the three-component velocity vector on the 1D domain. General-
ization to treat variable-density effects dynamically hasalso been demonstrated [1]. Because the
model is 1D, well resolved calculations at high Reynolds numbers are affordable, and remarkably
successful results have been demonstrated for a variety of canonical flows. However, this same
1D attribute has naturally limited its application to turbulence problems where spatial variations in
only one direction are of primary interest.

Recently, ODT was successfully used as the basis for a near-wall subgrid closure model for
LES [11, 12]. This application was natural because statistical variations in the near-wall region
are primarily 1D. While developing the ODT-based LES near-wall model, a number of ideas were
generated concerning how ODT and LES might be more generallycombined. This report describes
one such approach, although others may also be viable. The basic goal is for large-scale 3D
turbulent motions to be captured by the LES part of the model and a representative sample of
the small-scale turbulent motions to be simulated by the ODTpart of the model. In this new
approach, denoted ODTLES, revised ODT equations are formulated that allow physically realistic
interaction between the ODT model of the small scales and the3D LES representation of the
large-scale motions.

Because ODTLES combines elements of both LES and ODT, a briefreview of these modeling
approaches is provided in the next two subsections.
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1.2 A Synopsis of the LES Modeling Approach

The LES modeling approach is based on the concept of spatial filtering. Given any physical quan-
tity φ(x, t) that is defined over some spatial domainx, we can define a filtered quantitȳφ(x, t)
as

φ̄(x, t) =
Z

D
φ(x, t)G(x−z,∆)dz, (1)

where G is a normalized filter kernel, D is the domain of the flow, and∆ is the filter width. In LES,
the shape and spatial extent of the filter applied is a modeling choice. For example, if the filter is
defined as an anisotropic box filter, then the value ofφ̄(x, t) is simply the instantaneous average
value ofφ within the domain enclosed by a box centered around the pointx. Other filter types used
in LES include the Gaussian filter and the sharp spectral filter.

The most common way to derive LES equations is to directly apply the concept of spatial filter-
ing to the Navier-Stokes and continuity equations. For a filter that commutes with differentiation,
and for an incompressible fluid with constant properties, one obtains

ρ
∂ūi

∂t
+ρ

∂
∂x j

(uiu j) = − ∂p̄
∂xi

+
∂

∂x j

[

µ

(

∂ūi

∂x j

)]

+ρ f̄i (2)

∂ūi

∂xi
= 0. (3)

where f denotes a body force and repeated indices are used here to imply summation. The fields
resolved on the LES mesh are ¯ui and p̄, and the termuiu j must be modeled.

Although often thought of as the LES equations, no analytical solutions to these continuum
forms of the LES equation for any problems of interest are known to the authors. All LES results
are, in fact, solutions to some discrete numerical representation of Eqs. (2) and (3) (e.g., finite
difference, finite volume, finite element, etc.) on a specified mesh, coupled with a particular closure
model. Thus the real LES equations are always a discrete formof Eqs. (2) and (3) coupled with a
particular closure model. This point may seem trivial, but is important for several reasons. First, all
numerical methods introduce numerical error, an effect which in LES can be difficult to distinguish
and separate from the effects of the subgrid models employed. Secondly, an alternative approach
to developing LES equations, which has several advantages not discussed here, is to start directly
from the finite-volume method just mentioned.

In the early LES literature Schumann [13] described and developed a discrete LES equation
set based on the finite-volume numerical method. In this approach, called the ‘volume-balance
method,’ the averaged quantities correspond to a discrete number of volumes that are fixed in space
(i.e., the mesh). The governing equations are integrated byparts to obtain discrete budget equations
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for the individual mesh cells. In this context the modeling problem is to represent accurately the
unresolved surface fluxes in terms of the spatially averagedquantities that are available. Adopting
Schumann’s notation, the discrete LES equations that correspond to Eqs. (2) and (3) above can be
written as

ρ
∂ūi

∂t
+ρδ j(uiu j

S) = −δi p̄+δ j

[

µ

(

∂ui

∂x j

S)]

+ρ f̄i , (4)

δ j(ui
S) = 0 (5)

whereδ denotes a numerical-difference operator, and the advective and diffusive flux terms (de-
noted by superscript S) are averages over surfaces, not volume averages.

No matter how the LES equations are derived, to solve them a closure model must be chosen
for the nonlinear advective term (the second term in Eq. (2) or (4) ). To this end, it is common to
define a subgrid-scale stress tensorτ. This, we note, is NOT the approach adopted in ODTLES.
However, for context it is useful to review this model because it is so commonly used. Reverting
to the continuum form of the LES equations, we can write

τi j = uiu j − ūi ū j . (6)

Gradient-diffusion models adopt the hypothesis that the anisotropic part of the subgrid-scale
stress tensorτ is proportional to the resolved (large scale) strain-rate tensorS:

τi j −
1
3

δi j τkk = −2
µS

ρ
S̄i j (7)

S̄i j =
1
2

(

∂ūi

∂x j
+

∂ū j

∂xi

)

, (8)

whereµS is a subgrid eddy viscosity, which must be computed from an appropriate model, and
δi j is the Kronecker delta. By defining a modified pressureP̄ that includes the subgrid kinetic
energy (i.e., the trace ofτ), and dropping the body-force termρ f̄i for simplicity, Eq. (2) can now
be expressed as

ρ
∂ūi

∂t
+ρ

∂
∂x j

(ūiū j) = −∂P̄
∂xi

+
∂

∂x j

[

(µ+µS)

(

∂ūi

∂x j

)]

. (9)

One of the first models for the subgrid eddy viscosity was introduced by Smagorinsky and it
remains, together with its variants, a widely applied model. It can be written compactly as

µS = ρ(CS∆)2(2S̄i j S̄i j )
1/2, (10)
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whereCS is called the Smagorinsky coefficient, and the characteristic filter width ∆ is generally
computed as the cube root of the local cell volume (e.g. see [4]):

∆ = (∆x1∆x2∆x3)
1/3. (11)

1.3 One-Dimensional Turbulence Modeling (ODT)

We now turn our attention to the ODT modeling approach. Unlike LES or RANS, which are
derived directly from the Navier-Stokes equations, ODT cannot be described solely with a set of
continuum equations. Rather, the important physics affecting the 3D turbulent flow along a 1D
line of sight are phenomenologically modeled. In ODT the fields defined on the 1D domain evolve
by two mechanisms: (1) molecular diffusion, and (2) a sequence of instantaneous transformations,
denoted ‘eddy events,’ which represent turbulent stirring. These eddy events occur over a large
range of length scales, with frequencies that depend on event length scales and instantaneous flow
states.

Between the occurrence of eddy events, the time evolution ofODT velocity componentsvi on
an ODT line in directionx can be written as

∂vi

∂t
−ν

∂2vi

∂x2 = 0, (12)

wheret denotes time andν is the kinematic viscosity.

The evolution of the velocity field defined by Eq. (12) is interrupted at various points in time by
the previously mentioned eddy events. Each eddy event may beinterpreted as the model analog
of an individual turbulent eddy, and consists of up to two mathematical operations that can be
represented symbolically as

vi(x) → vi( f (x))+ciK(x). (13)

According to this prescription, fluid at locationf (x) is moved to locationx by the mapping
operation, thus defining the map in terms of its inversef (x). In ODT we use a special measure-
preserving map, called the ’triplet map,’ which in any discrete implementation simply corresponds
to an exchange of fluid elements according to a predefined pattern. The second operation in-
dicated is an energy-conserving modification of the velocity profiles used to implement energy
transfers among velocity components. This operation is only applicable when more than one ve-
locity component is being modeled, and is used to model pressure-induced energy redistribution
among velocity components.

The frequency of eddy events is governed by a probabilistic model that depends on the current
instantaneous velocity field, the eddy location and its length scale. Details can be found in Kerstein
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[6, 7], and will not be repeated here. Of note here is that ODT requires the specification of three
model parameters. The most important of these is the overallrate constant,C, which controls the
relative strength of the turbulent stirring model. The other two model parameters are the viscous
cutoff parameterZ and the energy transfer coefficientα.

A key aspect of ODT is how eddy events modify 1D property/velocity profiles, thus modifying
the spatial distribution of velocity and kinetic energy. The resulting two-way coupling between
velocity profiles and the eddy rate distribution leads to complex behavior that emulates both the
gross structure and the fine-grained intermittency of the 3Dturbulent cascade. It is also noteworthy
that the model completely avoids the use of eddy viscosity concepts to model transport or energy
transfer.
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2 Model Description

In this section we describe ODTLES, an approach for extending the one-dimensional turbulence
model of Kerstein [6] to treat turbulent flow in three-dimensional domains. ODTLES can also be
thought of as a novel LES approach, and we will show how large-scale 3D turbulent motions are
captured by the LES aspects of the model but are strongly coupled to the small-scale turbulent
motions generated by the ODT part of the model.

Before continuing we also note that ODT might be combined with LES in at least two different
ways. One option is to start with the LES equations (derived by spatially averaging the NS equa-
tions), and seek a method for using ODT as a subgrid closure model for these equations. This can
be thought of as a top-down approach, and is denoted LES/ODT.A second option is to begin with
the ODT equations, and then add additional terms so that mutually orthogonal ODT domains might
be coupled together and 3D LES modeling constraints enforced. The ODTLES model described
here follows the latter bottom-up approach.

Figure 1. Illustrative geometry of the ODT and LES subdomains

2.1 Geometry and Numerical Discretization

In ODTLES we discretize our domain of interest in two distinct but interdependent ways. The first
is by a standard set of rectangular control volumes. The second is formed by embedding three,
mutually orthogonal ODT domain arrays within the coarser 3Dmesh. This is illustrated in Figure
1 for a simple box-shaped region. Here we see that the overalldomain is subdivided intoN3

les
uniform LES control volumes, whereNles = 3 is the number of LES-scale subdivisions in each
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direction. A 2D array ofN2
les ODT lines are also placed in each coordinate direction. Thisforms

a network of lines that intersect each other at the center of each LES control volume, as illustrated
in Figure 2. Note that only the three lines that intersect in the shaded control volume are shown in
Figure 1. Overall there are 3N2

les ODT lines that extend through the computational domain.

On each ODT line,Nodt mesh points are defined, whereNodt > Nles. The value ofNodt must be
large enough so that the smallest scales of the turbulent motion are adequately resolved. (Later this
constraint will be relaxed by the introduction of a subgrid model for ODT.) The total number of
mesh points in the problem is therefore 3∗N2

les∗Nodt. This can be compared with the total number
of points that would be required for a direct numerical simulation, which is 3∗N3

odt.

Figure 2. Three ODT lines intersect each LES control volume

Figure 3. Staggered location of ODT velocity components

Associated with each ODT line direction k (k=1-3), we define two ODT velocity components,
vk,i (i 6= k), corresponding to the two coordinate directions that are orthogonal to the line. This two-
component model is a simplification of the three-component vector formulation described in [7],
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and is summarized below in Section 2.2. Although a 3-component ODT model would also work
in the formulation presented here, the velocity component parallel to each ODT line would not be
used in any direct way. Thus, for numerical efficiency reasons, we have adopted the 2-component
model for the present purposes.

Although instantaneous ODT values are conceptualized as point values, a sub-control volume
is also defined for the purpose of preserving certain conservation properties described later. As
illustrated in Figure 3 for a vertical (k=2) ODT line, the staggered locations of the two velocity
components are associated with the ODT sub-control volume faces in the standard way.

In ODTLES numerics, there are two important length scales,∆x� ∆X, and two important time
scales,∆t � ∆T. These are, respectively, the ODT and LES spatial discretization lengths and the
ODT and LES time steps.

2.2 A two-component formulation of ODT

The version of ODT utilized here describes the evolution of atwo-component vector velocity
field vi(x, t) defined on a 1D domain, parameterized by the spatial coordinatex, which is assumed
orthogonal to the two velocity component directions. This formulation follows in all key respects
the three-component vector formulation described in [7].

The fields defined on the 1D domain evolve by two mechanisms, molecular evolution and a
stochastic process representing turbulent stirring. The stochastic process consists of a sequence of
’eddy events,’ each of which involves an instantaneous transformation of the velocity and scalar
fields. During the time intervals between eddy events, the molecular evolution of ODT velocity
components is governed by Eq. (12).

The turbulent stirring submodel is specified by defining the mathematical operations performed
during an eddy event and by formulating the rules that governthe selection of events. Because the
model has multiple velocities, an eddy event consists of twomathematical operations. One is a
measure-preserving map representing the fluid motions associated with a notional turbulent eddy.
The other is a modification of the velocity profiles in order toimplement energy transfers prescribed
by the dynamical rules. These operations are represented symbolically by Eq. (13). According to
this prescription, fluid at locationf (x) is moved to locationx by the mapping operation, and the
additive termciK(x), is used to model pressure-induced energy redistributionsamong velocity
components.

The functional form chosen forf (x) is called the ‘triplet map, and can be defined mathemati-
cally as

f (x) ≡ x0+















3(x−x0) if x0 ≤ x≤ x0 + 1
3l ,

2l −3(x−x0) if x0 + 1
3l ≤ x≤ x0 + 2

3l ,
3(x−x0)−2l if x0 + 2

3l ≤ x≤ x0 + l ,
x−x0 otherwise.

(14)
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This mapping takes a line segment[x0,x0 + l ], shrinks it to a third of its original length, and
then places three copies on the original domain. The middle copy is reversed, which maintains the
continuity of advected fields and introduces the rotationalfolding effect of turbulent eddy motion.
Property fields outside the size-l segment are unaffected.

In Eq. (13),K is a kernel function that is defined asK(x) = y− f (x), i.e., its value is equal to
the distance the local fluid element is displaced. It is non-zero only within the eddy interval, and it
integrates to zero so that energy redistribution does not change the total (y-integrated) momentum
of individual velocity components. It provides a mechanismfor energy redistribution among ve-
locity components, an important characteristic that enables the model to simulate the tendency of
turbulent eddies to drive the flow toward isotropy.

For an equipartition of available energy (see [7]), the values ofci are governed by the relation

ci =
27
4l

(

−vi,K +sgn(vi,K)

√

1
2
(v2

i,K +v2
j ,K)

)

, (15)

where the two velocity components are denoted by the subscripts i and j, and

vi,K ≡ 1
l2

Z

vi( f (x))K(x)dx=
4

9l2

Z x0+l

x0

vi(x)[l −2(x−x0)]dx. (16)

The final ingredient required in the model is the determination of the time sequence of eddy
events, individually parameterized by positionx0 and sizel , that are implemented. In ODT,
eddy events are implemented instantaneously, but must occur with frequencies comparable to the
turnover frequencies of corresponding turbulent eddies. Events are therefore determined by sam-
pling from an event-rate distribution that reflects the physics governing eddy turnovers. A key
feature of this distribution is that it is based on the instantaneous state of the flow, and thus evolves
in time as the flow evolves.

At each instant in time, the event-rate distribution is defined by first associating a time scale
τ(y0, l) with every possible eddy event. To this end, the quantityl/τ is interpreted as an eddy
velocity andρl3/τ2 is interpreted as a measure of the energy of eddy motion. To determineτ, this
energy is equated to an appropriate measure of the eddy energy based on the current flow state. The
energy measure used here is the current available energy in the two velocity components, minus an
energy penalty that reflects viscous dissipation effects. (Note that this choice is slightly different
than that used in [7].)

Based on these considerations, we write

(

l
τ

)2

∼
(

v2
i,K +v2

j ,K −Z
ν2

l2

)

. (17)

16



Given Eq. (17), the time scalesτ for all possible eddies can be translated into an event-ratedistri-
butionλ, defined as

λ(x0, l ; t)≡
C

l2τ(x0, l ; t)
=

Cν
l4

√

(

vi,K l

ν

)2

+

(

v j ,K l

ν

)2

−Z, (18)

whereC is the ODT model parameter that controls the overall event frequency. If the argument of
the square root is negative, the eddy is deemed to be suppressed by viscous damping andλ is taken
to be zero for that eddy. In the square root term of Eq. (18), the quantities precedingZ involve
groups that have the form of a Reynolds number.Z can be viewed in this context as a parameter
controlling the threshold Reynolds number for eddy turnover.

An stand-alone applications, the maximum lengthLmax is constrained by the boundary condi-
tions. However, in ODTLES,Lmax is conceptualized as being linked to the size of the smallest3D
eddies resolvable by the LES mesh. For this reason its specification becomes part of the model.

2.2.1 Ensemble Mean Closure (EMC) of unresolved ODT

Just as a numerical DNS must fully resolve all 3D length and time scales in order to be valid, so
must the ODT model fully resolve all 1D length and time scales. For high-Reynolds-number flows
this resolution requirement dictates very refined grids that, even in only 1D, are computationally
expensive. Recently, McDermott et al. [8] developed a gradient-diffusion based LES closure
model which, in form, resembles a Smagorinsky-type eddy viscosity model, but which is derived
entirely from ODT. Called ensemble mean closure (EMC), thisapproach was born of a desire to
better understand ODT and to provide a theoretical basis forthe empirically observed rate constant
for LES/ODT in isotropic turbulence simulations. The resulting model is a legitimate LES subgrid
model on its own, and eliminates the laminar flow finite-eddy-viscosity problem which plagues the
constant-coefficient Smagorinsky model. Here, we employ EMC as a subgrid model for ODT. This
is very useful in the context of the ODTLES model as it removesthe requirement that the ODT
mesh resolve the flow to the Kolmogorov scale. Later we will show that for high-Reynolds-number
flows this results in considerable costs savings while giving the analyst almost complete freedom
to choose the degree to which the sub-LES-grid scales are resolved by ODT in the simulation.

The EMC subgrid -tress closure is based on the mappings and time-scale physics employed
in ODT. A simplified ODT model is envisioned in which eddy events only act upon the LES-
resolved velocity field and stresses are based on ensemble averaged momentum transport by ODT
eddy events, rather than the usual stochastic eddy sampling. As mentioned, the resulting model is
analogous to conventional gradient-diffusion based LES closures such as the constant-coefficient
Smagorinsky model.

The form of the ensemble closure (which is independent of thelinearization) is obtained by
accounting for all eddy events which can affect a given location, x, on an ODT line. First, we find
the amount of momentum displaced acrossx, for an eddy parameterized by its starting location,
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xo, and length scale,l . The amount of momentum displaced,ψ(x;xo, l), is then multiplied by the
event-rate density of the eddy, given by 1/l2τ, whereτ is the eddy time scale. With this, the form
of the stress can be written as

R(x) =
Z lmax

lmin

Z x

x−l

ψ(x;xo, l)
l2τ

dxodl. (19)

The integration limits reflect the range ofxo and l space which can possibly affectx. The
maximum and minimum eddy lengths to be represented by the EMCmodel are denotedlmax and
lmin. Completion of the model requires specification of the displacement functionψ and the eddy
time scaleτ, which are functions of the particular ODT model employed. This can be directly
applied to calculate an ODT-based subgrid eddy viscosity whose form is analogous to Eq. (10).

Neglecting the small viscous cut-off effect (typically negligible for high Reynolds numbers),
the EMC-based ODT subgrid eddy viscosity for the 2-component ODT model used here is written
as

µS = ρCCemc(lmax)
2
(
∣

∣

∣

∣

∂vi

∂xk

∣

∣

∣

∣

+

∣

∣

∣

∣

∂v j

∂xk

∣

∣

∣

∣

)

(20)

whereC is the ODT eddy rate constant,Cemc is an EMC model coefficient, andlmax is the largest
eddy length NOT resolved by the ODT discretization. We note that Eq. 20 is slightly different than
the analogous equation tested in [8], and thus the values of the model coefficients are not expected
to be the same.

Based on the triplet map, the smallest eddy size that can be resolved by ODT is always 6∆x.
Thuslmax is always known from the ODT grid size.

If we include the EMC model, the evolution equation for 2-component stand-alone ODT can
now be written as

∂vi

∂t
− ∂

∂x

(

(ν+νS)
∂vi

∂x

)

= 0 (21)

whereνS = µS/ρ, andνS is given by Eq. 20.

2.3 The ODTLES Evolution Equations

In ODTLES, local 3D coupling among the different velocity components is captured by adding
several additional terms to the right-hand-side (RHS) of the stand-alone ODT equation, Eq. (21).
Global 3D coupling is achieved by defining an LES-scale pressure field that is resolved on the 3D
mesh and by requiring a 3D continuity equation to be satisfied.
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The ODTLES evolution equations on each line in directionk (k=1-3) that will be solved for the
individual ODT velocity componentsi (i 6= k) can be written conceptually as:

∂vk,i

∂t
− ∂

∂xk

(

(ν+νS,k)
∂vk,i

∂xk

)

= −(LES Pres.)i − (LESConv.)k,i +(3D Visc.)k,i. (22)

Here, as in all equations to follow (unless specifically noted), repeated indices are NOT used to
imply summation.

In contrast to the stand-alone ODT model, where the RHS is zero, this revised equation has three
additional terms. These terms will be used to model the LES-scale pressure-gradient, LES-scale
convection, and multi-dimensional viscous effects on the evolution of the ODT velocity compo-
nents.

Before describing a model for each of these additional terms, we define a set of quantities used
in the model formulation.

Definitions

δ
δx Numerical difference operator acting on the LES scale

∂
∂x Numerical difference operator acting on the ODT scale

P̄ LES-scale pressure associated with each 3D control volume.Pressure is
not defined on the individual ODT lines.

T A time scale which should be of order the eddy turnover time for the smallest
3D eddies resolved on the 3D mesh. In all calculations performed here, T is set
equal to the LES time step,∆T

∆X The width of a 3D control volume.

ūk,i A time average ofvk,i (i 6= k) over time-scale T, where

ūk,i =
1
T

Z t

t−T
vk,idt. (23)

ūk,k A time-averaged velocity parallel to ODT linek that is computed by requiring a
ūk,i-based continuity equation to be satisfied in each ODT sub-control volume
associated with the ODT points on linek. These sub-control volumes and the spatial
locations of other ODT velocities are illustrated in Figure4.

19



ūk,k(xk) = ūk,k(0)−
Z xk

0

(

δūk,i

δxi
+

δūk, j

δx j

)

dxk (24)

wherei, j,k is any permutation of the indices (1,2,3).

Figure 4. Orientation of ¯uk,k relative toūk,i for ak=2 line.

Ūi A spatial average over a control volume of the time-averagedvelocity
component ¯uk,i .

Ūi =
0.5
∆Xk

Z

+∆Xk
2

−∆Xk
2

ūk,idxk +
0.5
∆Xl

Z

+∆Xl
2

−∆Xl
2

ūl ,idxl (25)

wherei,k, l is any permutation of the indices (1,2,3).

Hereafter we refer to this temporally and spatially filteredvelocity as the “LES” velocity field. It’s
location, consistent with the location of the ¯uk,i odt velocities, is geometrically located on control
volume faces as per a standard staggered-grid scheme.

2.3.1 3D continuity and the LES-scale pressure-gradient term

Conservation of mass is enforced in the 3D domain by requiring the LES velocity field to satisfy
the following discrete continuity equation on the LES grid:

δŪ1

δx1
+

δŪ2

δx2
+

δŪ3

δx3
= 0 (26)
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whereŪi is defined in terms of the ODT velocity components as described above. This LES-scale
continuity equation is enforced indirectly through the pressure field. The pressure field couples to
the velocity field through a pressure gradient term in the evolution equations for the ODT velocity
components (i.e., the momentum conservation equations). In ODTLES, the LES-scale pressure
gradient term is modeled as:

(LES Pres.)i =
δP̄
δxi

. (27)

2.3.2 LES-scale convection term

The purpose of the LES-scale convection term is to model the 3D transport of momentum due to
the resolved velocity field. This transport is distinct fromthat due to eddy events, whose purpose
is to model the unresolved turbulent stirring.

In the current model, the LES-scale convection term is

(LESConv.)k,i = − δ
δxi

(ūk,ivk,i)−
δ

δx j
(ūk, jvk,i)−

∂
∂xk

(ūk,kvk,i) (28)

where the time-averaged velocity field is used for the advecting velocities, as in [11]

2.3.3 Multi-dimensional viscous term

Diffusional transport parallel to the ODT line is modeled bythe fully resolved viscous term that
appears as the second term on the LHS of Eq. (22). The purpose of introducing an additional
viscous term is to model diffusional transport of momentum in the two coordinate directions or-
thogonal to the ODT line. In addition, this model will contribute to the local energy dissipation
rate due to viscous effects. For any line parallel to thek coordinate (hereafter denoted ak line), the
two directions that must be accounted for are the longitudinal direction (to be denoted here with
the subscript i) and the transverse direction (to be denotedwith the subscript j). Because velocity
gradients are not locally resolved in these two directions,we seek the best available information to
approximate the required terms.

To model the transverse direction, we leverage the fact thati-component velocity gradients in
the j-direction are fully resolved on allj-direction lines, and these lines intersect ak-line every∆X.
Therefore, we can model the transverse term at any point on linek by interpolation from the nearest
two j-line intersection points. This approximation is convenient, consistent with the concept that
ODT values are point values, and means that the velocity gradients felt by the ODT points on
line k will have the proper magnitude and statistical variation. However, a small momentum-
conservation error is also introduced by this approximation because the sum of all momentum
fluxes to/from all ODT points is no longer balanced by construction. This error could be corrected
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with the introduction of a supplementary LES-scale momentum-balance equation, but was not
deemed necessary for the present work as the error introduced is small, symmetric around zero,
and tends to zero with time averaging.

Because we have chosen to use a two-component ODT model (those being the two components
orthogonal to the line-direction), resolved velocity gradients in the longitudinal direction are not
available at intersection points. Therefore, gradients inthis direction must be found using finite
differences on the LES scale. Although we expect the overallthe error introduced by this approxi-
mation to be small in most cases, alternative ways to accountfor this term are being looked at. For
example, if a three-component ODT model were being used, then interpolation from the nearest
two k-line intersection points (analogous to how the transverseterm is treated) would be possible.

Given the modeling choices just described, the additional viscous transport term for each of the
two velocity componentsvk,i defined on ODT linek, can be written as

(3D Visc.)k,i =
∂

∂x j

(

(ν+νS, j)
∂v j ,i

∂x j

)

| jk−interp+
δ

δxi
(ν

δvk,i

δxi
) (29)

where the suffix| jk−interp denotes evaluation by interpolation between values located at j-k line-
intersection points.

2.3.4 Summary of the ODTLES Evolution Equations

The complete equation set describing the evolution of the ODTLES velocity componentsvk,i be-
tween eddy events can now be written. In these equationsk denotes an ODT line in coordinate
directionk, and the indicesi, j,k are any permutation of the indices (1,2,3).

∂vk,i

∂t
− ∂

∂xk

(

(ν+νS,k)
∂vk,i

∂xk

)

= − δP̄
δxi

− δ
δxi

(ūk,ivk,i)− δ
δx j

(ūk, jvk,i)− ∂
∂xk

(ūk,kvk,i)

+ ∂
∂x j

((ν+νS, j)
∂v j,i
∂x j

)| jk−interp+ δ
δxi

(νδvk,i
δxi

) (30)

subject to the 3D continuity constraint that

δŪ1

δx1
+

δŪ2

δx2
+

δŪ3

δx3
= 0 (31)

whereūk,i andŪi are defined in terms of the ODT velocity componentsvk,i by Eqs. (23) and (25):
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At this point it is instructive to consider certain limitingcases of the LESODT evolution equa-
tions.

First consider the limiting case in which the length scales∆Xk and time scale T go to zero.
Here ODT is viewed in the space-time continuum, and no eddy events occur because all motion
is resolved in 3D. In this casevk,i = ūk,i = Ūi. Therefore Eq. (30) reduces to two identical copies
of the incompressible form of the Navier-Stokes equations,and Eq. (31) reduces to the standard
incompressible continuity equation.

Next consider the opposite case where the length scales∆Xk and time scale T go to infinity.
Under these conditions all of the LES scale convective and viscous transport terms on the RHS of
Eq. (30) either become constant or go to zero, and Eq. (31) becomes meaningless. What remains
are a set of 1D equations that are the evolution equations fora stand-alone ODT model.

2.3.5 Numerical Procedure

To begin a calculation, initial values forvk,i andūk,i must be specified on all ODT lines subject to
the constraint that the LES-scale continuity equation is satisfied. The LES pressure field̄P is also
initialized to zero.

The ODTLES equations are integrated from LES time-stepn to n+1, through the following
sequence of steps.

(1) Evolve the ODT equations in time (using the ODT time-step∆t) on each individual ODT
line over a time period equal to the LES time step.

Remark: The numerical implementation of an ODT simulation involvesthree subprocesses:
molecular evolution, eddy selection, and eddy implementation. In the calculations performed here
Eq. (22) is time-advanced each time the eddy event-rate distribution is sampled, leading to very
small ODT time steps. Therefore first-order explicit time integration coupled with second-order
central differencing of all other terms is employed. The procedure for eddy selection and eddy
implementation is described in [7] (also see [11, 12]).

(2) Compute the intermediate values ofˆ̄un+1
k,i and ˆ̄U

n+1
k,i from the definitions given in Eqs. (23)

and (25). The hat is used here to denote the intermediate nature of these values.

(3) For each ODT line compute ODT resolved values for a smoothcontinuous functionf ( ˆ̄U
n+1
k,i )k,i

whose cell average matches the LES cell average values, Eq. (25). An efficient procedure for doing
this is described in Appendix A. Then, on each line and at eachODT point location, compute and
store the following difference quantities,

v′k,i = vk,i − ˆ̄un+1
k,i (32)
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and

ū′k,i = ˆ̄un+1
k,i − f ( ˆ̄U

n+1
i )k,i . (33)

Remark: These differences will be used to reconstruct the ODT velocity fields after the LES
velocity field has been adjusted to a divergence-free state through a pressure-projection step.

(4) Solve the following discrete Poisson equation for the pressure correctionφ.

δ2φ
δxiδxi

=

(

1
∆T

)

δ ˆ̄U
n+1
i

δxi
(34)

where the repeated indices are used in this equation to implysummation in the standard way.

(5) Compute the LES pressure and velocity fields at timen+1 via the following pressure and
velocity correction equations.

P̄n+1 = P̄n +φ, (35)

Ūn+1
i = ˆ̄U

n+1
i −∆T

(

δφ
δxi

)

, (36)

Remark: Steps 4 and 5 correspond to a standard projection step that enforces the LES continuity
constraint, Eq. (31).

(6) Compute the corrected values of ¯uk,i andvk,i based on the ODT reconstruction equations

ūn+1
k,i = f (Ūn+1

i )k,i + ū′k,i (37)

and

vk,i = ūn+1
k,i +v′k,i . (38)

Remark: The adjusted values ofvk,i andūk,i are now consistent with the new pressure-projected
LES velocity field. This reconstruction procedure is designed so that high-wave-number (i.e.
small-scale) fluctuations resolved at the ODT level are relatively unaffected by this procedure.

(6) Compute the values of ¯uk,k per Eq. (24).

This completes the LES time-step cycle.
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2.3.6 Implicit LES momentum equation

So far, we have described ODTLES primarily from the ODT perspective. However, it can also be
cast in the form of a volume-balance LES model as described bySchumann. In the volume-balance
LES method the averaged quantities correspond to a discreteset of control volumes that are fixed
in space. Here we extend this concept into the temporal domain by viewing the LES quantities
as also time-averaged over a time scale T, where T is of order the LES time step∆T. Thus in
ODTLES, theŪi velocities can be properly viewed as LES quantities.

BecauseŪi are defined in terms of thevk,i , a separate LES-scale momentum equation is not
directly solved. However, by construction an LES-scale momentum equation is implicitly being
satisfied by the formulation. This equation can be found by properly summing the individual
contributions made by each ODT velocity equation to the change inŪi over a discrete LES time
step. These changes are due to four processes: LES-scale pressure gradients, viscous diffusion
across control volume surfaces, LES-scale advective transport across control volume surfaces, and
momentum transport due to eddy events whose range extends across control volume surfaces. The
first three of these processes occur continuously in time andare associated with the ODT evolution
equation, Eq. (30). They can therefore be properly expressed as rates. In contrast, eddy events
happen at random epochs, and their effect must be represented through a summation.

25



3 Simulations of Decaying Isotropic Turbulent Flow

For many years the simulation of decaying isotropic turbulent flow has served as an important but
relatively simple test problem for turbulence models, theories, and computer codes. It is an excel-
lent first test because the problem is posed in a fully periodic domain and complications that arise
near solid walls are avoided. Although the idealized conditions are cast as a stationary problem
that is for practical purposes unachievable in an experiment, space-time correlation measurements
from the nearly isotropic turbulent flow downstream of a regular grid provide an excellent approx-
imation. This is because Taylor’s hypothesis can be used to show that spatially decaying grid tur-
bulence is analogous to temporally decaying turbulence in aspatially fixed region. Important data
sets include the classic experiment by Comte-Bellot and Corrsin [3] (hereafter referred to as CBC)
and the more recent work of Kang, Chester and Meneveau [5] (tobe denoted KCM). The CBC data
is very well known and has been used in a large number of LES studies. However, the Reynolds
number is quite low (Reλ = 72). The more recent experiment of KCM was specifically designed
as an update to the CBC results based on turbulence at a higherReynolds number (Reλ = 720) and
includes detailed measurements that are of particular interest to the LES community.

In this section we compare ODTLES simulations with the KCM experimental data.

3.1 Geometry and Initial Conditions

The LES domain is a cube with edge lengthLbox = 2π. The 3D Cartesian mesh has an equal mesh
spacing∆X = Lbox/Nles in all three directions. Most calculations are performed ona relatively
coarse LES mesh size ofN3

les= 323, but a comparison is also made withN3
les= 643. The ODT mesh

size is varied fromNodt = 128 to 1024 to illustrate the impact of ODT mesh resolution on results and
cost. The initial condition for the LES velocity field is generated by superimposing Fourier modes
with random phases to match the initial 3D energy spectrum ofthe experimental data. Periodic
boundary conditions are applied in all three directions. Todevelop coherent turbulent structure
in the initial field, the random modes are allowed to evolve for a short time (several time steps),
during which time the energy decays. Energy is then injectedback into the Fourier modes such
that the spectrum of the initial condition again matches thespectrum of the initial experimental
data. This process is repeated several times until the coherent structures stabilize.

Without DNS data, the initialization of the ODT field is problematic. The procedure followed
here is as follows. The ODT velocity field is first set equal tof ( ˆ̄U i)k,i , a smooth continuous
function whose cell average matches the initialized LES cell average values (see Eq. ()25) and
Appendix A). The ODTLES evolution equations, without the advective terms, are then solved over
a series of LES time steps. However, at the end of each time step the ODT velocity field is adjusted
(as explained in Section 2.3.5) to be consistent with the original LES field. In this manner the ODT
resolved substructure is built up while maintaining the same initial LES velocity field. As will be
shown below, this method is only partially successful at introducing ODT resolved substructure
into the initial state. As a result, the ODT resolved velocity spectrum is not well represented until
later times in the calculations shown here.
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3.2 Comparisons with the experimental data of Kang et al. [5]

3.2.1 Reference Calculations

Table 1 lists the key mesh and model parameters of the four reference calculations performed with
ODTLES. These runs illustrate the impact of increasing the ODT-scale resolution while main-
taining the same LES-scale mesh. All other parameters are held constant and equal to values
determined from theoretical, heuristic or numerical considerations. In the next subsection, these
other model parameters are varied to illustrate how sensitive the results are to these values.

Table 1. Key Parameters for the Reference Set of Calculations

Run Nles Nodt Ncell Lmax/∆X ∆T/∆Tc f l C/
√

54 Cemc

1 32 128 4 4 0.1 1.0 .002
2 32 256 8 4 0.1 1.0 .002
3 32 512 16 4 0.1 1.0 .002
4 32 1024 32 4 0.1 1.0 .002

Figure 5 shows the total LES and total ODT resolved kinetic energy as a function of time during
all four reference calculations. In each case, the LES resolved energy is held constant during the
ODT initialization period (from t=-0.75 to 0 sec.), but the ODT resolved energy grows until a
plateau is reached. As can be clearly seen, higher values ofNodt allow a larger amount of the
sub-grid kinetic energy to be resolved. At time t=0 sec, the turbulent flow is allowed to evolve
according to the full set of equations and its energy rapidlydecays. Although all four runs are
quite similar, it can be seen that the LES-resolved energy decay for Run 1 is a little bit slower than
for the others. This is because the smallest eddies are not being resolved whenNcell = 4. These
unresolved eddy events, although not dominant, contributea small amount to the dynamic inviscid
process by which energy is transferred out of the LES resolved field.

Further insight into what is happening during the ODT initialization period can be gleaned
from Fig. 6. Here we see a plot of the transverse one-dimensional energy spectraE22 at different
times during the initialization period compared to the experimental data. Initially, the high-wave-
number velocity spectra correspond to the 3D box-filtered values based on the smooth interpolating
(or reconstruction) functionf ( ˆ̄U i)k,i . However, the energy in the high wave-numbers very quickly
smooths out and begins to rise. The values plateau at about anorder of magnitude lower than the
data because they are being constrained to match the low-wave-number 3D LES spectrum.

The LES-resolved 3D energy spectrum from each reference runis compared to the experimen-
tal data in Fig. 7. Since the LES velocity field is initializedto spectrally match the X/M = 20
experimental data, all four cases follow data exactly out tothe LES Nyquist limit at this point. At
the later two times, the LES-resolved ODTLES results do not match the data exactly because the
LES-resolved field is a spatially filtered quantity (similarto a box filter) that must quickly drop to
zero as the Nyquist limit is passed. However, with this consideration taken into account, all four
cases compare well with the data, and differences between them are very minor. This is another
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indication that the eddy events are properly transferring energy from the low wave-numbers (re-
solved by the LES velocities) to the higher wave-numbers resolved only on the ODT domain. The
slightly higher values seen for run 1 reflect the previously mentioned fact that the effects of the
smallest eddy events are missing in this case (due to the coarse ODT mesh resolution).

The next four figures compare the transverse 1D energy spectraE22 from runs 1-4 with the data
from the four experimental data stations. (Note that because the two ODT velocity components
are normal to each line, the longitudinal 1D energy spectrunE11 cannot be directly computed.) In
these figures the experimental data is plotted as well as two reference lines. The smaller vertical
line corresponds to the wave-number of the wind tunnel height H. At wave-numbers approaching
this value, and lower, the turbulence in the experiment is not isotropic, and thus the data is not valid
for our comparison (see Kang et al. [5]) for details). The other vertical line shown corresponds to
the LES Nyquist limit.

Figure 8 corresponds to the initialized state at time zero. Although the 3D spectrum is exactly
matched at this point in time, for reasons described previously the 1D spectrum is not. Therefore
a noticeable dip in the spectrum is seen at the LES Nyquist limit. In Figures 9 to 11 we see the
1D spectrum recover nicely as the flow evolves and energy fromthe low wave number regions
cascades down into the high wave-numbers. By the third and fourth stations the 1D spectra from
each run does a very good job of following the experimental data out to the limits of their respective
resolutions.

In each of these runs energy is being dissipated by viscous effects at the highest resolved wave
numbers. This is where the EMC model affects the problem, providing the amount of additional
eddy viscosity needed to account for the eddies not being explicitly modeled. Note that although
the EMC model constantCemc is invariant, the eddy viscosity scales on the square of the cut-off
length-scalelmax (see Eq. (20)).lmax is defined as the largest unresolved eddy event, which is just
larger than the smallest resolved eddy event. Since the smallest eddy event that can be captured is
equal to 6∆x, we know thatlmax= Lmin = 6∆x. In the next sub-section, the effect of turning the
EMC model off will be illustrated, as well as the sensitivityof the results to the value specified for
Cemc.
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kinetic energy as a function of time.
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Figure 7. 3D energy spectra for each reference run.
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Figure 8. 1D energy spectraE22 at time t = 0 sec. for runs 1-4.
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Figure 9. 1D energy spectraE22 at time t = 0.15 sec. for runs 1-4.
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Figure 10. 1D energy spectraE22 at time t = 0.30 sec. for runs
1-4.
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Figure 11. 1D energy spectraE22 at time t = 0.42 sec. for runs
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3.2.2 Sensitivity to Model parameters

A series of additional runs indicate the sensitivity of the results to mesh size and model parameters
used in ODTLES. These runs are listed in Table 2.

Table 2. Calculations to Test Model Parameter Sensitivity

Run Nles Nodt Ncell Lmax/∆X ∆T/∆Tc f l C/
√

54 Cemc

5 64 256 4 4 0.1 1.0 .002
6 64 512 8 4 0.1 1.0 .002
7 32 256 8 3 0.1 1.0 .002
8 32 256 8 3 0.1 1.3 .002
9 32 256 8 6 0.1 1.0 .002
10 32 256 8 6 0.1 0.77 .002
11 32 128 4 4 0.2 1.0 .002
12 32 128 4 4 0.33 1.0 .002
13 32 256 8 4 0.1 1.0 0
14 32 256 8 4 0.1 1.0 .0025

Runs 5 and 6 essentially repeat runs 2 and 3, but with twice theLES resolution. All other code
parameters are kept the same. In Figures 12 and 13 the 3D energy spectra and the 1D energy
spectra are compared. As expected, the higher resolution isreflected in a larger portion of the 3D
spectral energy being resolved on the LES grid. However, the1D spectra at the last experimental
data point (X/M=48) compare very closely. The only difference noted in Figure 13 is a slight
suppression of theE22 spectra in theNles = 64 runs in the region between the two Nyquist limits.
The reason for this small artifact is unclear. Otherwise thecurves appear to lie right on top of one
another.

As has been more thoroughly discussed by McDermott [8], the values ofLmax andC control
the rate at which lower wave-number energy resolved by the LES mesh is transferred to the higher
wave-number energy resolved only on the 1D grid. This cascade of energy is an inviscid process
that, in ODTLES, is affected by both the overall rate at whicheddy-events occur and the eddy-
size distribution. Therefore, the energy decay rate itselfdoes not uniquely determine the values
of C andLmax. Although some interesting theoretical work [8] has been completed that provides
certain constraints, the values chosen here are based primary on heuristic arguments and numerical
experiments. The purpose of Runs 7-10 is to illustrate the sensitivity of the calculations to the
value chosen forLmax, and how this choice affects the value ofC that must be specified to obtain
the correct decay rate.

From a conceptual standpoint,Lmax should mark the length scale between the smallest real
3D eddies resolved on the 3D LES mesh, and those eddies that must be modeled by ODT eddy
events. Since the ODTLES method is cast in a volume-balance context (that acts in physical
space), spectral methods are not applicable and the value ofLmax cannot be exactly specified from
a numerical resolution standpoint. However, it seems reasonable to consider the Nyquist limit
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(2∆X) as a lower bound forLmax, and for practical purposes we would expect it to be at least
3∆X. For the reference calculations discussed above,Lmax = 4 was chosen. With this choice, it
was found that the value ofC which yielded the correct energy decay rate was 1.0/

√
54, which

agrees well with the theory developed in[8]. In Runs 7 through 10 we consider the effect of using
Lmax= 3 andLmax= 6.

The effect of changingLmax on the LES-resolved and ODT-resolved kinetic energy is shown
in Figures 14 and 15. Several things can be noticed in lookingcarefully at these figures. First,
decreasingLmaxreduces both the ODT-resolved energy obtained during the initialization phase and
the subsequent decay rate during the evolution phase. Conversely, increasingLmax increases both
the ODT resolved energy obtained during the initializationphase and the subsequent decay rate
during the evolution phase. To recover the same decay rate inthe LES resolved energy, the ODT
rate constant must also be adjusted. WhenLmax was reduced to 3∆X, increasingC by 30 percent
was required. WhenLmax was increased to 6∆X, C had to be lowered by 23 percent.

The trends described in reference to Figures 14 and 15 are also reflected in the results shown in
Figures 16 and 17. These figures show the 3D energy spectra resolved on the LES mesh for runs
7-10, and compare them with run 2. Here we can note that the effect of these parameter variations
is strongest in the higher wave-number regions. This is expected because this is the region where
the larger-scale eddy events have an impact on the resolved 3D flow structures.

Figures 18 and 19 complete the story by showing the ODT resolved 1D spectra at experiment
station X/M=48 for runs 7-10, and compare them with run 2. Although the effect is small, different
combinations ofLmaxandC are seen to yield slightly different slopes. This may be useful in further
refining what the most appropriate values ofLmax andC should be.

Runs 11 and 12 were made to verify that the LES time step taken during the reference runs was
small enough. These runs confirmed that the time step was sufficiently small because results for
both these runs were statistically identical in all key aspects to reference run 1. For this reason, no
plots are shown concerning these runs.

Runs 13 and 14 explore the impact of the EMC model and its associated constant,Cemc.

In Run 13, the EMC model was turned off. This resulted in a large energy buildup in the high-
wave-number region because the ODT resolution was not sufficient to dissipate the energy at the
proper scales. This is reflected in Figure 20, where the 1D energy spectra at two times in the
calculation are plotted for runs with and without the EMC model active. As can be seen, the effect
is dramatic and totally distorts the solution.

In Figure 21 we compare the 1D energy spectra at the end of the simulation time period for two
different values of the EMC model constant,Cemc= .0020 (the reference value), andCemc= .0025.
Results show that only the energy at the highest wave-numbers is affected by this change. Although
the difference is small, the slope obtained using the highervalue appears to be more consistent with
the experimental data shown, suggesting that perhaps the higher value is a better choice.
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1 10 100
k

10
-4

10
-3

10
-2

10
-1

E
2

2 (
m

3  /
 s

2 )

Kang et al. X/M = 48
Run   2, L

max
 = 4∆X , C=1.0/sqrt(54)

Run   9, L
max

 = 6∆X , C=1.0/sqrt(54)

Run 10, L
max

 = 6∆X , C=.77/sqrt(54)

Figure 19. Sensitivity of the 3D energy spectra to increasing
Lmax.

38



1 10 100 1000
k

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
   

(m
  /

s 
 )

X/M=30, No EMC
X/M=48, No EMC
X/M=30, EMC
X/M=48 EMC
Kang et al. X/M=48

High wave-number
energy buildup

H:  Wind
Tunnel Height

22
3

2

N_LES=32, N_ODT=256

Figure 20. The effect on the 1D energy spectra of turning the
EMC model off.

1 10 100
k

10
-4

10
-3

10
-2

10
-1

E
2

2 (
m

3  /
 s

2 )

Kang et al. X/M = 48
Run   2, C

emc
 = 0.002

Run 14, C
emc

 = 0.0025

Figure 21. Sensitivity of the 1D energy spectra to increasing
Cemc.

39



References

[1] W. T. Ashurst and A. R. Kerstein. One-dimensional turbulence: Variable-density formulation
and application to mixing layers.Phys. Fluids. in press, 2005.

[2] S. Cant. High-performance computing in computational fluid dynamics: progress and chal-
lenges.Phil. Trans. Royal Society of London Series A - Math. Phy. Eng. Sci., 360:1211–1225,
2002.

[3] G. Comte-Bellot and S. Corrsin. Simple Eulerian correlation of full-and narrow band velocity
signals in grid-generated ’isotropic’ turbulence.Journal of Fluid Mechanics, 48:273–337,
1971.

[4] J. W. Deardorff. The use of subgrid transport equations in a three-dimensional model of
atmospheric turbulence.ASME J. Fluids Engng., page 429, 1973.

[5] H. Kang, S. Chester, and C. Meneveau. Decaying turbulence in an active-grid-generated flow
and comparisons with large-eddy simulations.J. Fluid Mech., 480:129, 2003.

[6] A. R. Kerstein. One-dimensional turbulence: Model formulation and application to homoge-
neous turbulence, shear flows, and buoyant stratified flows.J. Fluid Mech., 392:277, 1999.

[7] A. R. Kerstein, W. T. Ashurst, S. Wunsch, and V. Nilsen. One-dimensional turbulence: Vector
formulation and application to free shear flows.J. Fluid Mech., 447:85, 2001.

[8] R. J. McDermott, A. R. Kerstein, R. C. Schmidt, and P. J. Smith. Ensemble mean closure
based on one-dimensional turbulence.in preparation, 2005.

[9] S. B. Pope.Turbulent Flows. Cambridge University Press, 2000.

[10] P. Sagaut.Large Eddy Simulation for Incompressible Flows. Springer-Verlag, 2001.

[11] R. Schmidt, A. Kerstein, S. Wunsch, and V. Nilsen. Near-wall LES closure based on one-
dimensional turbulence modeling.J. Comput. Phys., 186:317, 2003.

[12] R. C. Schmidt, T. M. Smith, P. E. Desjardin, T. E. Voth, M.A. Christon, A. R. Kerstein, and
S. Wunsch. On the development of the large eddy simulation approach for modeling turbulent
flow: LDRD Final Report. Report No. SAND2002-0807, Sandia National Laboratories,
2002.

[13] U. Schumann. Subgrid scale model for finite difference simulation of turbulent flows in plane
channels and annuli.J. Comput. Phys., 18:376, 1975.

[14] S. Völker, R. D. Moser, and P. Venugopal. Optimal largeeddy simulation of turbulent channel
flow based on direct numerical simulation statistical data.Physics of Fluids, 14:3675, 2002.

40



A An efficient discrete reconstruction procedure that preserves
cell averages

Consider a 1D functionf (x), whose box-filtered values

U(x j) =
1
h

Z x j+h/2

x j−h/2
f (x)dx (39)

are known atN uniformly spaced locationsx j , on a domain 0< x < L, whereh = L/N = (x j+1−
x j), and whose boundary conditions,f (0) and f (L) are known.

We desire to find a well-behaved, smooth set ofM (M = KN, whereK = 2n ) values of ¯u(xi), at
uniformly spaced locationsxi , that exactly satisfy the relationship

U(x j) =
1
K

jK

∑
i=( j−1)K

ū(xi). (40)

and which are consistent with the known boundary conditions.

The algorithm described here computes a set of 2N values of ¯u(xi) from the initial set of N
values ofU(x j). The process can be repeated (n-1) more times to obtain the desired refinement
corresponding to any value of K.

To help understand the algorithm we refer the reader to Figure A.1, which illustrates a simple
case where N=3, and the functionf (x) is assumed periodic. The values ofU j(x j), j=1,3 are
respectively, 4, 6, and 1.

Values ofū(xi) are found through an iterative process that, by construction, always enforces
Eq. (40). Each iteration step, a set of 2N ”starred” values, ¯u∗(xi), are computed as

ū∗(xi−) =
U(x j)+ f ∗(x j −h/2)

2
(41)

ū∗(xi+) =
U(x j)+ f ∗(x j +h/2)

2
(42)

where i− and i+ denote, respectively, the first and second values ofi located in cell j, andf ∗

denotes a current iteration estimate of the interpolated value for ū at the cell boundaries. These are
estimated in a manner to be explained next, except if the cellboundary corresponds to one of the
domain boundaries,x = 0,L, and the boundary conditions forf (x) are specified. In this case, we
simply setf ∗(0) = f (0), and f ∗(L) = f (L).
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On the first iteration, the values off ∗(x j −h/2) and f ∗(x j +h/2) are computed as a linear
interpolation at the midway points between theU(x j), i.e.

f ∗(x j −h/2) =
U(x j)+U(x j−1)

2
(43)

f ∗(x j +h/2) =
U(x j)+U(x j+1)

2
(44)

At each succeeding iteration, they are computed by interpolation between past iterate values of
ū(xi) as follows:

f ∗(x j −h/2) =
ū(xi−)+ ū(xi−−)

2
(45)

f ∗(x j +h/2) =
ū(xi+)+ ū(xi++)

2
(46)

Here,i++ denotes the value of (i+)+1, andi– denotes the value of (i-)-1.

No matter how the values off ∗(x j −h/2) and f ∗(x j +h/2) are computed, the next iterate values
of ū(xi) are always calculated by adding a correctionCj to the starred values, ¯u∗(xi), as follows.

ū(xi−) = ū∗(xi−)+Cj (47)

ū(xi+) = ū∗(xi+)+Cj (48)

where

Cj = U j(x j −
ū(xi−)+ ū(xi+)

2
(49)

Note that the value ofCj is calculated so that, by construction, Eq. (40) is identically satisfied.

The method converges rapidly as the iterations proceed. Experience using this method in the
context of ODTLES suggests that four iterations are sufficient for all practical purposes.

In the limit of large M, the method produces a smooth continuous approximation of the function
f (x) that exactly satisfies the Eq. (39). Other approximations can be generated using alternative
schemes and, in fact, an infinite number of solutions exist. However, this method is computation-
ally fast, stable, and well behaved. Figure A.2 shows results from performing the reconstruction
procedure for a case where N = 16, M = 256, and the domain is periodic.
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Figure A.1. Simple illustration of initial steps in the discrete
reconstruction procedure.
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Figure A.2. Example discrete reconstruction for N = 16, M =
256.
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