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Abstract 
The problem of model calibration is often formulated as finding the parameters that minimize the 
squared difference between the model-computed data (the predicted data) and the actual 
experimental data.   This approach does not allow for explicit treatment of uncertainty or error in 
the model itself:  the model is considered the “true” deterministic representation of reality.  While 
this approach does have utility, it is far from an accurate mathematical treatment of the true 
model calibration problem in which both the computed data and experimental data have error 
bars. Our proposed research focuses on methods to perform calibration accounting for the error in 
both the computer model and the data, as well as improving our understanding of its meaning for 
model predictability.  We call this approach Calibration under Uncertainty (CUU).  This talk 
presents our current thinking on CUU.  We outline some current approaches in the literature, and 
discuss the Bayesian approach to CUU in detail.   
 
Introduction 
Recent research in the Bayesian statistics community has yielded advances in formal 
statistical methods that address Calibration under Uncertainty.  One approach is that of 
Kennedy and O’Hagan (2001), hereafter referred to as KOH.  They formulate a model for 
calibration data that includes an experimental error term (similar to standard regression) 
and a model discrepancy term, with a Gaussian process chosen to model the discrepancy.  
They then use a Bayesian approach to update the statistical parameters associated with 
the discrepancy term and with the model parameters.  The purpose of updating is 
generally to reduce uncertainty in the parameters through the application of additional 
information. Reduced uncertainty increases the predictive content of the calibration, or 
that is the expectation. We discuss several issues relating to the Bayesian approach:  First, 
is the Gaussian prior the correct one, or the most effective choice for complex 
computational science and engineering (CSE) models?  Second, the mathematics behind 
this approach involves covariance matrices of joint input variable distributions.  
Estimating the full joint posterior distribution therefore requires complicated integration 
and so techniques like Markov Chain Monte Carlo (MCMC) sampling are used to 
approximate the posterior distributions on the hyperparameters which govern the prior 
distribution.  We discuss MCMC methods and their suitability to the CUU problem.   
Finally, the approach of Kennedy and O’Hagan assumes that the computer simulation 
model is deterministic:  re-running the model with the same set of inputs produces the 
same output.  We propose extending their framework to allow for stochastic simulation 
models.   
 

                                                 
* Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for 
the United States Department of Energy under Contract DE-AC04-94AL85000. 
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Gaussian Process Model Formulation  
For those unfamiliar with Gaussian processes (GP), this section provides a very brief 
introduction.  Gaussian Process models are used in response surface modeling, especially 
response surfaces which “emulate” complex computer codes.  Gaussian processes have 
also been used in conjunction with Bayesian analysis for regression problems and for 
calibration. Gaussian processes have also been widely used for estimation and prediction 
in geostatistics and similar spatial statistics applications [Cressie]. 
 
A Gaussian process is defined as follows [Williams]:  A stochastic process is a collection 
of random variables {Y(x) | x∈X} indexed by a set X (in most cases, X is ℜd, where d is 
the number of inputs).   The stochastic process is defined by giving the joint probability 
distribution for every finite subset of variables Y(x1), ..Y(xk).  A Gaussian process is a 
stochastic process for which any finite set of Y-variables has a joint multivariate 
Gaussian distribution.  A GP is fully specified by its mean function µ(x) = E[Y(x)] and its 
covariance function C(x, x′).  The basic steps in defining/using a GP are:  
 

1. Define the mean function.   The mean function can be any type of function.  Often 
the mean is taken to be zero, but this is not necessary.  A common representation, 
for example in a regression model, is that y(x) = ∑j wjφj(x) = wTφ(x), where {φj} 
is a set of fixed basis functions and w is a vector of weights.  Combining Gaussian 
process and a Bayesian approach, one places a prior probability distribution over 
possible functions and lets the observed data transform the prior into a posterior.  

2. Define the covariance.  There are many different types of covariance functions 
that can be used.  At this stage, we shall focus on stationary covariance functions 
where C(x, x′) is a function of x-x′ and is invariant to shifts of the origin in the 
input space.  A commonly-used covariance function (KOH) is:  
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This covariance function involves the product of d squared-exponential 
covariance functions with different lengthscales on each dimension.  The form of 
this covariance function captures the idea that nearby inputs have highly 
correlated outputs.   

3. Perform the “prediction” calculations.  Given a set of  n input data points {x1, x2, 
.. xn} and a set of associated observed responses or “targets” {z1, z2, .. zn}, we use 
the GP to predict the target zn+1 at a new set of inputs xn+1.   The target is usually 
represented as the sum of the “true” response, y, plus an error term:  zi = yi + εi, 
where εi is a zero mean Gaussian random variable with constant variance σ2

ε.   
We assume that the prior distribution on the yi’s is given by a GP defined as Y ~ 
N(0,K), where K is the n×n covariance matrix with entries Kij = C(xi, xj).  Then 
the prior distribution on the targets zi is N(0,K+σ2

εIn).  The distribution of the 
predicted term zn+1 is conditional on the data {z1, z2, .. zn}.  It is Gaussian with the 
following mean and variance:  

                     E[zn+1 | z1, z2, .. zn ]  = kTC-1z      (2a) 
Var[zn+1 | z1,…, zn] =  C(xn+1, xn+1) - kTC-1k                (2b) 
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where k is the vector of covariance between the n known targets and the new n+1 
data point: k =  (C(x1, xn+1), ….. C(xn, xn+1) T,  C is the n * n covariance matrix of 
the original data, and z is the n*1 vector of target values.   
 
The equations (2) for the mean and variance of the predictive distribution for zn+1 
both require the inversion of C, an n×n matrix.  In general, this is a O(n3) 
operation.  Neal (1997) and Williams (2002) claim that this is feasible on modern 
computers when n is the order of a few hundred, but that it becomes 
computationally expensive when n is larger than 1000.   

4. Use Monte Carlo Markov Chain (MCMC) sampling to generate posterior 
distributions on the hyperparameters which govern the covariance function (and 
the mean function).   A common approach in GP is to assume all GPs are zero 
mean, so the Bayesian updating only involves hyperparameters governing the 
covariance function.  Since these may be quite complex, one usually still needs a 
MCMC sampling method to generate the posterior.  For example, Neal assumes 
the ρ2 terms in the covariance function are distributed as gamma distributions 
(which themselves are governed by three parameters), so one needs to 
calculate/update these three parameters for every ρ2 term.   

 
The reader should note:  We do not address the issue of Bayesian analysis/Bayesian 
updating in this paper due to space limitations.  Gelman, Carlin, Stern and Rubin (1995), 
Press (2003) et al. provides a good primer on Bayesian topics; specific references for 
MCMC include Gilks, Richardson and Spiegel (1996) and Gammerman (1997).  The 
basic concept in Bayesian analysis is to combine “prior” information (in terms of a 
distribution on a parameter, where the distribution itself is characterized by 
“hyperparameters”) and actual data (through a likelihood function) to obtain a “posterior” 
estimate of various parameters.  
 
Kennedy and O’Hagan formulation  
With this background in Gaussian process models and Bayesian analysis, we proceed to 
the KOH model for calibration.  KOH assume that the calibration inputs are supposed to 
take fixed but unknown values θ = (θ1…θq2).  The output of the computer model when the 
variable inputs are given values x = (x1, x2, ….xq1) and when the calibration inputs are 
given values t = (t1, t2, ….tq2) is denoted by η(x,t).  KOH differentiate between the 
unknown value θ of the calibration inputs which we wish to determine (calibrate) and a 
known particular set of their values, t, which we set as inputs when running the model.   
The “true” value of the real process when the variable inputs take value x by ζ(x).  The 
code outputs from N runs of the computer code are represented as yj = η(xj,tj).  The 
observed data (consisting of n points, where n < N usually) is denoted as z = (z1, z2, 
….zn) T.  In KOH’s formulation, they represent the relationship between the observations, 
the true process, and the computer model output by the equation:  
 

zi = ζ(xi) + ei = ρ η(xi,ti) + δ(xi) + ei                                   (3) 
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where ei  is the observation error for the ith observation, ρ is an unknown regression 
parameter, and δ(x) is a model discrepancy or model inadequacy function that is 
independent of the code output η(x,t). 
 
A few comments:  this is a highly parameterized model, with both the code output η(x,t) 
and δ(x) represented as a Gaussian process.  The error term ei should include both 
residual variability as well as observation error, but KOH do not use replicated points and 
their model is deterministic, so they do not strictly address residual variability.  They 
assume that ei is normally distributed as N(0,λ).  Assumption of a constant value of ρ 
implies that the underlying process ζ(x) is stationary.  
  
In the approach recommended by KOH, the prior information about η(x,t) and δ(x) is 
given by Gaussian processes:  η(x,t) ~ N(m1(x,t), c1((x,t), (x′,t′))) and δ(x) ~ N(m2(x), 
c2(x, x′)).  KOH assume that the mean functions are:  m1(x,t) = h1(x,t)Tβ1 and m2(x) = 
h2(x)Tβ2.  If a noninformative prior is assumed, p(β1β2) ∝ 1.   KOH then formulate all of 
the hyperparameters relating to this problem.  They denote (ρ,λ, ψ) by φ, where they state 
that ψ represents some “further hyperparameters” relating to the covariance functions.  
Finally, KOH assume that the prior distribution takes the form:  

p(θ,β,φ) = p(θ)p(φ)                                               (4) 
because of the weak prior distribution on β and assumptions of independence.    
 
The details of calculating the full joint posterior distribution p(θ,β,φ|d) are given in KOH; 
space does not permit reproducing them here.  The important thing to note is that this 
joint posterior density is a Gaussian process, with a complex mean and variance structure.  
The covariance matrix of the posterior involves four “submatrices” which depend on the 
correlation structure of the individual Gaussian processes η(x,t) and δ(x).   The posterior 
distribution is not tractable to calculate analytically.  Even with simplification, it would 
require a high-dimensional quadrature to integrate p(θ,β,φ|d) over β and φ to obtain the 
posterior estimate for the calibration parameters p(θ|d).  KOH address this by fixing 
many of these parameters and use a two stage process, where they estimate the 
hyperparameters relating to the covariance matrix for the model term, c1, separately and 
before estimating the hyperparameters relating to the covariance matrix of the 
discrepancy term, c2.    
 
Implementation Issues 
We are investigating the feasibility of using a GP formulation such as provided by KOH 
as a practical calibration method for engineering design problems.  Katherine Campbell 
has also looked at KOH’s work with an emphasis on implementation [Campbell, 2002].  
She concluded that information about model quality gained through the formulation of a 
model discrepancy term could be useful, but that a user should be careful in situations of 
limited observational data and “avoid exaggerating the contribution of the Bayesian 
updating process.”   
 
We started by developing a GP emulator for the Rosenbrock function (see Figure 1), a 
standard function used in testing optimization algorithms.  This function is given by: 
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This exercise was interesting because we 
took an initial set of 11 samples 
(generated with a Latin Hypercube 
sampling routine), then we took a larger 
set of 110 LHS samples.  For the 11 
sample set, we were able to generate a 
Gaussian process and perform the 
calculation of the expected value with 
confidence bounds at a new input point 
with no difficulty. 
 

 
 
 
 
 
 
 
 
 

 
Figure 1.  Rosenbrock’s Function

2

-2

0

1

1000

-1

2000

0
0

3000

X1

Fn. Value

1
-1

2
X2 -2

Rosenbrock's Function

However, with the 110-point data set, the covariance matrix C became extremely ill-
conditioned, and the inverse covariance matrix C-1 needed for the prediction calculations 
could not be generated (the ratio of largest and smallest eigenvalues in the covariance 
matrix was 1016!)  Normalization of the output is also critical:  one has to subtract the 
mean and divide by the standard deviation of the original output data to obtain 
normalized values for use in the GP model.   Figures 2 and 3 show the two GPs against 
one of the input dimensions.  Note that there are no error bounds in Figure 3, because of 
the inability to invert the covariance matrix.  Note that this behavior intuitively seems 
wrong:  more data should always be better in terms of creating a response model or 
performing prediction.  But in GP models, if points are close together in the input space, 
the resulting covariance matrix can have rows that are nearly linearly dependent, and the 
inversion falls apart.  There are methods to address this (e.g., singular value 
decomposition), but our experience stands as a caution.  
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Figure 2.  GP Model based on 11 data pts.    Figure 3.  GP Model based on 110 data pts. 

The next step is to add “noise” to the Rosenbrock function and perform the same type of 
GP emulation as shown above, but with the full KOH equation (3) including a model 
emulator GP and a model discrepancy GP.  Thus far, we have found that it is difficult to 
separate the model discrepancy and the observational error term, ei, unless one has very 
good information about measurement error in their system.  Also, the framework posed 
by KOH requires that the user have reasonably good prior estimates for both the model 
emulator and the model discrepancy GP.  In practice, this is not always the case.  Finally, 
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there is a software implementation issue.  Most public domain software (e.g., Netlab, 
FBM), allow one to create a GP and update the hyperparameters governing the GP, 
usually with a MCMC method.  However, the ability to perform simultaneous updating 
on two GP models coupled by equation (3) is not generally available.  From a software 
perspective, any automated approach would try and take the two GPs, sum their mean 
and variance terms to consolidate the updating down to one GP model which defeats our 
goal of having separate parameter estimates for each.    
 
The calculation of the joint pdf (4) requires careful consideration in terms of what 
assumptions to make to simplify the calculation.   The MCMC methods which are 
commonly used for these types of problems require the user to have a fair amount of 
statistical knowledge about the form of the posterior (in terms of a “proposal distribution” 
used to generate the Markov chain), certainly in order to make evaluation more efficient.   
MCMC methods require a lot of tuning parameters, such as step sizes and leaping 
parameters, and it is not trivial to tune the MCMC to obtain a recommended acceptance 
rate of 25%, for example.  Finally, testing convergence of MCMC methods is difficult.  
There are some convergence diagnostics available [Gilks, Richardson and Spiegelhalter, 
1996] but they test if the chain has “settled” out and do not really test if the Markov chain 
has converged to the “true” underlying posterior distribution.   We have tested cases 
where two different chains produced substantially different posterior distributions. It 
appears to us that tuning MCMC performance and improving convergence diagnostics is 
a research question of interest. 
 
Conclusions 
 
Overall, our conclusions to date from this work in progress are the following:  Gaussian 
process models are powerful emulators.   Implementing them requires some knowledge 
about the data set used and what data will have to be discarded to make the covariance 
matrix well-conditioned; or additional formulations are needed that are robust to poor 
covariance conditioning.   KOH’s formulation of “observation = model + discrepancy + 
error” is very important because it explicitly separates the model discrepancy term from 
the model itself.  The Gaussian process assumption of the model discrepancy needs 
further examination, but in general, GP models are extremely flexible at representing a 
wide variety of functional relationships.  The additional assumption that these GP models 
are governed by parameters that can be updated using Bayesian methods adds a great deal 
of computational complexity to the picture.  The formulation of the joint posterior is 
difficult.  Even if one does not try for analytic solutions but uses MCMC methods, there 
are many issues to resolve around numerical performance, such as convergence of the 
MCMC to the correct underlying posterior and determination of tuning parameters, etc. 
 
At this point, we see some interesting paths for further investigation.  One is using 
KOH’s formulation expressed in (3) but calculating the parameters by Maximum 
Likelihood Estimation (MLE) methods instead of Bayesian updating.  Dennis Cox has 
pursued this approach [Cox et al.] and it removes the difficulties associated with posterior 
generation (such as via MCMC). Another is to look at the first term in equation (3), the 
model emulation term, and replace it with another type of surrogate, perhaps a lower 
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fidelity or reduced order model.  This has the advantage of “simplifying” the estimation 
in that one is solely focused on calculating the parameters for the GP model, but it may 
introduce limitations in terms of the capability to predict.  
  
We wish to emphasize the difference between calibration and validation. Calibration of a 
computational model is adjusting a set of model parameters associated so that we 
maximize the model agreement with a set of experimental data (or, in certain cases, a set 
of numerical benchmarks). Validation of a computational model is quantifying our belief 
in the predictive capability of a computational model through comparison with a set of 
experimental data. Uncertainty in both the data and the model is critical and must be 
mathematically understood to do both calibration and validation correctly.  
 
CUU is therefore a progression of thought that leads to an overlap of the concepts of 
calibration and validation. For example, the formalism discussed above of incorporating 
model uncertainty in Bayesian calibration procedures through the model discrepancy 
term δ(x) in equation (3) is directly relevant to validation. In validation, we seek to 
quantify the discrepancy term by comparisons with experiments. From the validation 
perspective, it is natural to expect that δ(x) is a random process of some type [Trucano et 
al., 2001]. The Gaussian process characterization of the model discrepancy discussed 
above seems to us to be useful in this context as well as in the CUU task.  The task of 
validation should provide information that helps define specific parameterizations of the 
model discrepancy and should facilitate the process of calibrating this term. 
 
We believe that predictability of a computational model centers on a specification of 
intrinsic limitations of the model as well as on our ability to predict model accuracy for 
specific applications (for example, as formalized in equation (2) above). Directly 
attacking the problem of characterization of the model discrepancy formalized above in 
δ(x) really strikes at the need to quantify model uncertainty in a foundational way that is 
to some extent independent of the calibration problem of attempting to reduce this 
uncertainty. A rigorous validation process should achieve the goal of characterizing δ(x). 
CUU provides the proper formalism, at least in principle, for using this characterization 
to improve model accuracy. Thus, we see CUU as an important formalism for linking 
calibration and validation for quantitative improvement of the predictive content of 
computational models. Our future work on CUU will elaborate this view more 
systematically. 
 
References 
Campbell, K. (2002), “Exploring Bayesian Model Calibration:  A Guide to Intuition.”  
Los Alamos Technical Report LA-UR-02-7175.  
 
Cox, D.D.,  J-S. Park, and C. E. Singer (2001),  “A statistical method for tuning a 
computer code to a data base.” Computational Statistics and Data Analysis 37, pp. 77-92.  
 
Cressie, N. A. C. (1993), Statistics for Spatial Data, Wiley, New York. 
 

Swiler, L. P. and T. G. Trucano                                                                                          7 



 
 
 
 
Probabilistic Mechanics Conference, Albuquerque, New Mexico, July, 2004   
SAND2004-2317C                                                                               
Gammerman, D. (1997), Markov Chain Monte Carlo: Stochastic Simulation for Bayesian 
Inference, Chapman and Hall/CRC, Boca Raton. 
 
Gelman, A. J. B. Carlin, H. S. Stern and D. B. Rubin (1995), Bayesian Data Analysis, 
Chapman and Hall/CRC, Boca Raton. 
 
Gilks, W.R., S. Richardson, and D.J. Spiegelhalter (1996).  Markov Chain Monte Carlo 
in Practice.  Chapman and Hall/CRC, Boca Raton.   
 
Kennedy, M. C. and A. O’Hagan (2001),  “Bayesian Calibration of Computer Models.”  
Journal of the Royal Statistical Society, 63, pp. 425-464.   
 
Press, S. J. (2003), Subjective and Objective Bayesian Statistics: Principles, Methods and 
Applications, Wiley, New York. 
 
Neal, Radford (1997).  Monte Carlo Implementation of Gaussian Process Models for 
Bayesian Regression and Classification.  University of Toronto Technical Report No. 
9702, Dept. of Statistics.  
 
Neal, Radford.  Flexible Bayesian Software documentation: 
http://www.cs.toronto.edu/~radford/fbm.software.html
 
Nabney, Ian.  Netlab software.  Documentation and software at: 
www.ncrg.aston.ac.uk/netlab/
 
Trucano, T. G., R. G. Easterling, K. J. Dowding, T. L. Paez, A. Urbina, V. J. Romero, B. 
M. Rutherford, and R. G. Hills (2001), “Description of the Sandia Validation Metrics 
Project,” Sandia National Laboratories, SAND2001-1339, Albuquerque, NM. 
 
Williams, Chris (2002).  “Gaussian Processes”  chapter in The Handbook of Brain Theory 
and Neural Networks, M. Arbib, ed. Cambridge, MA:  MIT Press. 
 
 

Swiler, L. P. and T. G. Trucano                                                                                          8 

http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.ncrg.aston.ac.uk/netlab/

	Kennedy and O’Hagan formulation
	Implementation Issues
	Conclusions


