
#421

Adagio: non-linear quasi-static structural response using
the SIERRA framework

John A. Mitchell Ł, Arne S. Gullerud, William M. Scherzinger,
Richard Koteras, Vicki L. Porter

Sandia National Laboratory, P.O. Box 5800, MS 0847, Albuquerque, NM 87185, USA

Abstract

Adagio is a quasistatic nonlinear finite element program for use in analyzing the deformation of solids. It is massively
parallel, built upon the SIERRA finite element framework [1], and employs the ACME library [2] for contact search
algorithms.The mechanics and algorithms in Adagio closely follow those previously developed in JAC2D by Biffle and
Blanford [3] as well as JAS3D by Blanford et al. [4]. Adagio assumes a quasistatic theory in which material point velocities
are retained but time rates of velocities are neglected. Sources of nonlinearities include nonlinear stress–strain relations,
large displacements, large rotations, large strains, and frictional=frictionless contact mechanics. Quasistatic equilibrium
is found using a nonlinear solution strategy which includes nonlinear conjugate gradients. This paper briefly describes
quasistatic equilibrium, kinematics of deformation, stress updates and the nonlinear solution strategy used in Adagio.
In addition, we briefly describe how Adagio is implemented within the SIERRA architecture. Finally, we demonstrate
Adagio’s massively parallel capabilities on an example problem.

Keywords: Nonlinear solid mechanics; Quasistatics; Conjugate gradients; Object oriented

1. Quasistatic equilibrium

Quasistatic equilibrium in Adagio is based upon the
principle of virtual work in a rate form. We start by writing
down a nonlinear functional representing the power input
to the body in the current configuration. By taking the first
variation of the power input, and integrating by parts, we
arrive at the weak form:Z

Ω

ST : Ž P" dV �
Z

Ω

² Eb Ð ŽEv dV �
Z

@Ω

Et Ð ŽEv dA D 0 (1)

where Ω corresponds to the volume of the body in the
current configuration, @Ω is the boundary of the body in
the current configuration,ST is the Cauchy stress tensor, Ev is
the material point velocity, Ž P" is the symmetric part of the
virtual velocity gradient, Et is an applied surface traction, ²

is mass density, and Eb is a body force vector. The extent
to which Eq. (1) is not satisfied is a measure of the force
imbalance and lack of quasistatic equilibrium. This force

Ł Corresponding author. Tel.: C1 (505) 844-3435; Fax: C1 (505)
844-9297; E-mail: jamitch@sandia.gov

imbalance is called the residual and quasistatic equilibrium
is defined according to how close the residual is to zero.

Adagio solves for quasistatic equilibrium over a set of
time increments ∆t D tnC1 � tn defined by a sequence
of times tn n D 0; 1; 2; : : : . A force imbalance occurs
at tnC1 due to loads, temperatures, or kinematic bound-
ary conditions that are parameterized by time. Quasistatic
equilibrium is assumed to exist at tn . The solver searches
for a suitable equilibrium configuration at tnC1 through a
sequence of trial velocities that give rise to ever decreasing
residuals (force imbalance). Equilibrium is satisfied when
the force imbalance reaches a user specified tolerance for
convergence.

2. Updated Lagrangian

The solver finds velocity vectors EvnC1 for a load step
at discrete times tnC1 by solving the nonlinear problem

 2001 Published by Elsevier Science Ltd. All rights reserved.

CICERO/GALAYAA B.V./MIT421: pp. 1-4



2 J.A. Mitchell et al. / First MIT Conference on Computational Fluid and Solid Mechanics

un
un 1+

X Yn

Yn 1+

δ ∆tv= n 1+

e3
ˆ

e2
ˆ

e1
ˆ

Fig. 1. Updated Lagrangian schematic.

implied by the weak form (1). The current position EynC1 of
material points is updated via the formula:

EynC1 D EX C Eun C ∆t EvnC1 (2)

where EX are the material coordinates at t D 0, Eun is
the total displacement at the last converged step tn , and
∆t D tnC1 � tn is the time step size taken for the load step.
This updated Lagrangian approach is depicted in Fig. 1.

3. Kinematics of deformation

In order to manage a variety of constitutive models
as well as large rotations in conjunction with objective
stress rates, we calculate a total deformation gradient
F D @ EynC1=@ EX and an incremental deformation gradi-
ent OF D @ EynC1=@ Eyn . However, we usually work with the
inverse deformation gradients F�1 D I � .@ EunC1=@ EynC1/

for purposes of computational efficiency since we need
to evaluate the internal force vector that requires gradient
and divergence operations in the current configuration (see
Eq. (1)). Using the polar decomposition theorem on the
deformation gradients, we calculate rates of strain, total
stretches, and rotation operators. The polar decomposi-
tion on the deformation gradients is defined as F D RU
and for the inverse deformation gradients it is defined as
F�1 D Rt V �1, where R is an orthogonal rotation operator,
and U and V are the corresponding stretch tensors. The in-
cremental deformation gradients are similarly decomposed
and are used for purposes of calculating rates of strain
at material points for hypoelastic material models. Total
deformation gradients are used for managing tensors in
unrotated and rotated configurations as shown in Fig. 2 as
well as in hyperelastic constitutive models which require a
measure of the total strain.

Bo

BU

B

BV

U

R

R

V

F

Fig. 2. Kinematics of the deformation.

4. Stress rate and hypoelastic stress updates

Most material models in Adagio are hypoelastic so that
stress rates are integrated forward in time over the time step
∆t D tnC1 � tn to find the stress at tnC1. In order to develop
this methodology, we first define an unrotated cauchy stress
(configuration BU ) ¦ D Rt ST R. The unrotated cauchy stress
rate which is analogous to the Green–Naghdi stress rate is
objective and defined abstractly by P¦ D f .∆t; d; ¦ /, where
f .d; ¦ / represents the incremental form of the constitutive
model specifics. The Green–Naghdi stress rate is defined
as:

O¦ D R P¦ Rt D PST � ΩST C ΩST (3)

where Ω D PRRt , and T is the cauchy stress tensor. Our al-
gorithm for updating stresses is given as: (1) compute strain
rate D D � 1

∆t ln OV �1; (2) de-rotate strain rate using d D
Rt DR; (3) integrate constitutive model P¦ D f .∆t; d; ¦ / to
find ¦ ; (4) rotate ¦ to current configuration ¦ D Rt ST R.
Note that OV �1 is the incremental left stress tensor.

5. Solution strategy: nonlinear PCG

The primary method for finding quasistatic equilibrium
in Adagio is the preconditioned conjugate gradient method
(PCG) [5]. The solver is configured in an object oriented
way and consists of the following abstract plugins: pre-
conditioner, line search, and residual operator. Just prior to
running the solver for each loadstep, a loadstep predictor
is invoked. The predictor runs a line search with the veloc-
ity vector from the last converged loadstep as the search
direction.

5.1. Preconditioning

The process of solving a loadstep with PCG is an incre-
mental solution strategy and is conceptually very similar to

CICERO/GALAYAA B.V./MIT421: pp. 1-4



J.A. Mitchell et al. / First MIT Conference on Computational Fluid and Solid Mechanics 3

Newton–Raphson. We construct a preconditioner B that is
an approximation to Kt

�1 (inverse of tangent stiffness). In
addition, the solver requires that the output of the precondi-
tioner satisfy the homogeneous form of kinematic boundary
conditions as well as contact constraints. Currently, Adagio
has a nodal preconditioner which consists of a three-by-
three block diagonal stiffness for each node in the mesh.
These stiffnesses may be computed by probe or through an
analytical formula.

5.2. Line search

Both the PCG solver and the predictor in Adagio use a
line search object as a plugin. The PCG algorithm assumes
that the line search produces a new velocity such that
the resulting residual will be orthogonal to the current
search direction. This corresponds to an exact line search.
However, this is usually a multi-step process and can be
expensive. Adagio currently performs an inexact line search
by using one step of a secant line search algorithm. This
line search is used in both the predictor and solver.

5.3. Residual operator

Quasistatic equilibrium is fundamentally based upon the
residual=force imbalance. The PCG solver, predictor and
line search objects in Adagio all use residual operators.
In Adagio, the residual operator is responsible for manag-
ing geometry, external forces, internal forces and reaction
forces on surfaces where kinematic boundary conditions
are applied.

Elements

Agio_Procedure
initialize();
execute();

Agio_Region
initialize();
compute_timestep_size();
execute();

Agio_KinBC
apply_kinematics();
adjust_residual();
adjust_gradient_direction();
extract_reactions();

Agio_NonlinearPCG
update_preconditioner();
solve();

Agio_LineSearch
compute_alpha();

Agio_Fe_Operator
compute_residual();

Agio_Pc
compute_pc_stiffness();
action();

Agio_Predict
predict();

Agio_Fe_Operator
compute_residual();

Agio_LineSearch
compute_alpha();

Agio_SecantLineSearch
compute_alpha();

Agio_Fe_Operator
compute_residual();

Fig. 3. Schematic of Adagio mechanics algorithms.

6. Code architecture

The algorithms in Adagio described above are imple-
mented within the SIERRA framework. SIERRA-based
codes consist of mechanics modules which can be nested
inside each other to provide a rational code hierarchy. Fig. 3
depicts the overall architecture of Adagio. The highest level
of control in Adagio is Agio_Procedure, which manages
time stepping. Nested inside of Agio_Procedure is Agio_
Region, which is responsible for orchestrating all calcula-
tions required for a particular time step. Agio_Region con-
tains a set of mechanics modules that perform individual
algorithms and are dynamically loaded at run time based
upon user input. Fig. 3 shows several examples of these
mechanics. They include: Agio_KinBC, which computes
the effects of boundary conditions; Elements, which con-
ducts element computations; Agio_NonlinearPCG, which
drives the solver; and Agio_Predictor, which provides a
predicted first guess for the solver. The nesting continues
within the solver and the predictor. Any of the mechanics
shown in Fig. 3 can be replaced by a different mechanics
module as long as it conforms to the minimal interface as
shown.

The runtime behavior of Adagio is closely tied to the
construction, scoping, and registration of algorithms on
mechanics modules. The concept of scope in SIERRA is
somewhat analogous to that of CCC. For example, in
Fig. 3 Agio_Fe_Operator exists in two locations: Agio_
LineSearch and Agio_NonlinearPCG. These two operators
are at different scope and may have totally different imple-
mentations. Mechanics algorithms in SIERRA are invoked
via a constant interface and algorithms run according to
whether they are in the current scope. For example, dur-

CICERO/GALAYAA B.V./MIT421: pp. 1-4



4 J.A. Mitchell et al. / First MIT Conference on Computational Fluid and Solid Mechanics

ing the solution process, Agio_NonlinearPCG invokes the
algorithm “compute_residual” once per iteration. Any me-
chanics nested within Agio_NonlinearPCG which has the
algorithm “compute_residual” will have its algorithm exe-
cuted — in this case, only Agio_Fe_Operator has an algo-
rithm that will be executed. The Agio_Fe_Operator within
Agio_LineSearch will not get executed. Furthermore, if
no Agio_Fe_Operator was registered inside Agio_Non-
linearPCG, then nothing would happen when “compute_
residual” is called. These mechanisms provide significant
power for Adagio to connect modules with similar but not
identical behavior, and to create a logical code structure
where functionality can be selected easily.

References

[1] Edwards C, Stewart JR. SIERRA: A software environment
for developing complex multi-physics applications. In: Bathe

KJ, First MIT Conference on Computational Fluid and Solid
Mechanics, 2001. Amsterdam: Elsevier Science.

[2] Brown KH, Glass MW, Gullerud AS, Heinstein MW, Jones
RE, Summers RM. ACME: A parallel library of algorithms
for contact in a multi-physics environment. In: Bathe KJ,
First MIT Conference on Computational Fluid and Solid
Mechanics, 2001. Amsterdam: Elsevier Science.

[3] Biffle JH, Blanford ML. JAC2D: A two-dimensional finite
element computer program for the nonlinear quasi-static re-
sponse of solids with the conjugate gradient method. Sandia
National Laboratories, Albuquerque, NM. SAND93-1891,
1994.

[4] Blanford ML, Heinstein M, Key SW. JAS3D: A multi-
strategy iterative code for solid mechanics analysis. Users’
Instructions, Release 1.6. Sandia National Laboratories, Al-
buquerque, NM. To be published as a SAND report, 2000.

[5] Shewchuk JR. An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain. School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, 1994.
Edition 1.25.

CICERO/GALAYAA B.V./MIT421: pp. 1-4


