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Introduction and Motivation %/’7

« Estimation of the probability of failure (POF) to meet critical
safety or performance constraints, requirements, or goals is
Important in:

— Engineering design and safety analysis

— Business, finance, economics

— Environmental management and regulation
— etc.

 We examine the performance of several established and new
methods for estimating low probabilities of failure, a difficult and
computationally expensive task to do accurately on general

problems.
— The focus here is representative 2D - 9D engineering problems,
102 to 10 failure probabilities, and < 1000 model runs

« Evaluation criteria:
— performance in terms of cost, accuracy, robustness @
— ease of implementation and use for engineering practice
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Example 2D Failure Probability Problem
with Constant Failure-Level
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Integral of the joint Probability
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random variable inputs over
the failure region of the input
space is the failure probability.



Example 2D Failure Probability Problems
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Example 2D Failure Probability Problems @Sandia
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Classical reliability
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(non-monotonic
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Figure 2.1 2-D Lattice Sampling Levels and associated discretization of the parameter space.
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Failure Probability Methods being
evaluated for these more difficult POF @ﬁ:ﬁﬂﬁm
problems
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 Method 1: Monte Carlo Sampling (non-adaptive)

» Method 2: POF Darts — new adaptive Sandia approach based on .-
compu. geom. methods (Mohamed Ebeida, S. Mitchell, L. Swiler) @

P
W e

- Method 3: EGRA — Efficient Global Reliability Analysis, based on 3!
gaussian-process response surfaces and adaptive sampling
(Barron Bichon, S. Mahadevan et al., Dakota implementation)

* Method 4: Gaussian Processes built on Latin Hypercube
Sampling points (non-adaptive, DAKOTA implementation)

 These methods all have an element of Stochasticity
in their performance
-> must characterize performance variation over multiple trials



POF Darts )i
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Based on ideas from computational geometry.

We employ random disk-packing (e.g. iteratively throwing
darts to obtain the centers of the disks) in the uncertain
parameter space.

POF-Darts subdivides the uncertain space into three regions:
— Failure (covered by red disks)
— Non-failure (covered by green disks)
— Unexplored (uncovered)

We always sample points from the unexplored region.

The function evaluation at that point determines whether it belongs to failure or non-
failure.

An estimate of the Lipschitz continuity of the function (approximated by the local
maximum gradient) is utilized to construct a sphere centered around that point and
which lies entirely in the same region as its center.

As we proceed with this sampling procedure, the unexplored regions shrink and the
accuracy of our estimate improves.

After exhausting our function evaluation budget, we build a surrogate based on the
sample points and estimate the probability of failure by exhaustive sampling of that
surrogate.




POF-Darts () i

SAMPLING PHASE SURROGATE PHASE
| |
L] . |
Dart Throwing Radius Estimation | | Surrogate | Probability of |
((Limited Budget)) » Local Lipschitz Continuity | | Construction Failure Estimation |
| |
|

k-d Darts Spoke Darts Global/Local Exhaustive MC



POF-Darts

100 Samples and 500 Samples and _ _ X,
associated disks associated disks 5000 POF Sample Points

* These left and center graphic show the Herbie test problem with four failure
regions. The exact failure isocontours are in blue and the estimated ones are in

red. These overlay in these plots, indicating accurate estimation of probability of
failure.

* Theright graphic shows only the points, at 5000 samples points, demonstrating
that the samples tend to focus around the boundary of the failure region.



Test Problem 1
2D Herbie test function

« 2 Uniform PDF input uncertainties
» Pfail = 1.506E-2

Vel
7

[/

i
‘l 0z
N

:
4

—— 3E6LHS = 1.5057E-2
# EGRA - seed A
¥EGRA — seed B

EGRA - seed C
*FPOFD - seed A
#POFD -seed B

POFD - seed C
B GP -seed A
H GP -seed B

GP -seed C
O LHS —seed A
OLHS —-seed B

LHS - seed C

10

log probability

€A

-k
=]

L

el o
1000 10000

log # of samples

P
100

\
X

7
0:;
(
s

L -
“\\““. - -
AR OOV - o
ARt N
“,ﬁﬂ{\‘ﬁ\*e& I

IR
3’,’0“&\\\\\\\\\6

]
XFor this problem:

* POFD-GP & LHS-GP
are not reliable with 25
sims. (very high
variability with seeds,
& large average error).

 EGRA “converged”

after 55 sims. for all

seeds (A, B, C),

exhibiting significant

seed dependence of
individual results, but
small average error.

LHS-GP with 55 sims.

performed almost as

well, having slightly
worse variability &
avg. error than EGRA.

POFED-GP w/55 sims.

performed next best;

lowest variability but
highest avg. error

(though not large).




Test Problem 1
2D Herbie test function

« 2 Uniform PDF input uncertainties
« Pfail = 1.506E-2
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For this problem:

 POED-GP and LHS-
GP both improve in
variance & avg. error
at 100 sims. (with GPs
still having somewhat
smaller avg. error than
POFD). Both improve
to negligible variance &
avg. error for 2 200
sims.

e LHS shows non-
negligible variance &
avg. error for point
estimates with 500,
1000 samples but
confidence intervals
are reliable for N > 500
(N*p = 5).



Test Problem 2

2D Herbie test function
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Test Problem 2

2D Herbie test function
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* LHS shows non-
negligible variance &
avg. error for point
estimates with 50K,
100K samples but
confidence intervals
are reasonably
reliable for
N = 50K (this equates
to N*p = 5).



Test Problem 3

2D Vibration Absorber Problem

(4. 5,)=

A A T A T G T ol RN I
1-R|— | —|—| - + 442
B ) \B) \B) BB, & BB

The random variables of the problem are 5, and £, and they follow normal distribution with mean value of 1
and standard deviation of 0.025. R and ¢ are deterministic parameters that possess the following values R=0.01,
£=0.01. The normalized amplitude of the original system is plotted in Figure 3-b. The value of v, in Eq. (6) is
adjusted to obtain various values of reliability indices as listed in Table 1.

m, 6, Absorber
K2
y L M, o, Original
system

F:cos(mf)l r—_||j| % ¢k,

A R N L

Figure 3-a. Tuned vibration absorber Figure 3-b. The normalized amplitude of the
vibration absorber .
Sandia
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Test Problem 3

2D Vibration Amplitude problem .

« 2 Uniform PDF input uncertainties
« Pfail = 1.945E-2
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For this problem:

 EGRA “converged”
after 55 sims. with all
seeds A, B, C, giving
reasonable precision
and accuracy—better
than GPs and POFD
at 55 sims.

e LHS-GPs are more

accurate on average
& more precise than
POFD at 55 and 100
sims.

POFED-GP improves to
be very accurate and
precise at 200, 500,
1000 sims., better
than GPs.

* POFD-GP and LHS-

GPs are not reliable
with 25 sims. (large
ava. error)



Test Problem 3 o
2D Vibration Amplitude problem -

« 2 Uniform PDF input uncertainties
» Pfail = 1.945E-2

» For this problem:

1D r v ' ' LI | ¥ ¥ ¥ LI LI | ¥ v ' LA |
—— 3E6 LHS =1.945E-2 » LHS is very inaccurate
T :Egﬁ :;3‘; with 500 sims. (0.0
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oy . ‘,' 3: | 4 POFD - seed A 0.0 confidence
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> *% - ap oseeat A, B, C), but for 1000
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g : OLHS - seed A and precision of point
o o e e estimates and reliable
~ 10 - E - conf. intervals.
i ] (N*p = 20)
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Test Problem 4

5D Circuit problem

* 5 Uniform PDF input uncertainties
» Pfail = 1E-4

cartoon figure of
a generic circuit
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For this problem:
 EGRA converged w/ 31

sims., is most accurate
and precise over seeds
A, B, C.

POED-GP w/ 31 sims.
gives almost as good
results as EGRA for
seeds A, B and C (plot
at left is outdated).
POFD-GP retains high
accuracy-cost
effectiveness through
1000 samples, see
accuracy cost slide
later.



Test Problem 4 j&ﬂt Il

5D Circuit problem peT L 4Rl
« 5 Uniform PDF input uncertainties cartoon figure of e

e Pfail = 1E-4 a generic circuit

For this problem:
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Test Problem 5
8D |-Beam problem | :

* 5 Uniform PDF input uncertainties
« Pfail = 1E-2
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For this problem:

* EGRA converged w/ 3-

seed average of 105
sims., is fairly accurate
but LHS-GP and POFD-
GP w/100 sims. are
both more accurate.

POFD-GP and LHS-GP
at 25 and 50 samples
have better accuracy
cost performance than
EGRA. LHS-GP retains
better performance out
to 500 samples. POFD-
GP retains better
performance out to
1000 samples.

LHS gives accurate
point estimates and
fairly small confidence
intervals for seeds A, B,
C with 102 sims. This
equates to N*p = 10.



Test Problem 6

8D |I-Beam problem

* 5 Uniform PDF input uncertainties
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» Pfail = 1E-4
For this problem:
| | | | * EGRA converged w/ 3-
seed average of 70
i il sims., less than for 1le-2
' e version of 8D problem.
I S 1 IS . o — EGRA is signif. more
-4
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o - % EGRA -seed C perform fairly similarly
S 10°1 ¢ & POFDgp - seed A out to 1000 samples
S - ¢ POFDgp - seed B and never achieve
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B GP-seed A performance than
B GP-seedB EGRA.
W GP-seedC = 3 _
© LHS-seed A * LHS does not achieve
10'% & © LHS-seed B reasonably accurate
| | @ LHS-seedC ! point estimates and
10 100 1000 10(')00 100000 small confidence

log # of samples

intervals for seeds A, B,
C until10° sims. This
equates to N*p = 10.
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Test Problem 7
9D Steel Column Failure problem
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* 9 Uniform PDF input uncertainties Laboratories
» Pfail = 1E-3
For this problem:
S o o o )  POFD-GP and LHS-
wgﬁ" ' T 1 GP. performed
' + : comparably, achieving
------------ 95% C| upper limit
3B LHS - 1.035E-3 reasonable accuracy
L ——- 95% CI lower limit and precision with as
ﬁf | ¥ EGRA — seed A little as 25 samples—
‘ % EGRA - seed B o dicati
N | © EGRA - seed C |nd|c§1t|ng that the
" q © POED - seed A function is probably
| & & : .
...................... R S —— SR e s BT - only mildly nonlinear
555 - - "I‘"ﬁ*%“*‘ ““““““ 7 *EgFD :deidﬂ over the UQ space.
L | | -5
«?a | WGP - seed B BOth methqu
= GP - seed C achieved high
0 LHS - seed A accuracy and precision
I A OLHS - seed B for = 50 sims.

S - | olHS-seadC + EGRA req'd. 142, 114,
o - ! 108 sims. to converge
- for seeds A, B, C

K, 7 respectively, giving
$ B T T oo " J0000 ) high accuracy and
9@" log # of samples precision even with the
© highly varying # of
samples to

convergence.
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9D Steel Column Failure problem

* 9 Uniform PDF input uncertainties
 Pfail = 1E-3
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For this problem:

» LHS requires

2 orders of
magnitude more
sims. for a
reasonable
expectation of
reliable 95% conf.
intvls., per rule of
thumb N*p = 10.



Method Performance Metrics @Sandia
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» Cost-Scaled Average Error over multiple trials

— Multiply each result’s |%error| by # of samples
* this accuracy-cost measure accounts for # samples

— If # of samples is doubled and the error drops commensurately by a
factor of 2, then the results have the same cost-scaled error score

— If same error occurs at N1=10 samples and N2=20 samples, the 20-
sample result is Y2 as cost-efficient, has a 2X cost-scaled error score

— Allows comparing accuracy-cost performance for slightly different #s
of samples Ni, and combining/averaging performance over multiple
sample numbers, e.g. a range Ni = 25, 50, 100, 200, 500, 1000

— Also average over 3 stochastic realizations for each mthd. at each Ni.

» Cost-Scaled Average Error with 10X penalty on under-prediction

— Under-predicting a failure probability by a given error magnitude |e| is treated
as far worse than over-predicting failure probability by the same magnitude

— For these methods and tests, penalized scores correlate highly with non-
penalized scores; show only non-penalized rankings here.



Seed-Averaged Cost-Scaled |% error|

Seed-Averaged Cost-Scaled |% error|

Cost-Scaled Error Results
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EGRA converges with less than 150 samples
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Method Performance Rankings (not incl. EGRA)

for each problem average over @ S
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Performance Rank, 1 £ best

Method Performance Rankings
at ~same # samples EGRA took to converge @ Sandia
(averaged over 3 realizations from each mthd.)

Laboratories

EGRA
avg.rank =1.6




Summary Observations, Discussion, and @San_dia
Recommendations National

Laboratories

« Among the non-EGRA methods, POFDgp usually performed best,
followed by non-adaptive LHS-GP, then by adaptive POFD-vps.

« Comparing these methods to EGRA at the ~same #samples
EGRA required to converge, EGRA was most accurate in 4 of the
7 problems, POFD-gp in 2/7, and LHS-GP in 1/7. But in 4 of the 7
problems, other methods had better results with less samples
than EGRA—3 times for POFD-gp and twice for LHS-GP.

« EGRA converged with ~ 30 — 142 samples (loosely correlated with
problem dimension but not with Pfail magnitude!)

« EGRA convergence was often sooner than might be desired,
more accuracy could often be obtained with the other methods at
the cost of more samples. Often the additional sampling cost was
more than justified by the amount of accuracy improvement,
showing a better cost-accuracy effectiveness per-sample than
EGRA. EGRA has the best accuracy cost in only 2 of the 7
problems.



Summary Observations, Discussion, and Sendi
Recommendations @ laoraores

* Overall, EGRA and POFD-GP were the best performers here, with
neither clearly better than the other.

* This brings to light the promising potential of the new POFD-GP

method, which has only been under development for a few years,
many less than EGRA.



Summary Observations , Discussion, and -
Recommendations @ Lanoraore

« All the methods exhibited significant stochastic variability of
cost-accuracy performance and the majority of results from all
methods under-predict the true failure probability.

» Robust Error Estimation needs to be developed for the non-MC
methods.

— Perhaps can use variance from multiple realizations to base
error estimates on.

— This will increase their cost significantly, but they will likely
still have significant accuracy-cost advantage vs. Monte Carlo
methods.



Summary Observations, Discussion, and -
Recommendations @ lsboatne

 LHS-GP is a non-adaptive method and still did relatively well
here.

* This indicates that when multiple failure probabilities are to be
estimated to prescribed accuracies when multiple output
guantities are involved like pressure and temperature, and/or
multiple response threshold levels are to be investigated, then
LHS-GP would be more cost effective than running an adaptive
method for each of the (multiple) analysis cases.

» Also, EGRA and POF-darts are adaptive, so
— inherently sequential algorithms; little sampling parallelization possible

« The non-adaptive LHS and LHS-GP results can be re-processed
to get other characteristics of response such as mean, standard
deviation, and the full PDF of response.

* Only non-adaptive methods can simultaneously yield other such
characteristics of response.




Summary Observations, Discussion, and -
Recommendations @ lsboatne

 Failure probability estimates from LHS samples alone (without
Interpolation w/GP) were found to be non-competitive in terms of
accuracy cost, but provided reliable confidence-interval error
bands for failure probability magnitudes 102, 103, 10 and
5 < #samples x Pfail = 20.

» Other statistical (non-adaptive) sampling approaches like Halton
and Hammersley Quasi-Monte Carlo (QMC) sequences,
Centroidal Voronoi Tesselation (CVT), and Orthogonal Arrays
(OAs), have been found to often be more efficient than LHS for
statistical estimates of mean, standard deviation, and failure
probabilities.

 may be worth a follow-on study on the test problems here and others
(using standard confidence-interval error band formulas or Cli
estimates from replicated sampling)



Summary Observations, Discussion, and -
Recommendations @ lsboatne

Interpolation Alternatives to GP

« Several studies in the literature suggest that other interpolation
approaches like Radial Basis Functions may perform better than
GPs when applied to a set of randomized sample points like LHS.

— May be worth a follow-on study with variants of the present suite of
test problems and others.

— But GP has a large advantage of providing local and potentially
global error estimation.

Statistical (Non-Adaptive) Sampling Alternatives to LHS

* The literature and past experiences suggest that other non-
adaptive sampling methods besides LHS (such as Halton and
Hammersley QMC, OAs, and CVT in combination with GP or other
Interpolators are sometimes more cost effective than LHS.

— May be worth a follow-on study with variants of the present suite of
test problems and others for a more definitive quantification.



Summary Observations , Discussion, and o
Recommendations () i

Laboratories

 Literature reviews suggest that methods like Polynomial Chaos,
Stochastic Collocation, Compressed Sensing, may perform better
In various situations.

— It would be useful to compare accuracy cost of these other methods
on the present suite of test problems and others.

* Robust Error Estimation with any of these methods would make
them more trustworthy, relevant, and useful like the “old
[expensive] standard” Monte Carlo.



