
SANDIA REPORT

SAND2008-6454
Unlimited Release
Printed October 2008

Bridging Scales from Ab Initio Models to
Predictive Empirical Models for Complex
Materials

W. Michael Brown, Aidan P. Thompson, Jean-Paul Watson, and Peter A.
Schultz

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

 2

Issued by Sandia National Laboratories, operated for the United

States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represent that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

 3

SAND2008-6454
Unlimited Release

Printed October 2008

Bridging Scales from Ab Initio Models to Predictive

Empirical Models for Complex Materials

W. Michael Brown, Aidan P. Thompson, Jean-Paul Watson, and Peter A. Schultz

Discrete Math and Complex Systems (01412)
Multiscale Dynamic Material Modeling (01435)

Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185-1316

Abstract

Multiscale materials simulations that capture and quantify the complex dynamical
and structural phenomena are crucial to many current and future NNSA and DOE
missions. Although simulations are potentially enabled by Tera- and Peta-scale
computers and high performance parallel atomistic simulation codes, the lack of
adequately predictive atomistic empirical models precludes meaningful
simulations for all but a few materials systems. Achieving the goal of using
predictive simulations to augment, or even replace, expensive and time-
consuming experimental studies requires predictive material-specific simplified
empirical models. Herein, we describe the development and validation of the PM-
Dreamer software package that is intended to incorporate sophisticated
mathematical optimization techniques into the formulation and optimization of
robust empirical models. The approach is intended to enable predictive
simulations of materials chosen by mission need, rather than dictated by the
availability of pre-existing models with sufficient accuracy. We demonstrate the
efficacy of the described approach on model systems with atomic configuration
energies calculated using known 2- and 3-body interaction potentials.

 4

 5

CONTENTS

Introduction.. 7
 Evolutionary Optimization.. 8
 Previous Work... 9
 Towards the Automated Discovery of Novel Empirical Models....................................... 10
Methods... 13
 Open BEAGLE.. 13
 Distributed Evolutionary Optimization... 14
 Hybrid Optimization ... 16
 Model Templates... 16
 Fitness Statistics.. 17
 Vectorization ... 18
 Restarting Optimizations .. 19
 Test Cases ... 19
Results ... 21
 Parameter Sets for Optimization .. 21
 Condensed Phase and Vectorization .. 22
 Hierarchical Fair Competition ... 23
 Hybrid Optimization ... 24
 Model Templates... 25
 Correlation and Ordinary Least Squares ... 26
 The Stillinger-Weber Potential ... 27
Summary and Future Work ... 29
References ... 31
Appendix ... 33
 A – Documentation for PM-Dreamer ... 33
 B – PM-Dreamer Performance for Different Parameter Sets .. 51
Distribution... 57

 6

FIGURES

Figure 1. Example of an expression tree used in genetic programming 9
Figure 2. The concept of Hierarchical Fair Competition ... 15
Figure 3. Correlation vs RMSD for 3 potential solutions .. 18
Figure 4. Optimization efficiency for different system sizes and vectorization 22
Figure 5. Optimization efficiency for random, generational, and HFC strategies............... 23
Figure 6. Optimization efficiency for different local search probabilities........................... 24
Figure 7. Optimization efficiency using different model templates 25
Figure 8. Optimization efficiency using the correlation statistic ... 26
Figure 9. Summary of performance for the Lennard-Jones test set 27
 .

TABLES

Table I. Silicon parameters used for Stillinger-Weber potential 20
Table II. Parameters used for evolutionary optimization ...21

 7

Introduction

Multiscale materials simulations that capture and quantify the complex dynamical
and structural phenomena are crucial to many current and future NNSA and DOE
missions including:

• radiation damage in electronic devices (QASPR, ELDRS)
• sensitivity of high explosives
• response of materials to high-strain rate dynamical loading
• bubble formation in tritides (neutron generators)
• aging of mixed actinide nuclear fuel elements
• low-melting salts for solar power
• high-activity fuel-cell catalysts
• beyond-end-of-roadmap nanostructured electronic materials

Although simulations are potentially enabled by Tera- and Peta-scale computers and high
performance parallel atomistic simulation codes such as LAMMPS, the lack of
adequately predictive atomistic empirical models (e.g., interatomic potentials, tight
binding models) precludes meaningful simulations for all but a few materials systems.
Achieving the goal of using predictive simulations to augment, or even replace,
expensive and time-consuming experimental studies requires predictive material-specific
simplified empirical models. Such models must incorporate the necessary physics to
bridge from more fundamental, but prohibitively expensive, ab initio descriptions of
materials to more empirical, yet computationally tractable, models.

For many decades, computational efficiency has been achieved in molecular

physics with the use of coarse-graining approaches that facilitate a classical description of
particle mechanics through dimensionality reduction. While the most common example is
the utilization of single particle representations for atoms, investigation into the use of
spherical and aspherical particles for representing groups of atoms has recently surged
due to the potential for increasing the timescale of nanoparticle, polymer, and
protein/DNA simulations [1, 2]. In order to facilitate simulation of a system of particles,
it is necessary to obtain equations that calculate the potential energy of a system of
particles along with the derivative of the energy with respect to each particle’s position.
These derivatives give the particle forces necessary to describe particle motion, perform
geometry optimization, etc. Although atomistic and other coarse-grained approaches
offer computational efficiency in a straightforward manner, they introduce a fundamental
problem: How do we determine the equations for modeling the instantaneous energy of
an arbitrary configuration of particles?

Traditionally, these equations have been modeled by physicists using a

combination of chemical intuition and manual fitting. This approach suffers from two
important limitations. First, the models are limited by the observations and time of an
individual physicist. Therefore, it is unlikely that these models are optimal in terms of
accuracy and transferability to general problems of interest. Second, due to the
approximations required for an efficient classical representation of particle mechanics,
we cannot expect that a general model exists that is capable of predicting macroscopic
properties across the spectrum of particle types and phase space of interest to laboratory

 8

missions. Therefore, in order to achieve a cost-effective capability for particle simulation
to support the wide variety of projects important to the success of the laboratory, we
require rapid procedures for obtaining models that capture the relevant physics of a given
problem.

Herein, we describe research methods to incorporate sophisticated mathematical

optimization techniques into the formulation and optimization of robust empirical
models. These methods are intended to enable predictive simulations of materials chosen
by mission need, rather than dictated by the availability of pre-existing models with
sufficient accuracy. We describe the implementation of PM-Dreamer, a software package
that offers a unified approach to domain-specific, population-based global/local hybrid
optimization algorithms for the identification of models yielding consistently low errors
across training data. Finally, we report the validation of PM-Dreamer by obtaining known
functional forms for interparticle potentials from particle configuration data.

Evolutionary Optimization

In classical particle mechanics, the models typically decompose the system
potential energy, e, into a set of independent m-body interactions that are a function of
each particle’s position, r·. For a 2-body or pair potential, it is assumed that the energy
contributions from each pair of interacting particles are independent of other pairs and
therefore,

 .),(
1 1
∑ ∑
= +=

=
n

i

n

ij
jige rr (1)

The force on a given particle is given by the derivative of the energy with respect to that
particles position. For a 2-body potential,

 ().,
1
∑
=

−=
n

j
ji

i
i g

d
d rr
r

f (2)

For a 3-body potential, triplets of atoms are also considered:

 ()∑∑∑∑ ∑
= ≠ >= +=

+=
n

i ij jk
kji

n

i

n

ij
ji hge

11 1
,,),(rrrrr (3)

Therefore, for this work, we considered the objective of developing automated methods
for obtaining g for 2-body potentials, g and h for 3-body potentials, etc. using training
data consisting of particle positions and the corresponding potential energies, e. With this
approach, we can utilize ab initio calculations of the energy of particle configurations to
generate the empirical models necessary for efficient calculation of the potential energy
surface.

 Perhaps the most general approach to symbolic regression of these empirical
models is given by genetic programming. In this approach, evolutionary optimization is

 9

utilized to obtain functional forms that fit training data [3]. In genetic programming, a
mathematical equation is represented by a tree. For example, the function tzxy ++ is
shown in Figure 1. The tree is evaluated recursively from the root node by applying the
operators to each subtree or the constants and variables at the terminal nodes. The search
space for the symbolic regression is defined by the possible operators, the variables
available for the expression, the set of available constants for the expression, and the
maximum depth of the tree. Initially, a random set of individuals (expression trees) is
generated to create a population. A fitness metric, typically the root mean square error, is
then evaluated using the training data for each expression tree. The evolutionary
optimization proceeds by applying operators intended to mimic biological evolution to
create a new generation of individuals. In this process, individuals from the current
population are selected based on their fitness.
For example, a crossover operator can swap
subtrees of two individuals selected to breed
and a mutation operator can alter a single
expression tree by swapping subtrees, deleting
subtrees, changing the operator in a node, etc.
This process continues until the maximum
number of generations has been reached, the
maximum amount of time has passed, or an
equation has been found that calculates the
training data with an error that is below some
threshold value. Genetic programming has been
utilized for problems ranging from the
generation of econometric models to image
compression and was chosen for this work due
to its potential for finding globally optimal
functional forms with little user bias.

Previous Work

The most common method employed for obtaining functional forms that describe
the potential energy surface in terms of atomic or coarse-grained particles involves the
use of analytic fits [4, 5]. In this case, the functional form is “guessed” by physical
intuition and the free parameters are optimized to fit available data [6, 7]. Due to the
difficulty and time required for obtaining functional forms for analytic fits, interpolation
schemes are often employed. In this process, an accurate method such as density-
functional theory (DFT) is utilized to provide a sampling of the potential energy surface
that facilitates calculation of an approximate continuous potential energy surface. Several
methods have been described to accomplish this interpolation including modified
Shepard interpolation [8-10], corrugation-reducing interpolation [11-14], and regression
with neural networks [6, 15, 16]. These approaches can also be considered as having a
fixed functional form defined by the kernel used for interpolation or the neural net.
Despite this limitation, they can typically achieve low-error fits to general training data
due to the increased parameterization of the model. In trade, the functions generated are
typically very large and difficult to interpret. This limitation results in interparticle
potentials that are difficult to implement in simulation codes; in addition to energy
calculation, it is necessary to use these potentials for calculations of forces, tail-

Figure 1. Example of an expression
tree used in genetic programming.

 10

corrections, etc. Identification and correction of numerical problems in the resulting
functions can be difficult. Also, in cases where it is desirable to obtain potentials that are
fit in terms of physical constants or other parameters supplied for the different types of
particles, it is difficult to interpret how these parameters are utilized in the energy
calculation; erroneous terms resulting from overfitting the data are difficult to identify.
An additional problem is that the complicated functions add significant computational
time to the simulation and are not straightforward to optimize for architecture specific
enhancements. In some interpolations approaches, the memory or speed required to
compute the energy is dependent on the size of the training data, introducing inefficiency
for large training sets and high-dimensional potential energy surfaces. Finally, it is
difficult to communicate these models in the scientific literature.

The use of genetic programming (GP) for symbolic regression offers the most

general approach, allowing for optimization of the functional form in addition to model
parameters. This allows for the generation of compact models without a loss of accuracy.
The trade-off is the huge computational effort required for optimization in a search space
consisting of possible functions. The use of genetic programming for obtaining models
for the potential energy surface was first described by Makarov and Metiu [17]. In their
approach, a serial GP implementation was utilized to search for functional forms. In order
to obtain low-error results, however, their approach required the use of directed search. In
this approach, a significant portion of the functional form is supplied to reduce the size of
the search space. Additionally, the authors performed the fitting using the minimum
number of particles required to calculate the energy. This allows for a faster optimization
and can produce potentials suitable for gas-phase simulations; however, it is unlikely that
potentials fit under these conditions would allow for accurate condensed-phase
simulations or general purpose applications.

In recent work, we have shown that a parallel GP implementation can

successfully obtain the correct functional form for potential energy surfaces using
training data sufficient for condensed-phase problems without the use of directed search
[18]. For model problems with known solutions, we were able to routinely obtain the
exact functional form rather than just low-error fits. In our validation, however, we made
use of a relatively simple potential energy function, the search space was limited to
integer constants, and the maximum depth for the expression tree was relatively small.
For many applications, it will be desirable to make use of more complicated functions in
a search space containing more operators and floating-point constants. The addition of
new operators and larger expression trees will result in an exponential growth in the size
of the search space. This alone is problematic in that the validation runs already required
~300 CPU hours each [18].

Towards the Automated Discovery of Novel Empirical Models

For many problems of interest, efficient empirical models do not exist or suffer
from transferability problems. For example, when attempting to model a semiconductor
with a classical approach, simple van der Waals interaction potentials fail are incapable
of stabilizing the diamond-like tetrahedral crystal structure of silicon. This can be
corrected with the addition of terms to favor the tetrahedral bond angles found in the
crystal, as in the Stillinger-Weber potential [19]. When this potential is used, however,

 11

the tetrahedral bias results in inaccurate simulations of amorphous silicon, producing
incorrect surface structures and liquid coordination. The more complicated Tersoff
potential [20] successfully addressed these issues in silicon. However, when the Tersoff
potential was fit to germanium structures, the melting point was severely underestimated
[21]. Despite considerable effort, there is no potential capable of accurately modeling
melting in germanium.

We have demonstrated a proof-of-principle for the automated generation of

compact functional forms necessary for efficient multiscale modeling. In order to find
solutions for the types of problems described above, further work is required. To meet
this need, we developed a new software package – PM-Dreamer. In this project, we
focused on 3 issues important in moving our previous work from proof-of-principal
towards an application ready for relevant problems:

1. Complex Potentials: The software was designed to allow for the

simultaneous optimization of multiple functions involved in 3-body potentials
and to calculate the relevant variables from particle configurations with
periodic boundary conditions and arbitrary cutoffs.

2. Efficiency: A drastic improvement in efficiency is required in order to
successfully obtain complicated potentials such as the Stillinger-Weber in a
search space with larger expression trees, more operators, and floating-point
constants.

3. Overfitting: Due to the complex physics and limited training data available
for many problems, it is important to mitigate the risk of obtaining erroneous
functions that fit only the training points.

 12

 13

Methods

Open BEAGLE

 PM-Dreamer was developed in C++ using the Open BEAGLE library for
evolutionary computation [22]. This library was developed to meet a need for generic
software tools for evolutionary computation that allow for replaceable or modifiable
components in an object-oriented framework [23]. The library complies with the C++
ANSI/ISO 3 standard and is licensed under the GNU GPL. The library is designed using
an object-oriented architecture with smart pointers for automatic memory allocation
management, XML file formats with a built-in parsing facility, parameters and
algorithms that are dynamically configurable by files, and a milestone mechanism for
evolution recovery and results analysis. The library has several replacement strategies for
generation of new populations including generational, steady-state, (mu,lambda), and
mu+lambda. The elitism operator is included offering the option to assert that the best
individual(s) from a given generation will be present in the next generation. The library
supports evolution with multiple populations, multiobjective optimization, population
seeding from files, and complete evolution statistics.

 For genetic programming, Open BEAGLE uses a standard crossover operator
with five mutation operators:

• Standard – Standard GP mutation as defined by Koza [3]
• Swap Node – Swap nodes in the expression tree
• Shrink – Replace a randomly chosen branch with a randomly chosen argument

on the branch
• Swap Subtree – Swap branches in the expression tree
• Ephemeral – Mutate the value of a constant in the expression tree

Three methods can be used for initialization of populations:

• Grow – the initial population consists of expression trees with variable depths
• Full – the initial population consists of expression trees that all have the

maximum depth
• Half-and-Half - An equal number of expression trees are generated using a depth

parameter that ranges between 2 and the maximum specified depth

Selection of individuals for breeding, etc., can be accomplished using several operators:

• Random – Individuals are selected randomly (uniform distribution)
• Roulette – Individuals are selected using a proportional roulette selection

operator
• Tournament – Individuals are selected in a tournament that chooses the best

fitness individual from n randomly chosen individuals
• Parsimony Tournament – Individuals are selected using a lexicographic

parsimony pressure tournament selection based on Luke and Panait.
• NPGA20p – Selection for multiobjective optimization

 14

Finally, Open BEAGLE supports automatically defined functions and operators for
constrained evolution.

 In PM-Dreamer, configuration of the optimization strategy and parameters along
with the operators, variables, and constants that compose the search space are specified
using an Open BEAGLE supported configuration file that is supplied on the command-
line. A full description of the replacement strategies, operators, and parameters for
controlling evolution and output of statistics is given in Appendix A.

Distributed Evolutionary Optimization

Open BEAGLE has been designed as a serial code with limited support for
parallel optimization with multithreaded options only for coevolution. For the domain
presented here, this approach is insufficient given the difficulties that arise due to the
training data and the complicated search space. Therefore, we implemented support for
distributed evolutionary optimization in PM-Dreamer using the Message Passing
Interface (MPI) standard [24]. Most existing strategies for parallel optimization with
genetic algorithms can be classified into 3 categories [25]. In the first, a master-slave
approach is utilized to divide the task of fitness evaluation and/or the application of
operators to the individuals in the population. This approach allows for simple load
balancing for arbitrary optimization parameters. Of course, there is inefficiency in the
method because every individual must be communicated back and forth from the master
process at each generation. Additionally, there are limits to the size of a population for
performing efficient optimization. In fact, after the population grows past a certain size
the optimization efficiency will usually begin to decease. This constraint places severe
limitations on the parallel scaling for many problems.

This difficulty can be addressed with the use of multiple populations that evolve

independently with some migration of individuals between populations. This approach is
generally beneficial for obtaining global minima due to the relatively independent
convergence of multiple populations. While this approach can be used to improve the
parallel efficiency of master-slave algorithms, it offers an alternative strategy – assigning
the multiple populations to different processors. This is the second category and is the
most commonly employed parallel approach for genetic algorithms. In this case, the
communication is decreased to the migration of a typically small fraction of individuals
every specified number of generations. The third category for parallel implementations
also uses multiple populations for evolution, but rather than using migration, the
approaches utilize a static or dynamic set of overlapping individuals that evolve in more
than 1 population.

The probability of obtaining a global minimum can be improved with the use of

multiple populations; however, each population will ultimately converge towards some
solution resulting in stagnation due to the decrease of variability in a population.
Recently, a new evolutionary approach has been proposed to eliminate the premature
convergence towards any one solution in evolutionary optimization. The model, called
Hierarchical Fair Competition (HFC), is designed to facilitate sustainable evolutionary
search by preventing the convergence of a population to the vicinity of any set of optimal

 15

or locally optimal solutions [26]. This is achieved by attempting to ensure a continuous
supply of variable genetic material with a hierarchical structure of populations. In this
hierarchy, individuals compete with other individuals with similar fitness. Once an
individual is obtained with sufficiently high fitness, it moves up the hierarchy to compete
with other high fitness individuals. Population sizes are maintained with the introduction
of random individuals and/or the decimation of poor fitness individuals. The approach is
modeled after advanced social organizations that prevent unfair competition and has been
shown to improve the scalability and efficiency of evolutionary algorithms. Although
HFC has been evaluated using serial codes, the potential for parallel scalability is
obvious.

We implemented two approaches for distributed evolutionary optimization in PM-

Dreamer. In the first, multiple populations are used with migration between populations.
Each process can have single or multiple populations and the population sizes may vary.
The number of individuals and the migration interval can be specified in the
configuration file. Here, a set of n populations is divided between the processors
(currently, n must be a multiple of the number of processes). In Figure 2, we illustrate the
HFC approach using 4 populations. Each population has a rank between 1 and n. Rank 1
always has a fitness threshold of 0 and as the rank increases, so should the fitness
threshold. Initially, all populations are filled with random individuals. As the evolution
proceeds, any individual whose fitness is greater than the threshold for a higher rank
population is migrated to that population. Following migration, any population whose
size has become greater than the specified fixed population size will decimate the least fit
individuals. Any population, whose size is smaller than the fixed size will add randomly
generated individuals. Therefore, the rank 1 population has the lowest average fitness. As
the evolution process generates individuals with fitness exceeding the lowest threshold,

Figure 2. The concept of Hierarchical Fair Competition.

 16

they migrate to higher rank populations and are replenished by an influx of random
individuals. The highest rank population will only accept individuals with high fitness,
decimating the least fit individuals whenever new ones arrive.

When one population is allocated to each processor, the arrows in green represent

the communication topology for distributed HFC. In order to achieve parallel efficiency,
there is a 1-generation lag from the time an individual migrates out of a population on
one process to the time it appears in the new population on another. There are two
approaches for setting the population thresholds in PM-Dreamer. The first uses an
adaptive scheme [27] controlled by a user-specified percentile, p. The fitness threshold
for a population with percentile p is chosen so that p percent of individuals have equal or
lower fitness. In the second, approach, the thresholds are fixed and controlled by
specifying the first threshold along with a scaling parameter that is equal to the ratio
between fitness thresholds with adjacent ranks. Additionally, the user can specify the
interval (in generations) at which HFC migration occurs.

In addition to the distributed optimization strategies, PM-Dreamer extends Open

BEAGLE with operators for distributed statistics calculation and support for parallel
restarts.

Hybrid Optimization

Hybrid optimization, commonly a coupling between global and local search
strategies, is not typically employed in genetic programming. The approach has been
shown to increase the optimization efficiency in genetic programming for civil
engineering problems [28] and is known to be effective when local search strategies are
employed in genetic algorithm optimizations. Intuitively, the addition of local search
operators would seem to improve the convergence towards correct functional forms with
optimization of constants appearing in randomly selected expressions. We therefore
implemented a local search operator into PM-Dreamer. The operator utilizes user-
specified parameters to control the probability of local search, the maximum iterations of
local search, and whether the search optimizes a randomly chosen constant or all
constants in the expression tree. Currently, the local search is performed using the
derivative-free Nelder-Mead simplex algorithm [29]. In this approach, a starting vector
and a step-size are specified to generate the n+1 vertices of a simplex for an n-
dimensional minimization. The simplex moves through the parameter space using a series
of geometric transformations including reflection, reflection followed by expansion,
contraction and multiple contraction towards the minimum.

Model Templates

Function evaluation for particle simulation is complicated by the fact that the
instantaneous energy for a configuration is a function of the positions of all of the
particles in the system. It would be unacceptably inefficient to attempt to formulate a
single function in terms of each individual particle and therefore model templates are
provided in PM-Dreamer. Currently templates are available for 2-body and 3-body
interparticle potentials. For 2-body potentials, the optimization searches for the function g
in equation 1. For 3-body potentials, the functions for g and h in equation 3 are

 17

simultaneously optimized. This is performed using a single expression tree where the left
subtree of the root node represents g and the right subtree represents h. The training data
is supplied as a set of energies, each with a set of particle positions, a cutoff, and an
option for periodic boundary conditions. Details on the formats for input files are
specified in Appendix A. In future versions, it may be desirable to add additional
templates.

Limitations on the amount of training data can create a risk for overfitting in some

cases. It has been shown that overfitting can be reduced by fitting not only the functions,
but also the derivatives of the functions (i.e. forces) [17]. For many ab initio methods, the
atomic forces can be easily calculated along with the energy. Therefore, in addition to the
templates for energy calculation, PM-Dreamer supports templates that evaluate the
particle forces in addition to the system energy, only the particle forces, and only the x-
component of the particle forces. In these cases, forward finite-difference with ε=1·10-8 is
used for force calculation. In cases where both the energy and forces are evaluated, the
total fitness is equal to half of the value for the energy fitness statistic plus half of the
value for the forces fitness statistic. The fitness statistics are described below.

Fitness Statistics

It is traditional in genetic programming to use some form of the root mean square
error (RMSD) for fitness evaluation in symbolic regression. In PM-Dreamer, this is
accomplished using the adaptive RMSD with the fitness given by,

()

,
ˆ

1

2∑
=

−+
= n

i
ii yyn

nF (4)

where y is the value for the energy or a component of the force in the training set
normalized by the number of terms in the summation over g (see for example Equations
1-3). The normalization is used to prevent any one configuration from being more heavily
weighted due to a larger number of computed interactions. ŷ is the value calculated by an
individual, also normalized. In this form, the minimum fitness is 0, the maximum fitness
is 1, and changes in fitness near 1 are more heavily weighted. The RMSD is a natural
choice in that it is an intuitive measure of error. For many regression problems, analytic
solutions exist that minimize the RMSD. For genetic programming, however, the RMSD
might not be the best choice. Consider a case in which we are optimizing a function u(r)
and the correct solution for the problem is given by w(r). When we obtain the correct
answer, u(r) = w(r), the data points on a plot of u(r) vs w(r) will fall on a straight line
with a slope of 1 and an intercept of 0 (blue line in Figure 3). This is the only case in
which the RMSD will be 0. Now consider, the case where we have found a very close
solution in terms of the search space, u(r) = -1·w(r). The data points still fall on a line
with good correlation (red line in Figure 3), but the RMSD statistic is very poor despite
the fact that the expression tree is very similar to the correct answer.

 18

 In an attempt to improve optimization efficiency, we implemented an alternative
fitness statistic using the Pearson correlation coefficient,

 () () ,
ˆˆ

abs100100
1 ˆ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
⋅−+

=

∑
=

n

i y

i

y

i yyyyn

nF

σσ

 (5)

where σ is used to denote the standard deviation. In this case, the fitness is 1 when there
is perfect linear correlation between y and ŷ. In the example in Figure 3, a correct answer
would be any function for u(r) resulting in a
straight line on the plot. Any correct function,
by this definition, can be altered to result in an
RMSD of 0 with rescaling and shifting. This is
achieved in PM-Dreamer using ordinary least
squares. Use of this statistic is beneficial in
that it increases the fraction of the search
space corresponding to a correct answer and
provides a small decrease in the minimum size
of an expression tree required. Presumably,
the statistic should also improve efficiency by
preventing the early convergence towards
functions that do not resemble the correct
answer but simply produce results in the
vicinity of the training data.

Vectorization

Expression evaluation in genetic programming is relatively inefficient when
compared to hard-coded expressions because the compiler has no knowledge of the
expression that will be evaluated. Each operator in an expression incurs the overhead of a
function call because in-lining cannot occur and each expression must be parsed by
searching the tree. Additionally, modern processors have the ability to perform
simultaneous math operations on a single chip with the use of Single Instruction Multiple
Data (SIMD) instructions. These instructions have gone unutilized in current genetic
programming codes. This is problematic for our purposes, in that the same expression
must be evaluated many times when evaluating the energies and/or forces (see the
summations in Equations 1-3).

In order to make energy and force calculation more efficient in PM-Dreamer we

added support for vector expressions. When this approach is used, the input for variables
in an expression tree is a set of vectors rather than scalar values. Likewise, the answer
generated is a vector. This prevents parsing the same tree multiple times because each
operator in the expression evaluates the vector in a loop. This also allows for compiler
optimizations that utilize SIMD instructions. Vectorization is enabled in PM-Dreamer
with a command-line flag that replaces operators and variables with primitives that
support vector-vector, vector-scalar, and scalar-scalar operations. It is currently left as an
option to aid in compatibility with future Open BEAGLE developments that might not

-30

-20

-10

0

10

20

30

-20 -10 0 10

w (r)

u
(r

)

u(r)=w(r)
u(r)=-w(r)
u(r)=-2.2w(r)-2.4

Figure 3. Correlation vs RMSD for 3
potential solutions.

 19

support vector operations. Additionally, this option can decrease performance when only
1 or 2 terms are evaluated in a given summation.

Restarting Simulations

PM-Dreamer offers support for a variety of model templates and fitness statistics.
It may be desirable to use different model templates, fitness statistics, and training data
during a single run. For example, it might be desirable to start with a small training set
utilizing only force calculation in the x dimension for the fitness calculation. This might
result in high optimization efficiency. The user might then wish to refine results using a
larger dataset with fitnesses that include both the energy and the force. Therefore, we
wrote a new restart mechanism that allows the user to restart distributed jobs while
changing the optimization parameters, model template, fitness statistic, and/or training
data. Upon restart, the fitnesses of all individuals are re-evaluated, statistics are updated,
and the hall-of-fame storing the best individuals is recalculated.

Test Cases

In order to validate PM-Dreamer and perform efficiency tests, we generated

random particle configurations and evaluated the energies and forces using existing
interatomic potentials. This differs from the intended application of PM-Dreamer in that
we can potentially achieve exact results. In order to evaluate PM-Dreamer performance,
training sets were generated for utilization in the optimization along with test sets that
were utilized to evaluate performance of a given model on data not used for training. In
each case, the performance of each model in calculating the energies and the forces in the
test was evaluated.

For 2-body cases, the 12-6 Lennard-Jones potential [30] was utilized for energy

and force calculation,

 ,44
1 1

612

1 1

612

∑ ∑∑ ∑
= +== += ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
=

n

i

n

ij ijij

n

i

n

ij jiji rr
e σσεσσε

rrrr
 (6)

where rij is the distance between each pair of particles. When evaluating the configuration
energies, σ and ε were set to 1.0 and a cutoff of 2.5 was used such that no interaction with
an interatomic distance greater than 2.5 contributed to the energy. For initial evaluation
of the genetic programming parameter space, a set of 10 random configurations including
55-65 pair interactions each were utilized for training. For evaluation of the methods
presented in this report, a training set consisting of 5 configurations with 55-65 pair
interactions each was utilized. The energies for the 5 configurations were -11.54, -6.16, -
9.46, -11.56, and -0.95. For each configuration, the force on a single atom was evaluated.
The forces involved 8-10 interactions. For the test set, 50 random configurations were
utilized with 52-104 pair interactions each. The energies in the test set ranged from -21 to
0.52. As with the training set, a single atomic force was calculated per configuration (7-
16 interactions per force). The sizes for these datasets were chosen to represent the
difficult problem of obtaining models for condensed phases with a small training set.

 20

Using a test set with an order-of-magnitude increase in data points allows us to detect
problems with overfitting.

 For 3-body cases, the Stillinger-Weber potential [19] was utilized for energy and
force calculation (taken from [31]),

using the parameters for silicon shown in Table I. Energy and force calculation was
performed in LAMMPS [32] using a cutoff equal to a·σ (Table I). The training set and the
test were generated with 10 configurations each with up to 20 pair interactions and 94 3-
body interactions. The energies ranged from -15.93 to 6.17. As before, a single atomic
force was calculated for each configuration.

ε 2.1683
σ 2.0951
a 1.80
λ 21.0
γ 1.20
cosθ0 -1/3
A 7.04956
B 0.60222
p 4.0
q 0.0

Table I. Silicon parameters used
for Stillinger-Weber potential.

 21

Results

Parameter Sets for Optimization

 Initially, we performed a rough assessment of efficiency in the genetic
programming parameter space given by the replacement strategy and probabilities for
crossover and mutation. Based on previous work [3], we assumed that Half-and-Half
population initialization with tournament selection would provide the best results. Based
on the initial parameters listed in Appendix B, we evaluated the effect of tournament
selection size, crossover probability, standard mutation probability, swap mutation
probability, shrink mutation probability, subtree-swap mutation probability, and
ephemeral (constant) mutation probability. Performance for each parameter was assessed
based on the average best fitness using 50 runs each. Each run was performed in parallel
on 32 processes and terminated at 2 minutes. The jobs were run on 16 dual 3.4 GHz Intel
EM64T processors with an Infiniband interconnect. PM-Dreamer was compiled using the
Intel C++ 9.1 compiler with an Open MPI wrapper. The training set used consisted of 10
configurations with 55-65 pair-interactions calculated using the Lennard-Jones potential.

 The results from these runs are shown in Appendix B. Based on these results, we
selected the initial parameter set shown in Table II. For this work, we pursued evaluation
of the generational and HFC replacement strategies. For the runs described in the
following sections, the +, -, *, and / operators were included along with pow, log, exp,
and abs (absolute value). The variables were interatomic distances for 2-body potentials
and interatomic distances and angles for 3-body potentials. Floating point constants were
generated between -20 and 20. All primitives had a bias equal to 1.0 such that there was
no preference for randomly selecting one primitive over another. The runs in the
following sections were all performed on 32 processors for 10 minutes with each data
point representing an average over 50 runs.

 Generational HFC
Population Size 10000 10000
Total Populations 32 32
Tournament Size 6 6
Crossover Prob. 0.9 0.8
Standard Mutation 0.2 0.15
Shrink Mutation 0.05 0.05
Swap Mutation 0.1 0.2
Constant Mutation 0.1 0.15
Elitism 1 N/A
Migration Interval 5 5
Migration Size 500 500
Initialization Min Depth 4 4
Initialization Max Depth 5 5
Expression Max Depth 5 5
HFC Interval 1 1
HFC 1st Threshold 0.1 0.1
HFC Threshold Ratio 1 1

Table II. Parameters used for evolutionary optimization

 22

Condensed Phase and Vectorization

In order to assess the impact of system size on optimization efficiency, we

performed runs using datasets consisting of 10 configurations, one with 2 pair-
interactions per configuration and one with 60. As shown in Figure 4, increasing the
system size decreases the optimization efficiency in 2 ways. First, the fitness evaluation
is much more expensive; on average, the runs using 2 distances evaluated over 7 times
the number of generations than those with 60. This is not the only source of inefficiency,
however. We can subtract the inefficiency due to increased computational cost by
plotting the average best fitness in terms of the generation instead of time (Figure 4). In
this case, the optimization efficiency is still decreased for the larger system size.
Presumably, increasing the number of interactions per energy data point increases the
optimization difficulty due to error canceling effects. This is relevant because the
accurate modeling of condensed phase systems will likely require a large number of
interactions per energy calculation. The differences in optimization efficiency might
seem mild when viewing the plots in Figure 4; however, it is important to remember that
the fraction of the search space corresponding to some range of fitness is expected to
decrease sharply as the fitness increases. Therefore, it should often become increasingly
difficult to improve individuals with higher fitnesses. It is these improvements that are
important in achieving low-error models, however.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
Generations

<B
es

t F
itn

es
s>

n=2

n=60

n=60 (vector)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
<Time> (seconds)

<B
es

t F
itn

es
s>

n=2

n=60

n=60 (vector)

0

200

400

600

800

n=2 n=60 n=60 (Vector)

<G
en

er
at

io
ns

>

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

n=2 n=60 (Vector)

M
ea

n
R

M
SD

 E
rr

or

Train
Energy
Force

Figure 4. Optimization efficiency for different system sizes and vectorization. Each
data point representations a mean over 50 runs. The mean number of generations
evolved in 10 minutes is given on the lower left. RMSD error is calculated for the
training set, the test set energies, and the test set forces using the best model
obtained at 10 min. The error bar length is equal to the standard deviation.

 23

The impact due to the larger computational expense for fitness evaluation of

larger systems can be decreased with the use of vectorization. In this case, vectorization
resulted in an approximately 4x speedup when compared to the scalar implementation.
Despite this improvement, however, the final models (at the end of 10 minutes) had much
larger errors for the n=60 dataset when evaluated on the test sets (Figure 4). Due to the
large speedup achieved, all of the following tests were performed with the use of
vectorization.

Hierarchical Fair Competition

For the remaining 2-body tests presented, the training and test sets described in

the Methods section were used for evaluation. In this case, the training set was decreased
to contain only 5 configurations with a much larger test set used to evaluate problems
from overfitting. In order to evaluate the efficiency of HFC, we performed optimizations
comparing this strategy to a generational strategy with migration and a random strategy.
For the random case, all but the best individual are destroyed and replaced with random
individuals each generation. As shown in Figure 5, the efficiency of the generational
strategy was higher when measured using the training data. Interestingly, HFC ultimately
produced better models with much lower errors when evaluated on the test sets. Possibly,
this is due to increased survival of general models in intermediate-fitness populations
within the hierarchy.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
Generations

<B
es

t F
itn

es
s> Random

Generational
HFC

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
<Time> (seconds)

<B
es

t F
itn

es
s>

Random
Generational
HFC

0

200

400

600

800

1000

Rand Generational HFC

<G
en

er
at

io
ns

>

0
0.2

0.4
0.6
0.8

1
1.2
1.4
1.6

1.8
2

Random Generational HFC

M
ea

n
R

M
SD

 E
rr

or Train
Energy
Force

Figure 5. Optimization efficiency for random, generational, and HFC strategies.

 24

Hybrid Optimization

The efficiency of hybrid optimization was evaluated using generational and HFC

strategies with operator probabilities of 0, 0.025, and 0.05. In all cases, the optimization
was performed on all constants within an expression with the maximum iterations set to
6. In terms of generational efficiency, hybrid optimization increased the optimization
efficiency of both generational and HFC strategies. For generational, an average fitness
of 0.92 was obtained in 35 generations with a local search probability of 0.025 as
opposed to 100 generations with a local search probability of 0. As shown in Figure 6,
this improvement was largely offset by the increased computational time required for
local search for the generational strategy. Therefore, more efficient local search methods
or derivative-based approaches might be necessary in order to achieve improvements in
these cases. For HFC, the improvement in optimization efficiency was significant and
nearly half the time was required to obtain a fitness of 0.89 with a local search probability
0.025. Likewise, the final errors on the test sets were approximately half those obtained
without local search. Because there was also an improvement in the final errors of the
generational strategy for the test sets with local search, the probability of local search was
set to 0.025 for the remaining HFC and generational tests.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
Generations

<B
es

t F
itn

es
s>

(Gen) n=0
(Gen) n=0.025
(Gen) n=0.05
(HFC) n=0
(HFC) n=0.025
(HFC) n=0.05

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
<Time> (seconds)

<B
es

t F
itn

es
s>

(Gen) n=0
(Gen) n=0.025
(Gen) n=0.05
(HFC) n=0
(HFC) n=0.025
(HFC) n=0.05

0

100

200

300

400

500

600

n=
0

n=
.0

25

n=
.0

5

n=
0

n=
.0

25

n=
.0

5

Generational HFC

<G
en

er
at

io
ns

>

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

n=0 n=.025 n=.05 n=0 n=.025 n=.05

Generational HFC

M
ea

n
R

M
SD

 E
rr

or

Train
Energy
Force

Figure 6. Optimization efficiency for different local search probabilities (n).

 25

Model Templates

Fitting both the function and the derivative of the function has been shown to

reduce overfitting in genetic programming and therefore the approach was implemented
into PM-Dreamer. As described in the methods, one atomic force was calculated for each
configuration. The force was incorporated into the fitness with a separate evaluation of
the fitness statistic for each component of the force. The final fitness was then calculated
as one half the fitness for the energy plus one half the fitness for the force. The results
when this model template is used are shown in Figure 7 (Energy/Force). For the
generational strategy, a drastic improvement is seen with a reduction in the test set errors
by almost an order of magnitude. For HFC, the results are also significant with a
reduction in error for calculation of the test energies by about 1/3. In addition to reducing
overfitting, the approach also resulted in a reduction in training error by preventing
convergence towards erroneous functions. Although the convergence is slower, at the end
of each run the training error is much lower.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
Generations

<B
es

t F
itn

es
s> (Gen) Energy

(Gen) Energy/Force
(Gen) Force
(Gen) ForceX
(HFC) Energy
(HFC) Energy/Force
(HFC) Force
(HFC) ForceX

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
<Time> (seconds)

<B
es

t F
itn

es
s>

(Gen) Energy
(Gen) Energy/Force
(Gen) Force
(Gen) ForceX
(HFC) Energy
(HFC) Energy/Force
(HFC) Force
(HFC) ForceX

0

200

400

600

En
er

gy

En
er

gy
/F

or
ce

Fo
rc

e

Fo
rc

eX

En
er

gy

En
er

gy
/F

or
ce

Fo
rc

e

Fo
rc

eX

Generational HFC

<G
en

er
at

io
ns

>

0

0.5

1

1.5

2

2.5

En
er

gy

En
er

gy
/F

or
ce

Fo
rc

e

Fo
rc

eX

En
er

gy

En
er

gy
/F

or
ce

Fo
rc

e

Fo
rc

eX

Generational HFC

M
ea

n
R

M
SD

 E
rr

or

Train
Energy
Force

Figure 7. Optimization efficiency using different model templates.

In addition to evaluating the fitness using the energy and force, we also
implemented templates to evaluate the fitness using only the force. Our hope was that this
would increase optimization efficiency by reducing the number of interactions per data
point (see Equation 2 vs Equation 1 and Figure 4). Two approaches were implemented.

 26

One evaluated the error in all 3 components of the force and the other evaluated the error
in only the x-component. Because this alters the fitness metric, the first threshold for HFC
was adjusted to 0.5 when evaluating only the x-component and 0.3 when evaluating only
the force. As shown in Figure 7, this increased the number of generations evaluated in the
10-minute time period, but did not result in a decrease in the test set errors. For the
generational strategy, the opposite was true and there was a significant increase in test set
errors. Optimization efficiency could potentially be improved by starting an optimization
using only forces in the fitness evaluation and then continuing the evolution with the
incorporation of energies. This has not yet been tested, however.

Due to the consistently improved results provided by HFC, we continued our
efforts using only this strategy with a model template that evaluated the energy and the
force as part of the fitness metric. Using these parameters, we tested the impact of the
HFC interval on optimization efficiency. The mean RMSD errors for the energies in the
test set for a 1, 10, and 20 generation interval were 0.049, 0.028, and 0.029 respectively.
We therefore adjusted the HFC interval from 1 to 10.

Correlation and Ordinary Least Squares

Finally, we evaluated the use of an alternative fitness statistic for symbolic

regression. This was performed using a statistic based on the Pearson correlation
coefficient (Equation 5). In this case, it is necessary to rescale the resulting functions
obtained by the evolutionary optimization with the use of ordinary least squares. When
this statistic is used, the correct functional form is found with certainty within seconds in
all 50 runs (Figure 8). The mean RMSD error in calculation of the test set energies is
reduced to 5·10-7.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
<Time> (seconds)

<B
es

t F
itn

es
s> RMSD

CorrCoef

0

0.01

0.02

0.03

0.04

0.05

0.06

RMSD CorrCoef

M
ea

n
R

M
SD

 E
rr

or

Train
Energy
Force

Figure 8. Optimization efficiency using the correlation statistic.

 We summarize the results from the various methods implemented into PM-
Dreamer in Figure 9. By using a generational genetic programming strategy, the mean
RMSD error in calculating the test set energies is 1/3 that obtained by a random approach
with elitism. By using the HFC strategy, this error is reduced to 1/5 of the previous result.
Incorporation of hybrid local search reduces this error by ~1/2. Incorporation of forces
into the error evaluation results in ~1/3 the error. Increasing the HFC interval to 10
reduces this error by ~1/2. Finally, use of the Pearson correlation statistic reduces the

 27

error to near zero. With these improvements, a result that required 100 processors for
hours can now be obtained on a single-processor desktop in minutes.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Ran
dom

Gen
era

tio
nal

HFC

Hyb
rid

Energ
y/F

orce

HFC In
ter

va
l

Corre
lat

ion
M

ea
n

R
M

SD
 E

rr
or

Test Set Energies

Figure 9. Optimization efficiency using the correlation statistic.

The Stillinger-Weber Potential

We applied PM-Dreamer to 3-body problems using energies calculated with the

Stillinger-Weber potential to generate the training and test sets described in Methods.
These runs were performed on 256 processors for 32 hours. The optimizations were
performed using HFC configured with the parameters in Table II with the exception that
the maximum expression tree depth was set to 10. Hybrid local search was performed
with a 0.025 probability and no more than 6 iterations. The 3-body energy/force model
template was used with the correlation fitness statistic. The variables were the interatomic
distances and angles formed by all triplets of atoms. In preliminary runs, we were able to
achieve low-error fits to the Stillinger-Weber equation, but not exact matches. For the test
set energies (normalized), we obtained an RMSD of 0.010. However, the resulting
expressions were very large (>150). By implementing a fitness penalty of 0.05 for each
node over a maximum size of 50, we were able to reduce the expression size (to 50). In
this case, the mean RMSD in calculation of the normalized energies (over 4 runs) was
0.0182. This corresponds to a correlation coefficient of 0.9995 between the calculated
energies and the training values with a <1% error in calculation of configuration energies.

 28

 29

Summary and Future Work

 We developed PM-Dreamer for the automated discovery of novel empirical
models for particle mechanics. In this project, we focused our research efforts on
modifications to facilitate a drastic improvement in optimization efficiency when
compared to a canonical genetic programming framework. We described approaches for
distributed evolution, hybrid optimization, vectorization, and improved fitness metrics.
We obtained an improvement in efficiency of several orders of magnitude with the use of
a Hierarchical Fair Competition algorithm, hybrid optimization, vectorization, and a
correlation-based fitness statistic. The use of the Pearson correlation coefficient with
ordinary least squares rescaling resulted in a drastic improvement and it is our position
that this or a similar approach should be the standard for genetic programming symbolic
regression problems. We have shown that the utilization of particle forces along with the
system energy can reduce overfitting and ultimately produce more accurate models by
preventing convergence towards erroneous functions. Interestingly, our results also
suggest that Hierarchical Fair Competition can reduce problems from overfitting when
there is limited training data. With these advancements, we are now able to obtain low-
error fits for complicated models such as the Stillinger-Weber potential.

 After further validation and optimization for 3-body potentials, we will have made
sufficient advances in this project to allow for the application of PM-Dreamer to real
problems. As a next step, we will apply PM-Dreamer to the problem of modeling
germanium. This work will consist of DFT calculations to obtain training and test data,
automated model development, and implementation into simulation codes. Further model
validation can then be performed with the accurate calculation of observable macroscopic
properties. Although it will not be part of our immediate efforts, PM-Dreamer should also
be beneficial for problems in coarse-graining. For example, it can be shown that the
Lennard-Jones potential does not provide a correct scaling of energy with distance when
using coarse-graining to model large particles [2]. A potential correcting for this problem
has been derived using a continuum approximation that integrates the Lennard-Jones
interaction over both particles. However, when modeling a complex mesogen with a
single particle, it seems likely that using a different functional form altogether may
produce more accurate results.

 In addition to increased efficiency, PM-Dreamer has been developed to facilitate
the automated discovery of complex potentials. In this work, we implemented a
capability for simultaneous optimization of the multiple functions in 3-body potentials,
calculation of particle forces, and the calculation of descriptors such as interparticle
distances and angles. For future work, it will likely be desirable to generalize this further
with the addition of alternative model templates and descriptors such as bond order,
number of neighbors, etc. This will potentially allow for improved accuracy by increasing
the number of variables available for the optimization (and decreasing user-bias). An
additional difficulty in genetic programming that is not suitably accounted for in PM-
Dreamer is the generation of “dead” subtrees that have no impact on the energy
calculation. For example, the branch “*[(1-1+1)^1+x2*0]” has no impact on the function
calculation. These “dead” subtrees can take on complicated forms that are difficult to
interpret or identify. Their occurrence in genetic programming has been likened to the
fact that only a small percentage of DNA actually encodes proteins [3]. PM-Dreamer

 30

offers some mechanism to counter this with the use of selection strategies that favor
parsimony and fitness operators that add penalties for large trees. A more elegant strategy
can be implemented with the use of a simplification operator that replaces a subtree with
a constant if there is little to no variation across the training data. Application of this
operator at some generation interval might also improve efficiency by shrinking the
average expression size.

 Increasing optimization efficiency will always be of interest in PM-Dreamer.
While increasing the amount of training data leads to a constant increase in
computational cost, increasing the dimensionality of the search space can have a
devastating impact. The use of forward finite difference for force calculation and
derivative-free local search is one target for efficiency improvement in PM-Dreamer.
Automatic differentiation codes such as Sacado allow for the calculation of accurate
forces during energy calculation and facilitate the use of derivative-based optimization
approaches. The use of automatic differentiation in PM-Dreamer can therefore potentially
decrease the time required for derivative calculation and improve the efficiency of hybrid
local search. When performing simultaneous optimization on multiple functions, PM-
Dreamer uses a single expression tree allowing crossover and mutation to occur across
functions. Further improvements in optimization efficiency might be obtained by
asserting independent evolution of each function in the expression trees in terms of
crossover and mutation.

 31

References

1. Praprotnik, M., L. Delle Site, and K. Kremer, Multiscale simulation of soft

matter: From scale bridging to adaptive resolution. Annual Review of Physical
Chemistry, 2008. 59: p. 545-571.

2. Everaers, R. and M.R. Ejtehadi, Interaction potentials for soft and hard ellipsoids.
Physical Review E, 2003. 67(4).

3. Koza, J.R., Genetic Programming. 1992, Cambridge, Massachusetts: MIT Press.
1-819.

4. Gross, A., et al., Ab initio based tight-binding hamiltonian for the dissociation of
molecules at surfaces. Physical Review Letters, 1999. 82(6): p. 1209-1212.

5. Wiesenekker, G., G.J. Kroes, and E.J. Baerends, An analytical six-dimensional
potential energy surface for dissociation of molecular hydrogen on Cu(100).
Journal of Chemical Physics, 1996. 104(18): p. 7344-7358.

6. Behler, J., S. Lorenz, and K. Reuter, Representing molecule-surface interactions
with symmetry-adapted neural networks. Journal of Chemical Physics, 2007.
127(1).

7. Marques, J.M.C., et al., A new genetic algorithm to be used in the direct fit of
potential energy curves to ab initio and spectroscopic data. Journal of Physics B-
Atomic Molecular and Optical Physics, 2008. 41(8).

8. Bettens, R.P.A. and M.A. Collins, Learning to interpolate molecular potential
energy surfaces with confidence: A Bayesian approach. Journal of Chemical
Physics, 1999. 111(3): p. 816-826.

9. Crespos, C., et al., Multi-dimensional potential energy surface determination by
modified Shepard interpolation for a molecule-surface reaction: H-2+Pt(111).
Chemical Physics Letters, 2003. 376(5-6): p. 566-575.

10. Crespos, C., et al., Application of the modified Shepard interpolation method to
the determination of the potential energy surface for a molecule-surface reaction:
H-2+Pt(111). Journal of Chemical Physics, 2004. 120(5): p. 2392-2404.

11. Busnengo, H.F., W. Dong, and A. Salin, Six-dimensional classical dynamics of H-
2 dissociative adsorption on Pd(111). Chemical Physics Letters, 2000. 320(3-4):
p. 328-334.

12. Crespos, C., et al., Analysis of H-2 dissociation dynamics on the Pd(111) surface.
Journal of Chemical Physics, 2001. 114(24): p. 10954-10962.

13. Kresse, G., Dissociation and sticking of H-2 On the Ni(111), (100), and (110)
substrate. Physical Review B, 2000. 62(12): p. 8295-8305.

14. Olsen, R.A., et al., Constructing accurate potential energy surfaces for a diatomic
molecule interacting with a solid surface: H-2+Pt(111) and H-2+Cu(100).
Journal of Chemical Physics, 2002. 116(9): p. 3841-3855.

15. Bittencourt, A.C.P., F.V. Prudente, and J.D.M. Vianna, The fitting of potential
energy and transition moment functions using neural networks: transition
probabilities in OH (A(2)Sigma(+)-> X-2 Pi). Chemical Physics, 2004. 297(1-3):
p. 153-161.

16. Prudente, F.V., P.H. Acioli, and J.J.S. Neto, The fitting of potential energy
surfaces using neural networks: Application to the study of vibrational levels of
H-3(+). Journal of Chemical Physics, 1998. 109(20): p. 8801-8808.

 32

17. Makarov, D.E. and H. Metiu, Fitting potential-energy surfaces: A search in the
function space by directed genetic programming. Journal of Chemical Physics,
1998. 108(2): p. 590-598.

18. Slepoy, A., M.D. Peters, and A.P. Thompson, Searching for globally optimal
functional forms for interatomic Potentials using genetic programming with
parallel tempering. Journal of Computational Chemistry, 2007. 28(15): p. 2465-
2471.

19. Stillinger, F.H. and T.A. Weber, Computer-smulation of local order in condensed
phases of silicon. Physical Review B, 1985. 31(8): p. 5262-5271.

20. Tersoff, J., New empirical-approach for the structure and energy of covalent
systems. Physical Review B, 1988. 37(12): p. 6991-7000.

21. Cook, S.J. and P. Clancy, Comparison of semiempirical potential functions for
silicon and germanium. Physical Review B, 1993. 47(13): p. 7686-7699.

22. Cagne, C. and M. Parizeau. Open BEAGLE. 2007 [cited; Available from:
http://beagle.gel.ulaval.ca/.

23. Cagne, C. and M. Parizeau, Genericity in evolutionary computation software
tools: Principles and case-study. International Journal on Artificial Intelligence
Tools, 2006. 15(2): p. 173-194.

24. Snir, M., et al., MPI: The Complete Reference. 1995, Cambridge, MA: MIT Press.
25. Nowostawski, M. and R. Poli. Parallel genetic algorithm taxonomy. in

International conference on knowledge-based intelligent information engineering
systems (KES). 1999. Adelaide: IEEE.

26. Hu, J.J., et al., The Hierarchical Fair Competition (HFC) framework for
sustainable evolutionary algorithms. Evolutionary Computation, 2005. 13(2): p.
241-277.

27. Hu, J.J., et al. Adaptive Hierarchical Fair Competition (AHFC) Model for
Parallel Evolutionary Algorithms. in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO). 2002. New York: Morgan
Kaufmann Publishers.

28. Yang, Y., C. Wang, and C.K. Soh, Hybrid genetic programming with local search
operators for dynamic force identification. Journal of Computing in Civil
Engineering, 2007. 21(5): p. 311-320.

29. Nelder, J.A. and R. Mead, A simplex method for function minimization. The
Computer Journal, 1965. 7: p. 308-313.

30. Lennard-Jones, J.E., Cohesion. Proceedings of the Physical Society, 1931. 43: p.
461-482.

31. Plimpton, S. LAMMPS Molecular Dynamics Simulator,
http://lammps.sandia.gov/. 2008 [cited 2008.

32. Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular-Dynamics.
Journal of Computational Physics, 1995. 117(1): p. 1-19.

 33

Appendix A - Documentation for GP-Force

NAME
 pm_dreamer - Optimization of functional forms for particle mechanics.

VERSION
 Version 0.1

SYNOPSIS
 pm_dreamer input_data beagle_config_file [-c] [-f file_header] [-g
 start_size end_size] [-h] [-n notice_level] [-r rseed] [-s stat_type]
 [-t energy_type] [-z]

DESCRIPTION
 PM-Dreamer is software for generation of empirical models for particle
 mechanics. The software takes as input data from a series of particle
 configurations and the corresponding energies and/or particle forces
 associated with those configurations. The output from PM-Dreamer is a
 set of functions that can potentially be used to calculate configura-
 tion energies for particles giving the force-field necessary for parti-
 cle simulations.

 PM-Dreamer obtains the equations for energy calculation using a combi-
 nation of genetic programming and local search in order to minimize the
 root-mean square error in the calculation of energy and/or particle
 force. The genetic programming is based on the Open-BEAGLE library for
 evolutionary computation. This library has been extended in PM-Dreamer
 to allow for massively parellel optimization, hybrid local search, vec-
 torized expression evaluation, template-based evaluation of fitnesses
 using particle configurations with periodic boundary conditions for 2
 and 3-body particle interactions, and parallel restarts with the capa-
 bility to switch datasets and/or function templates.

 The input for PM-Dreamer consists of the input_data file that contains
 particle configuration data and the beagle_config_file that facilitates
 parameterization of the optimization. The formats available for the
 input_data are described in the Fitness Evaluation section and can be
 specified with the -t flag. The format for the beagle_config_file is
 taken from Open Beagle with the extensions described throughout this
 documentation. Examples for both should have been included with the
 software package.

 There are three types of output for PM-Dreamer. Console output
 describes the progress and statistics of the run and is controlled with
 the -n flag. Log file output also describes statistics in XML as speci-
 fied in the beagle_config_file. The default filename for the log file
 for serial runs is gp_force.log. For parallel runs a separate log file
 is written for each process with the default name gp_force_RR.log where
 RR is the process rank. The final output format consists of milestone
 files. These files contain an XML description of all of the expressions
 at a given point in the optimization and are also used to restart runs.
 The default name for the milestone files is gp_force.obm for serial or
 gp_force_RR.obm for parallel runs. Utilities for generating plots from
 the log files and graphic representations of expressions should have
 been included with this software package.

 The following definitions are used throughout the documentation:

 34

 Individual A single mathematical expression for calculation of
 the energies of particle configurations.

 Primitive A primitive is a node in the expression tree. Exam-
 ples of primitives include unary and binary mathematical expres-
 sions, variables used to describe the particle configurations,
 and constants in the expression.

 Terminal/Constant/Ephemeral A terminal is a primitive that
 takes no arguments. A constant/ephemeral is a terminal that is
 not used as a variable in the expression. Constants are typi-
 cally randomly generated and can change during the optimization
 by mutation to generate a new random number or by local search
 executed to optimize the constants in an expression. Constants
 that should not be modified (such as pi) can also be specified.

 Fitness A metric describing the error in an Individual’s calcu-
 lation of the energy using the training data.

 Population/Deme A population or deme is a group of individuals
 that evolve together. Crossover occurs using multiple individu-
 als from a population and selection occurs based on the individ-
 uals in a single population. Multiple populations can be used in
 a run. The populations evolve separately, but can interact
 through migration of individuals between the populations.

 Island Here, an island is used in parallel runs to describe the
 population or set of populations undergoing evolution in a sin-
 gle MPI process.

 Vivarium All of the populations involed in a run.

 Hall of Fame The Hall of Fame contains the n individuals with
 the best fitness(es) found during a run.

 Milestone/Restart File These files contain the output of all of
 the individuals at some point in the optimization and have the
 extension .obm

 Hybrid Optimization/Local Search Hybrid optimization occurs
 separately from the evolutionary optimization. With a specified
 probability, local search is performed on an individual to opti-
 mize 1 or multiple constants.

PARAMETERS
 -c Restart from existing milestone files. When restarting, the
 functional form (-t), the beagle_config_file file, and the
 input_data can be different from those used in the original run.
 This allows the user to change parameters and/or add data to
 refine runs. If the -f flag was used to specify a non-default
 file header for the restart files. The -f flag should also be
 specified again with the same name when using -r. When running
 in parallel, the same number of processes should be used for the
 restart. If a smaller number is used, the extra individuals will
 be ignored. If a larger number is used, an error is generated.
 When restarting an optimization, the generation number starts at
 the last generation in the milestone file. Therefore, the max-
 gens termination criterion may need to be increased. The restart
 files are read by the ReadRestartOp in the beagle_config_file

 -f file_header

 35

 Specify the header for the .log output file and the .obm mile-
 stone files. The default is gp_force.

 -g start_size end_size

 Scale the fitness by the number of nodes in the tree. This can
 be used to reduce the average size of individuals. A tree with
 start_size or smaller nodes has a maximum fitness of 1.0. A tree
 with end_size or greater nodes has a maximum fitness of 0.0.

 -h Print out the man page for help

 -n notice_level

 Set the degree of program output. Use:

 -n 0 No output
 -n 10 Normal program output
 -n 20 Parameters useful for reproducing the results
 -n 30 All output. The degree of Open Beagle Output changes at
 10,20, and 30.

 -r rseed

 Specify the random seed (unsigned long). Default is 1.

 -s stat_type

 Choose the fitness statistic used. Options are RMSD for adaptive
 RMSD, CORR for the Pearson correlation coefficient, and OLS for
 ordinary least squares fitting. See the Fitness section for
 details on each method.

 -t energy_type

 Specify the functional form of the energy function

 -z Use vectorized tree evaluation. This will typically be at least
 4x faster for the optimized Beagle library and greater than 15x
 faster for the debug library.

BEAGLE CONFIGURATION FILE
 The Beagle configuration file is used to control the optimization
 including the functions, terminals, operators, and replacement strate-
 gies that are used. Deatils on each section follow. A template for a
 configuration files is:

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <Beagle>
 <Evolver>
 <BootStrapSet>

 ... Population Initialization ...

 </BootStrapSet>
 <MainLoopSet>

 ... Replacement Strategy ...

 ... Fitness Evaluation ...

 ... Crossover ...

 ... Selection ...

 36

 ... Fitness Evaluation ...

 ... Mutation ...

 ... Selection ...

 ... Selection ...
 ... Migration ...

 ... Statistics ...

 ... Termination Criteria ...

 ... Restart File Output ...

 </MainLoopSet>
 </Evolver>
 <System>
 <PrimitiveSuperSet>
 <PrimitiveSet>

 ... Functions ...

 ... Terminals ...

 </PrimitiveSet>
 </PrimitiveSuperSet>
 <Register>

 ... Register values ...

 </Register>
 </System>
 </Beagle>

POPULATION INITIALIZATION
 The initialization is accomplished using the following operators:
 GP-InitHalfOp

 Koza’s ramped half-and-half generative method. An equal number
 of expression trees are generated using a depth parameter that
 ranges between 2 and the maximum specified depth

 GP-InitFullOp

 The initial population will consist of expression trees that
 all have a depth equal to the maximum depth.

 GP-InitGrowOp

 The initial population consists of expression trees of variable
 depths.

 RestartReadOp

 Read in population from a restart (milestone) file. This opera-
 tor replaces the MilestoneReadOp operator in Open Beagle to
 allow the parameters in the beagle_config_file to override those
 in the milestone file. The example below checks to see if the
 register, ms.restart.file, is set. If it is, a restart file is
 read in. Otherwise, a population is generated using half-and-
 half followed by fitness evaluation and statistics output:

 37

 <BootStrapSet>
 <IfThenElseOp parameter="ms.restart.file" value="">
 <PositiveOpSet>
 <GP-InitHalfOp/>
 <EnergyOp/>
 <GP-StatsCalcFitnessSimpleOp/>
 </PositiveOpSet>
 <NegativeOpSet>
 <RestartReadOp/>
 </NegativeOpSet>
 </IfThenElseOp>
 </BootStrapSet>

REPLACEMENT STRATEGY AND MIGRATION
 The replacement strategy is specified using the follow operators:
 DecimateOp

 Shrink the population size by keeping the n best individuals

 GenerationalOp

 Breeding tree following a generation by generation replacement
 strategy

 HierarchicalFairCompetitionOp

 HCF operator inspired by the work of Hu and Goodman

 MigrationRandomRingOp

 Migrate randomly chosen individuals between populations using a
 ring topology

 MuCommaLambdaOp

 A (Mu,Lambda) operator generates Lambda children individuals
 from a population of Mu parents(where Lambda > Mu). From these
 Lambda individual, it keeps the Mu best to constitute the new
 generation.

 MuPlusLambdaOp

 A (Mu+Lambda) operator generates Lambda children individuals
 from a population of Mu parents (usually where Lambda > Mu).
 From the Mu parents and the Lambda individual, it keeps the Mu
 best individuals to constitute the new generation.

 NSGA2Op

 The NSGA2 replacement strategy implement the elitist multiob-
 jective evolutionary algorithm NSGA2 (Non-dominating Sorting
 Genetic Algorithm)

 OversizeOp

 An oversize operator generates (ratio * population size) chil-
 dren individuals from a population of Mu parents.

 SteadyStateOp

 Steady state replacement strategy operator

 38

CROSSOVER AND MUTATION
 Crossover and mutation are specified using the follow operators:
 GP-CrossoverOp

 Crossover of two individuals to produce a new individual

 GP-MutationEphemeralDoubleOp

 Mutate the value of a randomly chosen double precision constant
 in the tree

 GP-MutationShrinkOp

 Replace a randomly chosen branch with a randomly chosen argu-
 ment on the branch

 GP-MutationStandardOp

 Canonical GP Mutation

 GP-MutationSwapOp

 Swap nodes in the expression tree

 GP-MutationSwapSubtreeOp

 Swap branches in the expression tree

SELECTION
 Selection is specified using the follow operators:
 NPGA20p

 Multiobjective evolutionary algorithm NPGA 2 (Niched Pareto
 Genetic Algorithm)

 SelectParsimonyTournOp

 A simple lexicographic parsimony pressure tournament selection
 operator, based an idea presented in: Luke, S., and L. Panait.
 2002. Lexicographic Parsimony Pressure.

 SelectRandomOp

 Select an individual in a population randomly operator class
 (uniform distribution).

 SelectRouletteOp

 Proportionnal roulette selection operator class.

 SelectTournamentOp

 Tournament selection operator class.

TERMINATION
 Optimization is terminated using the following operators:

 39

 TermMaxGenOp

 Maximum generation termination criterion operator.

 TermMaxFitnessOp

 Maximum fitness value termination criterion operator class.

 TermMaxHitsOp

 Number of hits required in an individual in order for the evo-
 lution process to terminate.

 TermMaxEvalsOp

 Maximum number of fitness evaluations termination criterion
 operator.

RESTART FILES AND POPULATION OUTPUT
 Files output containing populations that can also be used for continu-
 ing a simulation are generated with the following operators. (See also
 POPULATION INITIALIZATION.)

 MilestoneWriteOp

 Write out a milestone file

 ParetoFrontCalculateOp

 Evaluate Pareto front from demes and vivarium and put it in
 place of the actual hall-of-fame. The Pareto front is evaluated
 just before milestones are written. If previous hall-of-fame are
 presents in the demes/vivarium, they are erased. This operator
 must be in the evolver’s operator sets between the termination
 criterion check operators and the MilestoneWriteOp operator.

STATISTICS
 Statistics on fitness, function and terminal usage, and expression tree
 size are generated using the follow operators:

 GP-StatsCalcFitnessSimpleOp, GP-StatsCalcFitnessKozaOp, GP-Primi-
 tiveUsageStatsOp, GP-IndividualSizeFrequencyStatsOp

ADF and Constrained Operators
 Automatically Defined Functions (ADF) and constrained operators are
 also available:

 GP-ModuleCompressOp, GP-ModuleExpandOp, GP-CrossoverConstrainedOp, GP-
 InitHalfConstrainedOp, GP-InitFullConstrainedOp, GP-InitGrowConstraine-
 dOp, GP-MutationShrinkConstrainedOp, GP-MutationStandardConstrainedOp,
 GP-MutationSwapConstrainedOp, GP-MutationSwapSubtreeConstrainedOp.

 The additional primitives for the ADF operators include:

 ADF (Automatically Defined Function) and ARG (Generic Argument for ADF)

 40

FUNCTIONS
 The following functions can be utilized as primitives in the expression

 Abs,Add,Cos,Divide,Exp,Log,Multiply,Sin,Subtract

 Additional functions added by PM-Dreamer are described below. Functions
 are added by listing the function name and bias in the primitive set.
 For example:

 <Primitive name="ADD" bias="1"/>

TERMINALS
 The terminals are primitives in the expression tree that do not take
 arguments (e.g. constants in the expression or variables of the expres-
 sion. Some that can be included are a double precision number [-1, 1]
 (E), PI (Pi), and/or a variable, (X), for the potential:

 <Primitive name="E" bias="1"/>
 <Primitive name="Pi" bias="1"/>
 <Primitive name="X" bias="1"/>

ADDITIONAL PRIMITIVES
 The additional function and terminal primitives have been added:

 E_i

 Double precision integer [-20,20]. Generation or mutation of
 E_i results in an integer, however, hybrid optimization can pro-
 duce non-integer numbers.

 E_d

 Double precision number [-20,20].

 Pow

 Exponentiation.

REGISTERS
 The registers allow for parameterization of the operators and optimiza-
 tion (e.g. mutation frequency, number of generations, etc.). The regis-
 ters can be set by specifying the register and the value in the config-
 uration file:
 <Entry key="ec.pop.size">500/500/500/500</Entry>
 <Entry key="ec.term.maxgen">100</Entry>

 A list of registers and short descriptions is given below. If the value
 type of a register begins with U, the type is unsigned. If the value
 type is an array, individual elements are delimeted using a /.

 ec.conf.dump <String> (def: "")

 Filename used to dump the configuration. A configuration dump
 means that a configuration file is written with the evolver
 (including the composing operators) and the register (including
 the registered parameters and their default values). No evolu-
 tion is conducted on a configuration dump. An empty string means
 no dump.

 41

 ec.elite.keepsize <UInt> (def: 1)

 Number of individuals keep as is with strong n-elitism.

 ec.hof.demesize <UInt> (def: 0)

 Number of individuals kept in each deme’s hall-of-fame (best
 individuals so far). Note that a hall-of-fame contains only
 copies of the best individuals so far and is not used by the
 evolution process.

 ec.hof.vivasize <UInt> (def: 1)

 Number of individuals kept in vivarium’s hall-of-fame (best
 individuals so far). Note that a hall-of-fame contains only
 copies of the best individuals so far and is not used by the
 evolution process.

 ec.init.seedsfile <String> (def: "")

 Name of file to use for seeding the evolution with crafted
 individual. An empty string means no seeding.

 ec.mig.interval <UInt> (def: 1)

 Interval between each migration, in number of generations. An
 interval of 0 disables migration.

 ec.mig.size <UInt> (def: 5)

 Number of individuals migrating between each deme, at a each
 migration.

 ec.pop.size <UIntArray> (def: 100)

 Number of demes and size of each deme of the population. The
 format of an UIntArray is S1,S2,...,Sn, where Si is the ith
 value. The size of the UIntArray is the number of demes present
 in the vivarium, while each value of the vector is the size of
 the corresponding deme.

 ec.repro.prob <Float> (def: 0.1)

 Probability that an individual is reproducted as is, without
 modification. This parameter is useful only in selection and
 initialization operators that are composing a breeder tree.

 ec.sel.tournsize <UInt> (def: 2)

 Number of participants for tournament selection.

 ec.term.maxfitness <Float> (def: 1)

 Fitness value to reach before stopping evolution.

 ec.term.maxgen <UInt> (def: 50)

 Maximum number of generations for the evolution.

 gp.cx.distrpb <Float> (def: 0.9)

 Probability that a crossover point is a branch (node with sub-
 trees). Value of 1.0 means that all crossover points are
 branches, and value of 0.0 means that all crossover points are
 leaves.

 42

 gp.cx.indpb <Float> (def: 0.9)

 Individual crossover probability at each generation.

 gp.init.maxargs <UIntArray> (def: 0/2)

 Maximum number of arguments in GP tree. Tree arguments are is
 usually useful with ADFs (and similar stuff).

 gp.init.maxdepth <UInt> (def: 5)

 Maximum depth for newly initialized trees.

 gp.init.maxtree <UInt> (def: 1)

 Maximum number of GP tree in newly initialized individuals.
 More than one tree is usually useful with ADFs (and other ADx).

 gp.init.minargs <UIntArray> (def: 0/2)

 Minimum number of arguments in GP tree. Tree arguments are is
 usually useful with ADFs a(nd similar stuff).

 gp.init.mindepth <UInt> (def: 2)

 Minimum depth for newly initialized trees.

 gp.init.mintree <UInt> (def: 1)

 Minimum number of GP tree in newly initialized individuals.
 More than one tree is usually useful with ADFs (and other ADx).

 gp.mutephdbl.indpb <Float> (def: 0.05)

 Probability of mutating a terminal constant by GP-Muta-
 tionEphemeralDoubleOp.

 gp.mutephdbl.primit <String> (def: E)

 Name of the primitive mutated by GP-MutationEphemeralDoubleOp.

 gp.mutshrink.indpb <Float> (def: 0.05)

 Shrink mutation probability for an individual. Shrink mutation
 consists in replacing a branch (a node with one or more argu-
 ments) with one of his child node. This erases the chosen node
 and the other child nodes.

 gp.mutstd.indpb <Float> (def: 0.05)

 Standard mutation probability for an individual. A standard
 mutation replaces a sub-tree with a randomly generated one.

 gp.mutstd.maxdepth <UInt> (def: 5)

 Maximum depth for standard mutation. A standard mutation
 replaces a sub-tree with a randomly generated one.

 gp.mutswap.distrpb <Float> (def: 0.5)

 Probability that a swap mutation point is a branch (node with
 sub-trees). Value of 1.0 means that all swap mutation points are
 branches, and value of 0.0 means that all swap mutation points
 are leaves. Swap mutation consists in exchanging the primitive
 associated to a node by one having the same number of arguments.

 43

 gp.mutswap.indpb <Float> (def: 0.05)

 Swap mutation probability for an individual. Swap mutation con-
 sists in exchanging the primitive associated to a node by one
 having the same number of arguments.

 gp.tree.maxdepth <UInt> (def: 17)

 Maximum allowed depth for the trees.

 gp.try <UInt> (def: 2)

 Maximum number of attempts to modify a GP tree in a genetic
 operation. As there is topological constraints on GP trees (i.e.
 tree depth limit), it is often necessary to try a genetic opera-
 tion several times.

 lg.file.level <UInt> (def: 3)

 Log level used for file output generation. Log levels available
 are: (0) no log, (1) basic logs, (2) stats, (3) general informa-
 tions, (4) details on operations, (5) trace of the algorithms,
 (6) verbose, (7) debug (enabled only in full debug mode).

 lg.show.class <Bool> (def: 0)

 Flag whether class name is outputed in the logs.

 lg.show.level <Bool> (def: 0)

 Flag whether logging level in outputed in the logs.

 lg.show.type <Bool> (def: 0)

 Flag whether message type is outputed in the logs.

 ms.restart.file <String> (def: "")

 Name of the milestone file from which the evolution should be
 restarted. An empty string means no restart.

 ms.write.compress <Bool> (def: 1)

 If true, this flag indicates that milestones will be compressed
 with gzip. Otherwise, each milestone are kept plain text.

 ms.write.interval <UInt> (def: 0)

 Milestone saving interval (in number of generations). When
 zero, only the last generation milestone is saved.

 ms.write.over <Bool> (def: 1)

 If true, this flag indicates that old milestones should be
 over-written. Otherwise, each milestone has a different suffix.

 ms.write.perdeme <Bool> (def: 0)

 If true, this flag indicates that separate milestones should be
 written after each demes processing. Otherwise milestones are
 written after the processing of a complete populations.

 44

FITNESS EVALUATION
 The fitness evaluation in PM-Dreamer can be calculated using several
 different fitness statistics specified with the -s flag. The fitness in
 each case is given by F:

 where e represents the energies and/or forces from the training set
 normalized by the number of distances used in the calculation of each
 energy/force and p represents those normalized values as calculated by
 a candidate individual. For the adaptive RMSD, c=1 and s(e,p) is the
 root mean squared error between e and p. For the Pearson correlation
 coefficient, c=100 and s is given by the absolute value of the correla-
 tion coefficient between e and p. For OLS, ordinary least squares is
 performed to give the linear rescaling of p that results in the lowest
 RMSD with e. In this case, s is this RMSD and c is 1. The calculation
 of p according to the candidate expression is performed using one of
 several templates specified with the -t option. For all, the fitness
 calculation in the beagle_config_file file is specified using EnergyOp.

 PAIR POTENTIALS (-t pair)

 The pair potential, pair, is the default functional form used for fit-
 ness calculation. It is calculated as:

 where X_i is a single variable describing the particle pair (e.g. the
 inter-particle distance) and g is the function optimized using genetic
 programming. The fitness of the function is evaluated using a set of
 sample configurations for which the energies have been calculated. The
 format for the input file is:

 # Comments for the input file
 e X1 X2 ...

 e X1 X2 ...

 ...

 Each line begins with an energy e and is followed by a variable number
 of data points for each pair in the configuration. Empty lines and
 lines beginning with # are ignored. In order to use this template, the
 X variable should be added to the primitive set:

 <Primitive name="X" bias="1"/>

 PAIR POTENTIALS WITH FORCE (-t paird)

 The pair potential with force, paird, is similar to pair with the
 exception that a particle force is supplied for a particle in each con-
 figuration allowing the potential function to be fit to both the energy
 and the force. When this style is used the fitness is one half the fit-
 ness statistic calculated for the energies plus one half the fitness
 statistic calculated for the forces.

 Here, the potential is calculated as described for the pair style, and
 the force is calculated as the negative gradient of the energy for a
 particle using forward finite-difference. The format for the input data

 45

 file is:

 # Comments for the input file
 cutoff C

 e fi fx fy fz x1 y1 z1 x2 y2 z2 ...

 ...

 First a cutoff is specified such that particle pairs with a distance
 greater than C contribute zero to the force and energy calculation. If
 C is negative, the cutoff is infinity. Each of the following lines
 begins with an energy e followed by an index to an particle for which
 the force is computed, f_i. The first particle index is 1. This is fol-
 lowed by the Cartesian components of the force. Finally the Cartesian
 coordinates for each particle in the system are given. The equations
 that result from the optimization will be in terms of the independent
 variable X which represents the interparticle distance for a pair as
 calculated from the supplied positions. Therefore, X should be added to
 the primitive set as described for pair.

 PAIR POTENTIAL USING ONLY THE FORCE (-t pairf)

 This template is similar to paird with the difference that only the
 forces are used in fitness evaluation. This style can therefore allow
 for much faster optimization followed by refinement by switching to
 style paird. For this reason, the format for the input data file is
 identical to that for paird. The energies specified in this file are
 ignored.

 PAIR POTENTIAL USING ONLY THE X-FORCE (-t pairf1)

 This template is similar to pairf except that only the x component of
 the force is utilized for fitness evaluation. The input file format is
 identical to that for pairf and paird.

 TWO/THREE BODY POTENTIALS (-t twothree)

 This template evaluates two summations for the potential energy and can
 be used to fit potentials that include a 2-body term and a 3-body term.
 The form for the expression is:

 The sample data therefore consists of a set variables X_1,...,X_n that
 are evaluated in the first summation and a second set R1_1,...,R1_m,
 R2_1,...,R2_m, and A_1,...,A_m that are evaluated in the second summa-
 tion, where n is not necessarily equal to m. For a 2/3-body potential,
 X might represent the interparticle distances in the 2-body part of the
 potential. For the 3-body part, R1 and R2 might represent the distances
 from particle 1 to particles 2 and 3 and A might represent the angle
 between the corresponding vectors. The format for the input data file
 is:

 # Comments for the input file

 e TWO X1 ... Xn THREE R11 R21 A1 ... R1m R2m Am

 ...

 where e is the energy of the configuration. In order to use this style,
 the variables X, R1, R2, and A must be added to the primitive set:

 46

 <Primitive name="X" bias="1"/>
 <Primitive name="R1" bias="1"/>
 <Primitive name="R2" bias="1"/>
 <Primitive name="A" bias="1"/>

 The equations for g and h are stored in the same expression tree where
 g is the left subtree of the root node and h is the right subtree of
 the root node. For this template, the root node is meaningless.

 TWO/THREE BODY POTENTIALS WITH FORCE (-t twothreed)

 This template evaluates the twothree potential style, but also evalu-
 ates the force for a single particle in each configuration in the fit-
 ness function. This is done in an identical manner to the paird poten-
 tial style and the input format is also identical. Using the cutoff and
 particle positions, the vector X is calculated to contain all particle
 pairwise distances smaller than the cutoff. Likewise, for all particle
 triplets, the vectors R1, R2 and A are calculated to contain the dis-
 tances between the center atom and the other two atoms and the angle
 between the corresponding vectors if the two distances are both smaller
 than the cutoff. As with the other twothree styles, the variables X,
 R1, R2, and A should be added to the primitive set.

PARALLEL PM-DREAMER
 PM-Dreamer can be run in parallel using an island model. In serial, PM-
 Dreamer uses the Open Beagle model allowing for multiple populations
 with individual movement according to migration operators. In parallel
 PM-Dreamer allows for multiple islands, 1 per process, to be run. Each
 island can contain multiple populations with migration controlled by
 the standard operators. Migration between the islands is controlled by
 additional operators which are described below. The output for each
 island is written separately to the files gp_force_0.log,
 gp_force_1.log, ... and gp_force_0.obm(.gz), gp_force_1.obm(.gz), ...
 It should be noted that in the current implementation, random seeds
 only produce the same output when run on the same number of processors.
 When running in parallel, the MPITerminateOp should be used to to
 assure proper termination of all processes in a run. The additional
 operators available for parallel execution are:

 MigrationMPIOp

 Each time ec.mig.mpi_interval generations passes,
 ec.mig.mpi_size individuals from each population on an island
 migrate to a randomly chosen island and are replaced with immi-
 grants from a second randomly chosen island. The random islands
 are chosen such that all islands will participate in migration
 at each iteration. The operator does not perform migration
 between populations on the same island. This can be achieved
 using standard migration operators in addition to MigrationMPIOp

 HFCompMPIOp

 This implements a distributed parallel algorithm for the Hier-
 archical Fair Competition inspired by the work of Hu and Good-
 man. (Similar to the serial HierarchicalFairCompetitionOp). This
 operator should not be used with the serial HierarchicalFairCom-
 petitionOp operator. In this algorithm, a fitness threshold is
 chosen such that any individuals from a population with index i
 will migrate to the population i+1 if their fitness is better
 than the fitness threshold for that population i+1. If any popu-
 lations has excess individuals following migration, the least

 47

 fit individuals are killed off. Random individuals are added to
 account for any shortages. This promotes a hierarchy of popula-
 tions where the fitness of the best individuals improves with
 the population index. The migration occurs through all popula-
 tions on a single island followed by migration of individuals of
 the last population of one island to the first population of
 another. In order to achieve parallel efficiency, their is a
 1-step lag from the time individuals migrate out of an island to
 the time they arrive at the next. The fitness thresholds for the
 populations can be set in 2 ways. In the default, ec.hfc.first
 is set to -1 and the fitness threshold for a population is set
 to a value where the threshold is greater than ec.hfc.percentile
 of the population. For example, if ec.hfc.percentile is 0.85 the
 fitness threshold for a population is set to the value of the
 individual whose fitness is worse than only 15% of the popula-
 tion. In the case, the fitness thresholds are adaptive. In the
 second approach, the fitness thresholds are fixed. ec.hfc.first
 (float greater than 0 and less than 1) is set to the fitness
 threshold of the first population accepting incoming individu-
 als. The thresholds for the subsequent populations are increased
 according to ec.hfc.scale (described below)to allow for thresh-
 olds up to but less than 1.0

 GP-StatsCalcFitSimpleMPIOp

 This operator can replace GP-StatsCalcFitnessSimpleOp to
 replace Vivarium statistics for a single island with Vivarium
 statistics for all processes in the log files. The hall-of-fame
 individuals are still reported per island however.

 MPITerminateOp

 This signals the application to terminate execution of all pro-
 cesses whenever a single island is terminated by any of the ter-
 mination operators. Use this, for example, to ensure correct
 termination when a fitness of 1.0 has been found.

 TermMaxTimeOp

 Terminate after ec.term.maxtime minutes have passed. If com-
 piled with MPI, this is the MPI wall time. Otherwise, this is
 the time calculated using c_time clock(). If set to zero, the
 operator is ignored.

 The registers available for parallel execution are:

 ec.mig.mpi_interval

 The number of generations that must pass before a migration
 between islands occurs.

 ec.mig.mpi_size

 The number of individuals that migrate from each population of
 each island.

 ec.term.maxtime

 Terminate the evolution after this many minutes (default 60).

 ec.hfc.percentile

 Percentile of fitness measure to use as HFC migration threshold
 of next population. For example, a threshold of 0.85 means that
 the fitness used as threshold to accept migrant into following
 population is taken as the fitness of the individual that is

 48

 better than 85% of the other individuals in its population.
 Default is 0.85. This value is ignored if ec.hfc.first is posi-
 tive

 ec.hfc.first

 If negative, adaptive thresholds are used for HFC according to
 ec.hfc.percentile. If positive, the register must be greater
 than 0 and less than 1.0. The thresholds for the populations in
 HFC are then set evenly spaced fixed values between first and
 1.0.

 ec.hfc.scale

 This parameter is used to adjust how the fitness thresholds of
 populations are scaled if adaptive thresholds are not used
 (ec.hfc.first>0). The ratio between the fitness thresholds of
 populations is given by ec.hfc.scale to create a geometric
 series between ec.hfc.first and 1.0. If ec.hfc.first is 1, the
 fitness thresholds are evenly spaced. If ec.hfc.first is >1,
 more of the fitness thresholds are at lower fitnesses. If <1,
 more are at higher fitnesses. The default value is 1.

 ec.hfc.interval

 Interval between each hierarchical fair competition migration,
 in number of generations. An interval of 0 disables HFC migra-
 tions. Default is 1.

HYBRID PM-DREAMER
 PM-Dreamer supports hybrid optimization of functional forms, allowing
 for local optimization of constants in the expression tree. This is
 accomplished by adding the GP-HybridOptOp operator. The registers that
 parameterize the operator include:

 gp.hybopt.indpb

 The frequency with which hybrid optimization is performed on an
 indivual. The default value is 0.05.

 gp.hybopt.primit

 The name for the constants in the tree that are optimized.
 Default is E.

 gp.hybopt.type

 The type of optimization to be performed. If the value is 0,
 all constants in an expression tree are optimized using multidi-
 mensional Nelder/Mead Simplex algorithm. If the value is
 nonzero, a random constant in the expression tree is optimized
 using 1D minimization (also with Simplex). The default value is
 1.

 gp.hybopt.maxi

 The maximum number of iterations of local optimization to be
 performed. Default is 10.

 49

RESTARTING OPTIMIZATIONS
 Simulations can be restart using the -c flag. This requires that the
 ReadRestartOp operator be present in the beagle_config_file. The Read-
 RestartOp replaces the MilestoneReadOp in OpenBeagle. When restarting,
 the individuals and the generation number are read. The data, tem-
 plate_style, and parameters from the previous run are not read in. This
 allows the user to continue a run with new data, template_style, and/or
 configuration parameters. When restarting a run with new data or a new
 template_style, the fitness of all individuals are recalculated and the
 Hall of Fame individuals are updated with any changes that result from
 the new fitness evaluation. Because the restart will start using the
 last generation from the milestone files, the ec.term.maxgen register
 may need to be increased to allow for a larger number of generations.
 When restarting in parallel, if a smaller number of processors is used,
 the individuals from the higher rank processes will be thrown out.

VECTORIZATION
 PM-Dreamer allows for vectorized evaluation of expression trees using
 the -z flag. When vectorization is enabled, the expression tree for a
 given individual needs to be parsed only a single time using the vec-
 tor(s) of values necessary for energy/force calculation. This provides
 an improvement in speed because it prevents multiple parsing of the
 same expression tree and the potential for SIMD compiler optimizations.
 The configuration file does not need to be changed to utilize vector-
 ization; internal replacements of the standard primitives and fitness
 operators are performed to allow vector math operations to be per-
 formed. Although the runs with vectorization should produce identical
 results, changes due to finite precision and the order of summation
 operations can result in different results. Because certain Open Beagle
 primitives have the argument types hard-coded, vectorization is left as
 an option to aid in compatability with future versions.

AUTHORS
 W. Michael Brown

 50

 51

Appendix B - GP-Force Performance for Different
Parameter Sets

Figure B-1. GP performance at varying tournament selection sizes for a Lennard-
Jones test case consisting of 10 configurations with 55-65 pair-interactions per
configuration. Each data point is the mean best fitness calculated as an average
over 50 runs on 32 processors with 5000 individuals per processor. HFC was run
using fixed fitness thresholds ranging from 0.11 to 1.0. HFC migration was
performed every generation. For the other replacement strategies, random
migration of 50 individuals was performed every 2 generations. For the random
case, the population is destroyed at each generation and new random individuals
are created. For HFC, the crossover probability was 0.9 and for all others it was
0.8. The probability of hybrid optimization was set to 0 in these cases; the
probability of all other types of mutation was set at 0.05. The number of
generations in the evolution for each case is shown below.

Generational Tournament Size

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=2
n=4
n=6
n=8
n=10
n=12

HFC Tournament Size

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=2
n=4
n=6
n=8
n=10
n=12

Simple Tournament Size

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=2
n=4
n=6
n=8
n=10
n=12

Steady-State Tournament Size

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=2
n=4
n=6
n=8
n=10
n=12

Mean Generations per 2 Minute Wall Time Limit

0
10
20
30
40
50
60
70

n=
2

n=
4

n=
6

n=
8

n=
10

n=
12 n=
2

n=
4

n=
6

n=
8

n=
10

n=
12 n=
2

n=
4

n=
6

n=
8

n=
10

n=
12 n=
2

n=
4

n=
6

n=
8

n=
10

n=
12

Generational HFC Simple Steady-State

G
en

er
at

io
ns

 52

Figure B-2. GP performance at various crossover probabilities. Runs were
performed as described in Figure B-1 using a tournament selection size of 6 for
Generational, HFC, and Steady-State replacement strategies and 8 for the Simple
replacement strategy.

Generational Crossover Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.2
n=0.4
n=0.6
n=0.8
n=1.0

HFC Crossover Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.2
n=0.4
n=0.6
n=0.8
n=1.0

Simple Crossover Probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.2
n=0.4
n=0.6
n=0.8
n=1.0

Steady-State Crossover Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.2
n=0.4
n=0.6
n=0.8
n=1.0

Mean Generations per 2 Minute Wall Time Limit

0
20
40
60
80

100

n=
0.

2
n=

0.
4

n=
0.

6
n=

0.
8

n=
1.

0
n=

0.
2

n=
0.

4
n=

0.
6

n=
0.

8
n=

1.
0

n=
0.

2
n=

0.
4

n=
0.

6
n=

0.
8

n=
1.

0
n=

0.
2

n=
0.

4
n=

0.
6

n=
0.

8
n=

1.
0

Generational HFC Simple Steady-State

G
en

er
at

io
ns

 53

Figure B-3. GP performance using various probabilities for constant mutation.

Generational Constant Mutation Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

HFC Constant Mutation Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

Simple Constant Mutation Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

Steady-State Constant Mutation Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

Mean Generations per 2 Minute Wall Time Limit

0
10
20
30
40
50
60

n=
.0

5
n=

.1
0

n=
.1

5
n=

.2
0

n=
.2

5
n=

.0
5

n=
.1

0
n=

.1
5

n=
.2

0
n=

.2
5

n=
.0

5
n=

.1
0

n=
.1

5
n=

.2
0

n=
.2

5
n=

.0
5

n=
.1

0
n=

.1
5

n=
.2

0
n=

.2
5

Generational HFC Simple Steady-State

G
en

er
at

io
ns

 54

Figure B-4. GP performance using various standard mutation probabilities.

Generational Standard Mutation Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

HFC Standard Mutation Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

Simple Standard Mutation Probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

Steady-State Standard Mutation Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

Mean Generations per 2 Minute Wall Time Limit

0
10
20
30
40
50
60

n=
.0

5
n=

.1
0

n=
.1

5
n=

.2
0

n=
.2

5
n=

.0
5

n=
.1

0
n=

.1
5

n=
.2

0
n=

.2
5

n=
.0

5
n=

.1
0

n=
.1

5
n=

.2
0

n=
.2

5
n=

.0
5

n=
.1

0
n=

.1
5

n=
.2

0
n=

.2
5

Generational HFC Simple Steady-State

G
en

er
at

io
ns

 55

Figure B-5. GP performance using various shrink mutation probabilties.

Generational Shrink Mutation Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

HFC Shrink Mutation Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

Simple Shrink Mutation Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

Steady-State Shrink Mutation Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

Mean Generations per 2 Minute Wall Time Limit

0
10
20
30
40
50
60

n=
.0

5
n=

.1
0

n=
.1

5
n=

.2
0

n=
.2

5
n=

.0
5

n=
.1

0
n=

.1
5

n=
.2

0
n=

.2
5

n=
.0

5
n=

.1
0

n=
.1

5
n=

.2
0

n=
.2

5
n=

.0
5

n=
.1

0
n=

.1
5

n=
.2

0
n=

.2
5

Generational HFC Simple Steady-State

G
en

er
at

io
ns

 56

Figure B-6. GP performance using various swap mutation probabilties.

Generational Swap Mutation Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

HFC Swap Mutation Probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

Simple Swap Mutation Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

Steady-State Swap Mutation Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

Mean Generations per 2 Minute Wall Time Limit

0
10
20
30
40
50
60

n=
.0

5
n=

.1
0

n=
.1

5
n=

.2
0

n=
.2

5
n=

.0
5

n=
.1

0
n=

.1
5

n=
.2

0
n=

.2
5

n=
.0

5
n=

.1
0

n=
.1

5
n=

.2
0

n=
.2

5
n=

.0
5

n=
.1

0
n=

.1
5

n=
.2

0
n=

.2
5

Generational HFC Simple Steady-State

G
en

er
at

io
ns

 57

Distribution

1 Alexander Slepoy, NNSA, Alexander.Slepoy@nnsa.doe.gov (electronic copy)

1 MS-1315 Mark J. Stevens, 8331 (electronic copy)
1 MS-1316 William M. Brown, 1412
1 MS-1316 Steven J. Plimpton, 1416 (electronic copy)
1 MS-1316 Mark D. Rintoul, 1412 (electronic copy)
1 MS-1318 Jean-Paul Watson, 1412
1 MS-1322 John B. Aidun, 1435 (electronic copy)
1 MS-1322 Paul S. Crozier, 1435 (electronic copy)
1 MS-1322 Peter A. Schultz, 1435
1 MS-1322 Aidan P. Thompson, 1435
1 MS-0123 D. Chavez, LDRD Office, 1011
1 MS-0899 Technical Library, 9536 (electronic copy)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

