
SANDIA REPORT 
 

SAND2008-6454 
Unlimited Release 
Printed October 2008 
 
 
Bridging Scales from Ab Initio Models to 
Predictive Empirical Models for Complex 
Materials 
 

W. Michael Brown, Aidan P. Thompson, Jean-Paul Watson, and Peter A. 
Schultz 
 
 
 
 
 
 
 
Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 
 
Sandia is a multiprogram laboratory operated by Sandia Corporation, 
a Lockheed Martin Company, for the United States Department of Energy’s 
National Nuclear Security Administration under Contract DE-AC04-94AL85000. 
 
 
 
Approved for public release; further dissemination unlimited. 
 
 
 

 



 2

 
 

Issued by Sandia National Laboratories, operated for the United 

States Department of Energy by Sandia Corporation. 

NOTICE:  This report was prepared as an account of work sponsored by an agency 
of the United States Government.  Neither the United States Government, nor any agency 
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their 
employees, make any warranty, express or implied, or assume any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represent that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government, any agency thereof, or any of their contractors or subcontractors.  The 
views and opinions expressed herein do not necessarily state or reflect those of the United 
States Government, any agency thereof, or any of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from 
the best available copy. 
 
Available to DOE and DOE contractors from 

U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN  37831 
 
Telephone: (865)576-8401 
Facsimile: (865)576-5728 
E-Mail: reports@adonis.osti.gov 
Online ordering:  http://www.doe.gov/bridge  
 

 
 
Available to the public from 

U.S. Department of Commerce 
National Technical Information Service 
5285 Port Royal Rd 
Springfield, VA  22161 
 
Telephone: (800)553-6847 
Facsimile: (703)605-6900 
E-Mail: orders@ntis.fedworld.gov 
Online order:  http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online  

 
 

 



 3

 
SAND2008-6454 
Unlimited Release 

Printed October 2008 
 

 
Bridging Scales from Ab Initio Models to Predictive 

Empirical Models for Complex Materials 
 
W. Michael Brown, Aidan P. Thompson, Jean-Paul Watson, and Peter A. Schultz 
 

Discrete Math and Complex Systems (01412) 
Multiscale Dynamic Material Modeling (01435) 

 
Sandia National Laboratories 

P.O. Box 5800 
Albuquerque, NM 87185-1316 

 
 

Abstract 
 
 

Multiscale materials simulations that capture and quantify the complex dynamical 
and structural phenomena are crucial to many current and future NNSA and DOE 
missions. Although simulations are potentially enabled by Tera- and Peta-scale 
computers and high performance parallel atomistic simulation codes, the lack of 
adequately predictive atomistic empirical models precludes meaningful 
simulations for all but a few materials systems. Achieving the goal of using 
predictive simulations to augment, or even replace, expensive and time-
consuming experimental studies requires predictive material-specific simplified 
empirical models. Herein, we describe the development and validation of the PM-
Dreamer software package that is intended to incorporate sophisticated 
mathematical optimization techniques into the formulation and optimization of 
robust empirical models. The approach is intended to enable predictive 
simulations of materials chosen by mission need, rather than dictated by the 
availability of pre-existing models with sufficient accuracy. We demonstrate the 
efficacy of the described approach on model systems with atomic configuration 
energies calculated using known 2- and 3-body interaction potentials. 
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Introduction 
 

Multiscale materials simulations that capture and quantify the complex dynamical 
and structural phenomena are crucial to many current and future NNSA and DOE 
missions including: 

 
• radiation damage in electronic devices (QASPR, ELDRS) 
• sensitivity of high explosives 
• response of materials to high-strain rate dynamical loading  
• bubble formation in tritides (neutron generators) 
• aging of mixed actinide nuclear fuel elements 
• low-melting salts for solar power 
• high-activity fuel-cell catalysts 
• beyond-end-of-roadmap nanostructured electronic materials 

 
Although simulations are potentially enabled by Tera- and Peta-scale computers and high 
performance parallel atomistic simulation codes such as LAMMPS, the lack of 
adequately predictive atomistic empirical models (e.g., interatomic potentials, tight 
binding models) precludes meaningful simulations for all but a few materials systems. 
Achieving the goal of using predictive simulations to augment, or even replace, 
expensive and time-consuming experimental studies requires predictive material-specific 
simplified empirical models. Such models must incorporate the necessary physics to 
bridge from more fundamental, but prohibitively expensive, ab initio descriptions of 
materials to more empirical, yet computationally tractable, models.  

 
For many decades, computational efficiency has been achieved in molecular 

physics with the use of coarse-graining approaches that facilitate a classical description of 
particle mechanics through dimensionality reduction. While the most common example is 
the utilization of single particle representations for atoms, investigation into the use of 
spherical and aspherical particles for representing groups of atoms has recently surged 
due to the potential for increasing the timescale of nanoparticle, polymer, and 
protein/DNA simulations [1, 2]. In order to facilitate simulation of a system of particles, 
it is necessary to obtain equations that calculate the potential energy of a system of 
particles along with the derivative of the energy with respect to each particle’s position. 
These derivatives give the particle forces necessary to describe particle motion, perform 
geometry optimization, etc. Although atomistic and other coarse-grained approaches 
offer computational efficiency in a straightforward manner, they introduce a fundamental 
problem: How do we determine the equations for modeling the instantaneous energy of 
an arbitrary configuration of particles? 

 
Traditionally, these equations have been modeled by physicists using a 

combination of chemical intuition and manual fitting. This approach suffers from two 
important limitations. First, the models are limited by the observations and time of an 
individual physicist. Therefore, it is unlikely that these models are optimal in terms of 
accuracy and transferability to general problems of interest. Second, due to the 
approximations required for an efficient classical representation of particle mechanics, 
we cannot expect that a general model exists that is capable of predicting macroscopic 
properties across the spectrum of particle types and phase space of interest to laboratory 
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missions. Therefore, in order to achieve a cost-effective capability for particle simulation 
to support the wide variety of projects important to the success of the laboratory, we 
require rapid procedures for obtaining models that capture the relevant physics of a given 
problem. 

 
Herein, we describe research methods to incorporate sophisticated mathematical 

optimization techniques into the formulation and optimization of robust empirical 
models. These methods are intended to enable predictive simulations of materials chosen 
by mission need, rather than dictated by the availability of pre-existing models with 
sufficient accuracy. We describe the implementation of PM-Dreamer, a software package 
that offers a unified approach to domain-specific, population-based global/local hybrid 
optimization algorithms for the identification of models yielding consistently low errors 
across training data. Finally, we report the validation of PM-Dreamer by obtaining known 
functional forms for interparticle potentials from particle configuration data. 

 
Evolutionary Optimization 
 

In classical particle mechanics, the models typically decompose the system 
potential energy, e, into a set of independent m-body interactions that are a function of 
each particle’s position, r·. For a 2-body or pair potential, it is assumed that the energy 
contributions from each pair of interacting particles are independent of other pairs and 
therefore, 
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The force on a given particle is given by the derivative of the energy with respect to that 
particles position. For a 2-body potential,  
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For a 3-body potential, triplets of atoms are also considered: 
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Therefore, for this work, we considered the objective of developing automated methods 
for obtaining g for 2-body potentials, g and h for 3-body potentials, etc. using training 
data consisting of particle positions and the corresponding potential energies, e. With this 
approach, we can utilize ab initio calculations of the energy of particle configurations to 
generate the empirical models necessary for efficient calculation of the potential energy 
surface.  
 
 Perhaps the most general approach to symbolic regression of these empirical 
models is given by genetic programming. In this approach, evolutionary optimization is 
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utilized to obtain functional forms that fit training data [3]. In genetic programming, a 
mathematical equation is represented by a tree. For example, the function tzxy ++ is 
shown in Figure 1. The tree is evaluated recursively from the root node by applying the 
operators to each subtree or the constants and variables at the terminal nodes. The search 
space for the symbolic regression is defined by the possible operators, the variables 
available for the expression, the set of available constants for the expression, and the 
maximum depth of the tree. Initially, a random set of individuals (expression trees) is 
generated to create a population. A fitness metric, typically the root mean square error, is 
then evaluated using the training data for each expression tree. The evolutionary 
optimization proceeds by applying operators intended to mimic biological evolution to 
create a new generation of individuals. In this process, individuals from the current 
population are selected based on their fitness. 
For example, a crossover operator can swap 
subtrees of two individuals selected to breed 
and a mutation operator can alter a single 
expression tree by swapping subtrees, deleting 
subtrees, changing the operator in a node, etc. 
This process continues until the maximum 
number of generations has been reached, the 
maximum amount of time has passed, or an 
equation has been found that calculates the 
training data with an error that is below some 
threshold value. Genetic programming has been 
utilized for problems ranging from the 
generation of econometric models to image 
compression and was chosen for this work due 
to its potential for finding globally optimal 
functional forms with little user bias. 

 
Previous Work 
 

The most common method employed for obtaining functional forms that describe 
the potential energy surface in terms of atomic or coarse-grained particles involves the 
use of analytic fits [4, 5]. In this case, the functional form is “guessed” by physical 
intuition and the free parameters are optimized to fit available data [6, 7]. Due to the 
difficulty and time required for obtaining functional forms for analytic fits, interpolation 
schemes are often employed. In this process, an accurate method such as density-
functional theory (DFT) is utilized to provide a sampling of the potential energy surface 
that facilitates calculation of an approximate continuous potential energy surface. Several 
methods have been described to accomplish this interpolation including modified 
Shepard interpolation [8-10], corrugation-reducing interpolation [11-14], and regression 
with neural networks [6, 15, 16]. These approaches can also be considered as having a 
fixed functional form defined by the kernel used for interpolation or the neural net. 
Despite this limitation, they can typically achieve low-error fits to general training data 
due to the increased parameterization of the model. In trade, the functions generated are 
typically very large and difficult to interpret. This limitation results in interparticle 
potentials that are difficult to implement in simulation codes; in addition to energy 
calculation, it is necessary to use these potentials for calculations of forces, tail-

Figure 1. Example of an expression 
tree used in genetic programming. 
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corrections, etc. Identification and correction of numerical problems in the resulting 
functions can be difficult. Also, in cases where it is desirable to obtain potentials that are 
fit in terms of physical constants or other parameters supplied for the different types of 
particles, it is difficult to interpret how these parameters are utilized in the energy 
calculation; erroneous terms resulting from overfitting the data are difficult to identify. 
An additional problem is that the complicated functions add significant computational 
time to the simulation and are not straightforward to optimize for architecture specific 
enhancements. In some interpolations approaches, the memory or speed required to 
compute the energy is dependent on the size of the training data, introducing inefficiency 
for large training sets and high-dimensional potential energy surfaces. Finally, it is 
difficult to communicate these models in the scientific literature. 

 
The use of genetic programming (GP) for symbolic regression offers the most 

general approach, allowing for optimization of the functional form in addition to model 
parameters. This allows for the generation of compact models without a loss of accuracy. 
The trade-off is the huge computational effort required for optimization in a search space 
consisting of possible functions. The use of genetic programming for obtaining models 
for the potential energy surface was first described by Makarov and Metiu [17]. In their 
approach, a serial GP implementation was utilized to search for functional forms. In order 
to obtain low-error results, however, their approach required the use of directed search. In 
this approach, a significant portion of the functional form is supplied to reduce the size of 
the search space. Additionally, the authors performed the fitting using the minimum 
number of particles required to calculate the energy. This allows for a faster optimization 
and can produce potentials suitable for gas-phase simulations; however, it is unlikely that 
potentials fit under these conditions would allow for accurate condensed-phase 
simulations or general purpose applications. 

 
In recent work, we have shown that a parallel GP implementation can 

successfully obtain the correct functional form for potential energy surfaces using 
training data sufficient for condensed-phase problems without the use of directed search 
[18]. For model problems with known solutions, we were able to routinely obtain the 
exact functional form rather than just low-error fits. In our validation, however, we made 
use of a relatively simple potential energy function, the search space was limited to 
integer constants, and the maximum depth for the expression tree was relatively small. 
For many applications, it will be desirable to make use of more complicated functions in 
a search space containing more operators and floating-point constants. The addition of 
new operators and larger expression trees will result in an exponential growth in the size 
of the search space. This alone is problematic in that the validation runs already required 
~300 CPU hours each [18].  

 
Towards the Automated Discovery of Novel Empirical Models 
 

For many problems of interest, efficient empirical models do not exist or suffer 
from transferability problems. For example, when attempting to model a semiconductor 
with a classical approach, simple van der Waals interaction potentials fail are incapable 
of stabilizing the diamond-like tetrahedral crystal structure of silicon. This can be 
corrected with the addition of terms to favor the tetrahedral bond angles found in the 
crystal, as in the Stillinger-Weber potential [19]. When this potential is used, however, 
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the tetrahedral bias results in inaccurate simulations of amorphous silicon, producing 
incorrect surface structures and liquid coordination. The more complicated Tersoff 
potential [20] successfully addressed these issues in silicon. However, when the Tersoff 
potential was fit to germanium structures, the melting point was severely underestimated 
[21]. Despite considerable effort, there is no potential capable of accurately modeling 
melting in germanium. 

 
We have demonstrated a proof-of-principle for the automated generation of 

compact functional forms necessary for efficient multiscale modeling. In order to find 
solutions for the types of problems described above, further work is required. To meet 
this need, we developed a new software package – PM-Dreamer. In this project, we 
focused on 3 issues important in moving our previous work from proof-of-principal 
towards an application ready for relevant problems: 

 
1. Complex Potentials: The software was designed to allow for the 

simultaneous optimization of multiple functions involved in 3-body potentials 
and to calculate the relevant variables from particle configurations with 
periodic boundary conditions and arbitrary cutoffs. 

2. Efficiency: A drastic improvement in efficiency is required in order to 
successfully obtain complicated potentials such as the Stillinger-Weber in a 
search space with larger expression trees, more operators, and floating-point 
constants. 

3. Overfitting: Due to the complex physics and limited training data available 
for many problems, it is important to mitigate the risk of obtaining erroneous 
functions that fit only the training points. 
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Methods 
 

Open BEAGLE 
 
 PM-Dreamer was developed in C++ using the Open BEAGLE library for 
evolutionary computation [22]. This library was developed to meet a need for generic 
software tools for evolutionary computation that allow for replaceable or modifiable 
components in an object-oriented framework [23]. The library complies with the C++ 
ANSI/ISO 3 standard and is licensed under the GNU GPL. The library is designed using 
an object-oriented architecture with smart pointers for automatic memory allocation 
management, XML file formats with a built-in parsing facility, parameters and 
algorithms that are dynamically configurable by files, and a milestone mechanism for 
evolution recovery and results analysis. The library has several replacement strategies for 
generation of new populations including generational, steady-state, (mu,lambda), and 
mu+lambda. The elitism operator is included offering the option to assert that the best 
individual(s) from a given generation will be present in the next generation. The library 
supports evolution with multiple populations, multiobjective optimization, population 
seeding from files, and complete evolution statistics. 
  
 For genetic programming, Open BEAGLE uses a standard crossover operator 
with five mutation operators: 
 

• Standard – Standard GP mutation as defined by Koza [3] 
• Swap Node – Swap nodes in the expression tree 
• Shrink – Replace a randomly chosen branch with a randomly chosen argument 

on the branch 
• Swap Subtree – Swap branches in the expression tree 
• Ephemeral – Mutate the value of a constant in the expression tree 

 
Three methods can be used for initialization of populations: 
 

• Grow – the initial population consists of expression trees with variable depths 
• Full – the initial population consists of expression trees that all have the 

maximum depth 
• Half-and-Half - An equal number of expression trees are generated using a depth 

parameter that ranges between 2 and the maximum specified depth 
 
Selection of individuals for breeding, etc., can be accomplished using several operators: 
 

• Random – Individuals are selected randomly (uniform distribution) 
• Roulette – Individuals are selected using a proportional roulette selection 

operator 
• Tournament – Individuals are selected in a tournament that chooses the best 

fitness individual from n randomly chosen individuals 
• Parsimony Tournament – Individuals are selected using a lexicographic 

parsimony pressure tournament selection based on Luke and Panait. 
• NPGA20p – Selection for multiobjective optimization 
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Finally, Open BEAGLE supports automatically defined functions and operators for 
constrained evolution. 
 
 In PM-Dreamer, configuration of the optimization strategy and parameters along 
with the operators, variables, and constants that compose the search space are specified 
using an Open BEAGLE supported configuration file that is supplied on the command-
line. A full description of the replacement strategies, operators, and parameters for 
controlling evolution and output of statistics is given in Appendix A. 
 
Distributed Evolutionary Optimization 
 

Open BEAGLE has been designed as a serial code with limited support for 
parallel optimization with multithreaded options only for coevolution. For the domain 
presented here, this approach is insufficient given the difficulties that arise due to the 
training data and the complicated search space. Therefore, we implemented support for 
distributed evolutionary optimization in PM-Dreamer using the Message Passing 
Interface (MPI) standard [24]. Most existing strategies for parallel optimization with 
genetic algorithms can be classified into 3 categories [25]. In the first, a master-slave 
approach is utilized to divide the task of fitness evaluation and/or the application of 
operators to the individuals in the population. This approach allows for simple load 
balancing for arbitrary optimization parameters. Of course, there is inefficiency in the 
method because every individual must be communicated back and forth from the master 
process at each generation. Additionally, there are limits to the size of a population for 
performing efficient optimization. In fact, after the population grows past a certain size 
the optimization efficiency will usually begin to decease. This constraint places severe 
limitations on the parallel scaling for many problems. 

 
This difficulty can be addressed with the use of multiple populations that evolve 

independently with some migration of individuals between populations. This approach is 
generally beneficial for obtaining global minima due to the relatively independent 
convergence of multiple populations. While this approach can be used to improve the 
parallel efficiency of master-slave algorithms, it offers an alternative strategy – assigning 
the multiple populations to different processors. This is the second category and is the 
most commonly employed parallel approach for genetic algorithms. In this case, the 
communication is decreased to the migration of a typically small fraction of individuals 
every specified number of generations. The third category for parallel implementations 
also uses multiple populations for evolution, but rather than using migration, the 
approaches utilize a static or dynamic set of overlapping individuals that evolve in more 
than 1 population. 

 
The probability of obtaining a global minimum can be improved with the use of 

multiple populations; however, each population will ultimately converge towards some 
solution resulting in stagnation due to the decrease of variability in a population. 
Recently, a new evolutionary approach has been proposed to eliminate the premature 
convergence towards any one solution in evolutionary optimization. The model, called 
Hierarchical Fair Competition (HFC), is designed to facilitate sustainable evolutionary 
search by preventing the convergence of a population to the vicinity of any set of optimal 
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or locally optimal solutions [26]. This is achieved by attempting to ensure a continuous 
supply of variable genetic material with a hierarchical structure of populations. In this 
hierarchy, individuals compete with other individuals with similar fitness. Once an 
individual is obtained with sufficiently high fitness, it moves up the hierarchy to compete 
with other high fitness individuals. Population sizes are maintained with the introduction 
of random individuals and/or the decimation of poor fitness individuals. The approach is 
modeled after advanced social organizations that prevent unfair competition and has been 
shown to improve the scalability and efficiency of evolutionary algorithms.  Although 
HFC has been evaluated using serial codes, the potential for parallel scalability is 
obvious. 

 
We implemented two approaches for distributed evolutionary optimization in PM-

Dreamer. In the first, multiple populations are used with migration between populations. 
Each process can have single or multiple populations and the population sizes may vary. 
The number of individuals and the migration interval can be specified in the 
configuration file. Here, a set of n populations is divided between the processors 
(currently, n must be a multiple of the number of processes). In Figure 2, we illustrate the 
HFC approach using 4 populations. Each population has a rank between 1 and n. Rank 1 
always has a fitness threshold of 0 and as the rank increases, so should the fitness 
threshold. Initially, all populations are filled with random individuals. As the evolution 
proceeds, any individual whose fitness is greater than the threshold for a higher rank 
population is migrated to that population. Following migration, any population whose 
size has become greater than the specified fixed population size will decimate the least fit 
individuals. Any population, whose size is smaller than the fixed size will add randomly 
generated individuals. Therefore, the rank 1 population has the lowest average fitness. As 
the evolution process generates individuals with fitness exceeding the lowest threshold, 

Figure 2. The concept of Hierarchical Fair Competition. 



 16

they migrate to higher rank populations and are replenished by an influx of random 
individuals. The highest rank population will only accept individuals with high fitness, 
decimating the least fit individuals whenever new ones arrive. 

  
When one population is allocated to each processor, the arrows in green represent 

the communication topology for distributed HFC. In order to achieve parallel efficiency, 
there is a 1-generation lag from the time an individual migrates out of a population on 
one process to the time it appears in the new population on another. There are two 
approaches for setting the population thresholds in PM-Dreamer. The first uses an 
adaptive scheme [27] controlled by a user-specified percentile, p. The fitness threshold 
for a population with percentile p is chosen so that p percent of individuals have equal or 
lower fitness. In the second, approach, the thresholds are fixed and controlled by 
specifying the first threshold along with a scaling parameter that is equal to the ratio 
between fitness thresholds with adjacent ranks. Additionally, the user can specify the 
interval (in generations) at which HFC migration occurs. 

 
In addition to the distributed optimization strategies, PM-Dreamer extends Open 

BEAGLE with operators for distributed statistics calculation and support for parallel 
restarts. 

 
Hybrid Optimization 
 

Hybrid optimization, commonly a coupling between global and local search 
strategies, is not typically employed in genetic programming. The approach has been 
shown to increase the optimization efficiency in genetic programming for civil 
engineering problems [28] and is known to be effective when local search strategies are 
employed in genetic algorithm optimizations. Intuitively, the addition of local search 
operators would seem to improve the convergence towards correct functional forms with 
optimization of constants appearing in randomly selected expressions. We therefore 
implemented a local search operator into PM-Dreamer. The operator utilizes user-
specified parameters to control the probability of local search, the maximum iterations of 
local search, and whether the search optimizes a randomly chosen constant or all 
constants in the expression tree. Currently, the local search is performed using the 
derivative-free Nelder-Mead simplex algorithm [29]. In this approach, a starting vector 
and a step-size are specified to generate the n+1 vertices of a simplex for an n-
dimensional minimization. The simplex moves through the parameter space using a series 
of geometric transformations including reflection, reflection followed by expansion, 
contraction and multiple contraction towards the minimum. 

 
Model Templates 
 

Function evaluation for particle simulation is complicated by the fact that the 
instantaneous energy for a configuration is a function of the positions of all of the 
particles in the system. It would be unacceptably inefficient to attempt to formulate a 
single function in terms of each individual particle and therefore model templates are 
provided in PM-Dreamer. Currently templates are available for 2-body and 3-body 
interparticle potentials. For 2-body potentials, the optimization searches for the function g 
in equation 1. For 3-body potentials, the functions for g and h in equation 3 are 
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simultaneously optimized. This is performed using a single expression tree where the left 
subtree of the root node represents g and the right subtree represents h. The training data 
is supplied as a set of energies, each with a set of particle positions, a cutoff, and an 
option for periodic boundary conditions. Details on the formats for input files are 
specified in Appendix A. In future versions, it may be desirable to add additional 
templates. 

 
Limitations on the amount of training data can create a risk for overfitting in some 

cases. It has been shown that overfitting can be reduced by fitting not only the functions, 
but also the derivatives of the functions (i.e. forces) [17]. For many ab initio methods, the 
atomic forces can be easily calculated along with the energy. Therefore, in addition to the 
templates for energy calculation, PM-Dreamer supports templates that evaluate the 
particle forces in addition to the system energy, only the particle forces, and only the x-
component of the particle forces. In these cases, forward finite-difference with ε=1·10-8 is 
used for force calculation. In cases where both the energy and forces are evaluated, the 
total fitness is equal to half of the value for the energy fitness statistic plus half of the 
value for the forces fitness statistic. The fitness statistics are described below. 

 
Fitness Statistics 
 

It is traditional in genetic programming to use some form of the root mean square 
error (RMSD) for fitness evaluation in symbolic regression. In PM-Dreamer, this is 
accomplished using the adaptive RMSD with the fitness given by, 
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where y is the value for the energy or a component of the force in the training set 
normalized by the number of terms in the summation over g (see for example Equations 
1-3). The normalization is used to prevent any one configuration from being more heavily 
weighted due to a larger number of computed interactions. ŷ is the value calculated by an 
individual, also normalized. In this form, the minimum fitness is 0, the maximum fitness 
is 1, and changes in fitness near 1 are more heavily weighted. The RMSD is a natural 
choice in that it is an intuitive measure of error. For many regression problems, analytic 
solutions exist that minimize the RMSD. For genetic programming, however, the RMSD 
might not be the best choice. Consider a case in which we are optimizing a function u(r) 
and the correct solution for the problem is given by w(r). When we obtain the correct 
answer, u(r) = w(r), the data points on a plot of u(r) vs w(r) will fall on a straight line 
with a slope of 1 and an intercept of 0 (blue line in Figure 3). This is the only case in 
which the RMSD will be 0. Now consider, the case where we have found a very close 
solution in terms of the search space, u(r) = -1·w(r). The data points still fall on a line 
with good correlation (red line in Figure 3), but the RMSD statistic is very poor despite 
the fact that the expression tree is very similar to the correct answer. 
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 In an attempt to improve optimization efficiency, we implemented an alternative 
fitness statistic using the Pearson correlation coefficient, 
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where σ is used to denote the standard deviation. In this case, the fitness is 1 when there 
is perfect linear correlation between y and ŷ. In the example in Figure 3, a correct answer 
would be any function for u(r) resulting in a 
straight line on the plot. Any correct function, 
by this definition, can be altered to result in an 
RMSD of 0 with rescaling and shifting. This is 
achieved in PM-Dreamer using ordinary least 
squares. Use of this statistic is beneficial in 
that it increases the fraction of the search 
space corresponding to a correct answer and 
provides a small decrease in the minimum size 
of an expression tree required. Presumably, 
the statistic should also improve efficiency by 
preventing the early convergence towards 
functions that do not resemble the correct 
answer but simply produce results in the 
vicinity of the training data. 
 
Vectorization 
 

Expression evaluation in genetic programming is relatively inefficient when 
compared to hard-coded expressions because the compiler has no knowledge of the 
expression that will be evaluated. Each operator in an expression incurs the overhead of a 
function call because in-lining cannot occur and each expression must be parsed by 
searching the tree. Additionally, modern processors have the ability to perform 
simultaneous math operations on a single chip with the use of Single Instruction Multiple 
Data (SIMD) instructions. These instructions have gone unutilized in current genetic 
programming codes. This is problematic for our purposes, in that the same expression 
must be evaluated many times when evaluating the energies and/or forces (see the 
summations in Equations 1-3). 

 
In order to make energy and force calculation more efficient in PM-Dreamer we  

added support for vector expressions. When this approach is used, the input for variables 
in an expression tree is a set of vectors rather than scalar values. Likewise, the answer 
generated is a vector. This prevents parsing the same tree multiple times because each 
operator in the expression evaluates the vector in a loop. This also allows for compiler 
optimizations that utilize SIMD instructions. Vectorization is enabled in PM-Dreamer 
with a command-line flag that replaces operators and variables with primitives that 
support vector-vector, vector-scalar, and scalar-scalar operations. It is currently left as an 
option to aid in compatibility with future Open BEAGLE developments that might not 
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support vector operations. Additionally, this option can decrease performance when only 
1 or 2 terms are evaluated in a given summation. 
 
Restarting Simulations 
 

PM-Dreamer offers support for a variety of model templates and fitness statistics. 
It may be desirable to use different model templates, fitness statistics, and training data 
during a single run. For example, it might be desirable to start with a small training set 
utilizing only force calculation in the x dimension for the fitness calculation. This might 
result in high optimization efficiency. The user might then wish to refine results using a 
larger dataset with fitnesses that include both the energy and the force. Therefore, we 
wrote a new restart mechanism that allows the user to restart distributed jobs while 
changing the optimization parameters, model template, fitness statistic, and/or training 
data. Upon restart, the fitnesses of all individuals are re-evaluated, statistics are updated, 
and the hall-of-fame storing the best individuals is recalculated. 
 
Test Cases 

 
In order to validate PM-Dreamer and perform efficiency tests, we generated 

random particle configurations and evaluated the energies and forces using existing 
interatomic potentials. This differs from the intended application of PM-Dreamer in that 
we can potentially achieve exact results. In order to evaluate PM-Dreamer performance, 
training sets were generated for utilization in the optimization along with test sets that 
were utilized to evaluate performance of a given model on data not used for training. In 
each case, the performance of each model in calculating the energies and the forces in the 
test was evaluated. 

 
For 2-body cases, the 12-6 Lennard-Jones potential [30] was utilized for energy 

and force calculation, 
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where rij is the distance between each pair of particles. When evaluating the configuration 
energies, σ and ε were set to 1.0 and a cutoff of 2.5 was used such that no interaction with 
an interatomic distance greater than 2.5 contributed to the energy. For initial evaluation 
of the genetic programming parameter space, a set of 10 random configurations including 
55-65 pair interactions each were utilized for training. For evaluation of the methods 
presented in this report, a training set consisting of 5 configurations with 55-65 pair 
interactions each was utilized. The energies for the 5 configurations were -11.54, -6.16, -
9.46, -11.56, and -0.95. For each configuration, the force on a single atom was evaluated. 
The forces involved 8-10 interactions. For the test set, 50 random configurations were 
utilized with 52-104 pair interactions each. The energies in the test set ranged from -21 to 
0.52. As with the training set, a single atomic force was calculated per configuration (7-
16 interactions per force). The sizes for these datasets were chosen to represent the 
difficult problem of obtaining models for condensed phases with a small training set. 
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Using a test set with an order-of-magnitude increase in data points allows us to detect 
problems with overfitting. 
 
 For 3-body cases, the Stillinger-Weber potential [19] was utilized for energy and 
force calculation (taken from [31]),  

 
 
using the parameters for silicon shown in Table I. Energy and force calculation was 
performed in LAMMPS [32] using a cutoff equal to a·σ (Table I). The training set and the 
test were generated with 10 configurations each with up to 20 pair interactions and 94 3-
body interactions. The energies ranged from -15.93 to 6.17. As before, a single atomic 
force was calculated for each configuration. 
 

ε 2.1683 
σ 2.0951 
a 1.80 
λ 21.0 
γ 1.20 
cosθ0 -1/3 
A 7.04956
B 0.60222
p 4.0 
q 0.0 

Table I. Silicon parameters used  
for Stillinger-Weber potential. 
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Results 
 

Parameter Sets for Optimization 
 

 Initially, we performed a rough assessment of efficiency in the genetic 
programming parameter space given by the replacement strategy and probabilities for 
crossover and mutation. Based on previous work [3], we assumed that Half-and-Half 
population initialization with tournament selection would provide the best results. Based 
on the initial parameters listed in Appendix B, we evaluated the effect of tournament 
selection size, crossover probability, standard mutation probability, swap mutation 
probability, shrink mutation probability, subtree-swap mutation probability, and 
ephemeral (constant) mutation probability. Performance for each parameter was assessed 
based on the average best fitness using 50 runs each. Each run was performed in parallel 
on 32 processes and terminated at 2 minutes. The jobs were run on 16 dual 3.4 GHz Intel 
EM64T processors with an Infiniband interconnect. PM-Dreamer was compiled using the 
Intel C++ 9.1 compiler with an Open MPI wrapper. The training set used consisted of 10 
configurations with 55-65 pair-interactions calculated using the Lennard-Jones potential. 
 
 The results from these runs are shown in Appendix B. Based on these results, we 
selected the initial parameter set shown in Table II. For this work, we pursued evaluation 
of the generational and HFC replacement strategies. For the runs described in the 
following sections, the +, -, *, and / operators were included along with pow, log, exp, 
and abs (absolute value). The variables were interatomic distances for 2-body potentials 
and interatomic distances and angles for 3-body potentials. Floating point constants were 
generated between -20 and 20. All primitives had a bias equal to 1.0 such that there was 
no preference for randomly selecting one primitive over another. The runs in the 
following sections were all performed on 32 processors for 10 minutes with each data 
point representing an average over 50 runs. 

 Generational HFC 
Population Size 10000 10000 
Total Populations 32 32 
Tournament Size 6 6 
Crossover Prob. 0.9 0.8 
Standard Mutation 0.2 0.15 
Shrink Mutation 0.05 0.05 
Swap Mutation 0.1 0.2 
Constant Mutation 0.1 0.15 
Elitism 1 N/A 
Migration Interval 5 5 
Migration Size 500 500 
Initialization Min Depth 4 4 
Initialization Max Depth 5 5 
Expression Max Depth 5 5  
HFC Interval 1 1 
HFC 1st Threshold 0.1 0.1 
HFC Threshold Ratio 1 1 

Table II. Parameters used for evolutionary optimization 
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Condensed Phase and Vectorization 
 
In order to assess the impact of system size on optimization efficiency, we 

performed runs using datasets consisting of 10 configurations, one with 2 pair-
interactions per configuration and one with 60. As shown in Figure 4, increasing the 
system size decreases the optimization efficiency in 2 ways. First, the fitness evaluation 
is much more expensive; on average, the runs using 2 distances evaluated over 7 times 
the number of generations than those with 60. This is not the only source of inefficiency, 
however. We can subtract the inefficiency due to increased computational cost by 
plotting the average best fitness in terms of the generation instead of time (Figure 4). In 
this case, the optimization efficiency is still decreased for the larger system size. 
Presumably, increasing the number of interactions per energy data point increases the 
optimization difficulty due to error canceling effects. This is relevant because the 
accurate modeling of condensed phase systems will likely require a large number of 
interactions per energy calculation. The differences in optimization efficiency might 
seem mild when viewing the plots in Figure 4; however, it is important to remember that 
the fraction of the search space corresponding to some range of fitness is expected to 
decrease sharply as the fitness increases. Therefore, it should often become increasingly 
difficult to improve individuals with higher fitnesses. It is these improvements that are 
important in achieving low-error models, however. 
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Figure 4. Optimization efficiency for different system sizes and vectorization. Each 
data point representations a mean over 50 runs. The mean number of generations 
evolved in 10 minutes is given on the lower left. RMSD error is calculated for the 
training set, the test set energies, and the test set forces using the best model 
obtained at 10 min. The error bar length is equal to the standard deviation. 
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The impact due to the larger computational expense for fitness evaluation of 

larger systems can be decreased with the use of vectorization. In this case, vectorization 
resulted in an approximately 4x speedup when compared to the scalar implementation. 
Despite this improvement, however, the final models (at the end of 10 minutes) had much 
larger errors for the n=60 dataset when evaluated on the test sets (Figure 4). Due to the 
large speedup achieved, all of the following tests were performed with the use of 
vectorization. 
 
Hierarchical Fair Competition 

 
For the remaining 2-body tests presented, the training and test sets described in 

the Methods section were used for evaluation. In this case, the training set was decreased 
to contain only 5 configurations with a much larger test set used to evaluate problems 
from overfitting. In order to evaluate the efficiency of HFC, we performed optimizations 
comparing this strategy to a generational strategy with migration and a random strategy. 
For the random case, all but the best individual are destroyed and replaced with random 
individuals each generation. As shown in Figure 5, the efficiency of the generational 
strategy was higher when measured using the training data. Interestingly, HFC ultimately 
produced better models with much lower errors when evaluated on the test sets. Possibly, 
this is due to increased survival of general models in intermediate-fitness populations 
within the hierarchy. 
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Figure 5. Optimization efficiency for random, generational, and HFC strategies. 
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Hybrid Optimization 

 
The efficiency of hybrid optimization was evaluated using generational and HFC 

strategies with operator probabilities of 0, 0.025, and 0.05. In all cases, the optimization 
was performed on all constants within an expression with the maximum iterations set to 
6. In terms of generational efficiency, hybrid optimization increased the optimization 
efficiency of both generational and HFC strategies. For generational, an average fitness 
of 0.92 was obtained in 35 generations with a local search probability of 0.025 as 
opposed to 100 generations with a local search probability of 0. As shown in Figure 6, 
this improvement was largely offset by the increased computational time required for 
local search for the generational strategy. Therefore, more efficient local search methods 
or derivative-based approaches might be necessary in order to achieve improvements in 
these cases. For HFC, the improvement in optimization efficiency was significant and 
nearly half the time was required to obtain a fitness of 0.89 with a local search probability 
0.025. Likewise, the final errors on the test sets were approximately half those obtained 
without local search. Because there was also an improvement in the final errors of the 
generational strategy for the test sets with local search, the probability of local search was 
set to 0.025 for the remaining HFC and generational tests.  
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Figure 6. Optimization efficiency for different local search probabilities (n).  
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Model Templates 
 
Fitting both the function and the derivative of the function has been shown to 

reduce overfitting in genetic programming and therefore the approach was implemented 
into PM-Dreamer. As described in the methods, one atomic force was calculated for each 
configuration. The force was incorporated into the fitness with a separate evaluation of 
the fitness statistic for each component of the force. The final fitness was then calculated 
as one half the fitness for the energy plus one half the fitness for the force. The results 
when this model template is used are shown in Figure 7 (Energy/Force). For the 
generational strategy, a drastic improvement is seen with a reduction in the test set errors 
by almost an order of magnitude. For HFC, the results are also significant with a 
reduction in error for calculation of the test energies by about 1/3. In addition to reducing 
overfitting, the approach also resulted in a reduction in training error by preventing 
convergence towards erroneous functions. Although the convergence is slower, at the end 
of each run the training error is much lower. 
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Figure 7. Optimization efficiency using different model templates. 
 
 

In addition to evaluating the fitness using the energy and force, we also 
implemented templates to evaluate the fitness using only the force. Our hope was that this 
would increase optimization efficiency by reducing the number of interactions per data 
point (see Equation 2 vs Equation 1 and Figure 4). Two approaches were implemented. 



 26

One evaluated the error in all 3 components of the force and the other evaluated the error 
in only the x-component. Because this alters the fitness metric, the first threshold for HFC 
was adjusted to 0.5 when evaluating only the x-component and 0.3 when evaluating only 
the force. As shown in Figure 7, this increased the number of generations evaluated in the 
10-minute time period, but did not result in a decrease in the test set errors. For the 
generational strategy, the opposite was true and there was a significant increase in test set 
errors. Optimization efficiency could potentially be improved by starting an optimization 
using only forces in the fitness evaluation and then continuing the evolution with the 
incorporation of energies. This has not yet been tested, however. 
 

Due to the consistently improved results provided by HFC, we continued our 
efforts using only this strategy with a model template that evaluated the energy and the 
force as part of the fitness metric. Using these parameters, we tested the impact of the 
HFC interval on optimization efficiency. The mean RMSD errors for the energies in the 
test set for a 1, 10, and 20 generation interval were 0.049, 0.028, and 0.029 respectively. 
We therefore adjusted the HFC interval from 1 to 10. 
 
Correlation and Ordinary Least Squares 

 
Finally, we evaluated the use of an alternative fitness statistic for symbolic 

regression. This was performed using a statistic based on the Pearson correlation 
coefficient (Equation 5). In this case, it is necessary to rescale the resulting functions 
obtained by the evolutionary optimization with the use of ordinary least squares. When 
this statistic is used, the correct functional form is found with certainty within seconds in 
all 50 runs (Figure 8). The mean RMSD error in calculation of the test set energies is 
reduced to 5·10-7.  
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Figure 8. Optimization efficiency using the correlation statistic. 

 
 We summarize the results from the various methods implemented into PM-
Dreamer in Figure 9. By using a generational genetic programming strategy, the mean 
RMSD error in calculating the test set energies is 1/3 that obtained by a random approach 
with elitism. By using the HFC strategy, this error is reduced to 1/5 of the previous result. 
Incorporation of hybrid local search reduces this error by ~1/2. Incorporation of forces 
into the error evaluation results in ~1/3 the error. Increasing the HFC interval to 10 
reduces this error by ~1/2. Finally, use of the Pearson correlation statistic reduces the 
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error to near zero. With these improvements, a result that required 100 processors for 
hours can now be obtained on a single-processor desktop in minutes. 
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Figure 9. Optimization efficiency using the correlation statistic. 

 
 
The Stillinger-Weber Potential 

 
We applied PM-Dreamer to 3-body problems using energies calculated with the 

Stillinger-Weber potential to generate the training and test sets described in Methods. 
These runs were performed on 256 processors for 32 hours. The optimizations were 
performed using HFC configured with the parameters in Table II with the exception that 
the maximum expression tree depth was set to 10. Hybrid local search was performed 
with a 0.025 probability and no more than 6 iterations. The 3-body energy/force model 
template was used with the correlation fitness statistic. The variables were the interatomic 
distances and angles formed by all triplets of atoms. In preliminary runs, we were able to 
achieve low-error fits to the Stillinger-Weber equation, but not exact matches. For the test 
set energies (normalized), we obtained an RMSD of 0.010. However, the resulting 
expressions were very large (>150). By implementing a fitness penalty of 0.05 for each 
node over a maximum size of 50, we were able to reduce the expression size (to 50). In 
this case, the mean RMSD in calculation of the normalized energies (over 4 runs) was 
0.0182.  This corresponds to a correlation coefficient of 0.9995 between the calculated 
energies and the training values with a <1% error in calculation of configuration energies. 
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Summary and Future Work 
 
 We developed PM-Dreamer for the automated discovery of novel empirical 
models for particle mechanics. In this project, we focused our research efforts on 
modifications to facilitate a drastic improvement in optimization efficiency when 
compared to a canonical genetic programming framework. We described approaches for 
distributed evolution, hybrid optimization, vectorization, and improved fitness metrics. 
We obtained an improvement in efficiency of several orders of magnitude with the use of 
a Hierarchical Fair Competition algorithm, hybrid optimization, vectorization, and a 
correlation-based fitness statistic. The use of the Pearson correlation coefficient with 
ordinary least squares rescaling resulted in a drastic improvement and it is our position 
that this or a similar approach should be the standard for genetic programming symbolic 
regression problems. We have shown that the utilization of particle forces along with the 
system energy can reduce overfitting and ultimately produce more accurate models by 
preventing convergence towards erroneous functions. Interestingly, our results also 
suggest that Hierarchical Fair Competition can reduce problems from overfitting when 
there is limited training data. With these advancements, we are now able to obtain low-
error fits for complicated models such as the Stillinger-Weber potential. 
 
 After further validation and optimization for 3-body potentials, we will have made 
sufficient advances in this project to allow for the application of PM-Dreamer to real 
problems. As a next step, we will apply PM-Dreamer to the problem of modeling 
germanium. This work will consist of DFT calculations to obtain training and test data, 
automated model development, and implementation into simulation codes. Further model 
validation can then be performed with the accurate calculation of observable macroscopic 
properties. Although it will not be part of our immediate efforts, PM-Dreamer should also 
be beneficial for problems in coarse-graining. For example, it can be shown that the 
Lennard-Jones potential does not provide a correct scaling of energy with distance when 
using coarse-graining to model large particles [2]. A potential correcting for this problem 
has been derived using a continuum approximation that integrates the Lennard-Jones 
interaction over both particles. However, when modeling a complex mesogen with a 
single particle, it seems likely that using a different functional form altogether may 
produce more accurate results. 
 
 In addition to increased efficiency, PM-Dreamer has been developed to facilitate 
the automated discovery of complex potentials. In this work, we implemented a 
capability for simultaneous optimization of the multiple functions in 3-body potentials, 
calculation of particle forces, and the calculation of descriptors such as interparticle 
distances and angles. For future work, it will likely be desirable to generalize this further 
with the addition of alternative model templates and descriptors such as bond order, 
number of neighbors, etc. This will potentially allow for improved accuracy by increasing 
the number of variables available for the optimization (and decreasing user-bias). An 
additional difficulty in genetic programming that is not suitably accounted for in PM-
Dreamer is the generation of “dead” subtrees that have no impact on the energy 
calculation. For example, the branch “*[(1-1+1)^1+x2*0]” has no impact on the function 
calculation. These “dead” subtrees can take on complicated forms that are difficult to 
interpret or identify. Their occurrence in genetic programming has been likened to the 
fact that only a small percentage of DNA actually encodes proteins [3]. PM-Dreamer 
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offers some mechanism to counter this with the use of selection strategies that favor 
parsimony and fitness operators that add penalties for large trees. A more elegant strategy 
can be implemented with the use of a simplification operator that replaces a subtree with 
a constant if there is little to no variation across the training data. Application of this 
operator at some generation interval might also improve efficiency by shrinking the 
average expression size. 
 
 Increasing optimization efficiency will always be of interest in PM-Dreamer. 
While increasing the amount of training data leads to a constant increase in 
computational cost, increasing the dimensionality of the search space can have a 
devastating impact. The use of forward finite difference for force calculation and 
derivative-free local search is one target for efficiency improvement in PM-Dreamer. 
Automatic differentiation codes such as Sacado allow for the calculation of accurate 
forces during energy calculation and facilitate the use of derivative-based optimization 
approaches. The use of automatic differentiation in PM-Dreamer can therefore potentially 
decrease the time required for derivative calculation and improve the efficiency of hybrid 
local search. When performing simultaneous optimization on multiple functions, PM-
Dreamer uses a single expression tree allowing crossover and mutation to occur across 
functions. Further improvements in optimization efficiency might be obtained by 
asserting independent evolution of each function in the expression trees in terms of 
crossover and mutation. 
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Appendix A - Documentation for GP-Force 
 

NAME 
       pm_dreamer - Optimization of functional forms for particle mechanics. 
 
 
VERSION 
       Version 0.1 
 
 
SYNOPSIS 
       pm_dreamer  input_data  beagle_config_file  [-c]  [-f  file_header] [-g 
       start_size end_size] [-h] [-n notice_level] [-r rseed]  [-s  stat_type] 
       [-t energy_type] [-z] 
 
 
DESCRIPTION 
       PM-Dreamer  is software for generation of empirical models for particle 
       mechanics. The software takes as input data from a series  of  particle 
       configurations  and  the  corresponding energies and/or particle forces 
       associated with those configurations. The output from PM-Dreamer  is  a 
       set  of  functions that can potentially be used to calculate configura- 
       tion energies for particles giving the force-field necessary for parti- 
       cle simulations. 
 
       PM-Dreamer  obtains the equations for energy calculation using a combi- 
       nation of genetic programming and local search in order to minimize the 
       root-mean  square  error  in  the calculation of energy and/or particle 
       force. The genetic programming is based on the Open-BEAGLE library  for 
       evolutionary  computation. This library has been extended in PM-Dreamer 
       to allow for massively parellel optimization, hybrid local search, vec- 
       torized  expression  evaluation, template-based evaluation of fitnesses 
       using particle configurations with periodic boundary conditions  for  2 
       and  3-body particle interactions, and parallel restarts with the capa- 
       bility to switch datasets and/or function templates. 
 
       The input for PM-Dreamer consists of the input_data file that  contains 
       particle configuration data and the beagle_config_file that facilitates 
       parameterization of the optimization. The  formats  available  for  the 
       input_data  are  described in the Fitness Evaluation section and can be 
       specified with the -t flag. The format for  the  beagle_config_file  is 
       taken  from  Open  Beagle with the extensions described throughout this 
       documentation. Examples for both should have  been  included  with  the 
       software package. 
 
       There  are  three  types  of  output  for  PM-Dreamer.  Console  output 
       describes the progress and statistics of the run and is controlled with 
       the -n flag. Log file output also describes statistics in XML as speci- 
       fied in the beagle_config_file. The default filename for the  log  file 
       for  serial runs is gp_force.log. For parallel runs a separate log file 
       is written for each process with the default name gp_force_RR.log where 
       RR  is  the process rank. The final output format consists of milestone 
       files. These files contain an XML description of all of the expressions 
       at a given point in the optimization and are also used to restart runs. 
       The default name for the milestone files is gp_force.obm for serial  or 
       gp_force_RR.obm  for parallel runs. Utilities for generating plots from 
       the log files and graphic representations of  expressions  should  have 
       been included with this software package. 
 
       The following definitions are used throughout the documentation: 
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               Individual  A single mathematical expression for calculation of 
              the energies of particle configurations. 
 
               Primitive  A  primitive is a node in the expression tree. Exam- 
              ples of primitives include unary and binary mathematical expres- 
              sions,  variables  used to describe the particle configurations, 
              and constants in the expression. 
 
               Terminal/Constant/Ephemeral  A  terminal  is  a  primitive that 
              takes no arguments. A constant/ephemeral is a terminal  that  is 
              not  used  as  a variable in the expression. Constants are typi- 
              cally randomly generated and can change during the  optimization 
              by  mutation  to generate a new random number or by local search 
              executed to optimize the constants in an  expression.  Constants 
              that  should not be modified (such as pi) can also be specified. 
 
               Fitness A metric describing the error in an Individual’s calcu- 
              lation of the energy using the training data. 
 
               Population/Deme  A population or deme is a group of individuals 
              that evolve together. Crossover occurs using multiple  individu- 
              als from a population and selection occurs based on the individ- 
              uals in a single population. Multiple populations can be used in 
              a  run.  The  populations  evolve  separately,  but can interact 
              through migration of individuals between the populations. 
 
               Island Here, an island is used in parallel runs to describe the 
              population or set of populations undergoing evolution in a  sin- 
              gle MPI process. 
 
               Vivarium All of the populations involed in a run. 
 
               Hall  of  Fame The Hall of Fame contains the n individuals with 
              the best fitness(es) found during a run. 
 
               Milestone/Restart File These files contain the output of all of 
              the individuals at some point in the optimization and  have  the 
              extension .obm 
 
               Hybrid  Optimization/Local  Search  Hybrid  optimization occurs 
              separately from the evolutionary optimization. With a  specified 
              probability, local search is performed on an individual to opti- 
              mize 1 or multiple constants. 
 
 
 
 
PARAMETERS 
       -c     Restart  from  existing  milestone  files.  When restarting, the 
              functional form  (-t),  the  beagle_config_file  file,  and  the 
              input_data can be different from those used in the original run. 
              This allows the user to change parameters  and/or  add  data  to 
              refine  runs.  If  the -f flag was used to specify a non-default 
              file header for the restart files. The -f flag  should  also  be 
              specified  again  with the same name when using -r. When running 
              in parallel, the same number of processes should be used for the 
              restart. If a smaller number is used, the extra individuals will 
              be ignored. If a larger number is used, an error  is  generated. 
              When restarting an optimization, the generation number starts at 
              the last generation in the milestone file. Therefore,  the  max- 
              gens termination criterion may need to be increased. The restart 
              files are read by the ReadRestartOp in the beagle_config_file 
 
       -f file_header 
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              Specify the header for the .log output file and the  .obm  mile- 
              stone files. The default is gp_force. 
 
       -g start_size end_size 
 
              Scale the fitness by the number of nodes in the tree.  This  can 
              be  used  to reduce the average size of individuals. A tree with 
              start_size or smaller nodes has a maximum fitness of 1.0. A tree 
              with end_size or greater nodes has a maximum fitness of 0.0. 
 
       -h     Print out the man page for help 
 
       -n notice_level 
 
              Set the degree of program output.  Use: 
 
            -n  0     No output 
            -n 10     Normal program output 
            -n 20     Parameters useful for reproducing the results 
            -n 30     All output. The degree of Open Beagle Output changes  at 
       10,20, and 30. 
 
       -r rseed 
 
              Specify the random seed (unsigned long). Default is 1. 
 
       -s stat_type 
 
              Choose the fitness statistic used. Options are RMSD for adaptive 
              RMSD, CORR for the Pearson correlation coefficient, and OLS  for 
              ordinary  least  squares  fitting.  See  the Fitness section for 
              details on each method. 
 
       -t energy_type 
 
              Specify the functional form of the energy function 
 
       -z     Use  vectorized tree evaluation. This will typically be at least 
              4x faster for the optimized Beagle library and greater than  15x 
              faster for the debug library. 
 
 
BEAGLE CONFIGURATION FILE 
       The  Beagle  configuration  file  is  used  to control the optimization 
       including the functions, terminals, operators, and replacement  strate- 
       gies  that  are  used. Deatils on each section follow. A template for a 
       configuration files is: 
 
       <?xml version="1.0" encoding="ISO-8859-1"?> 
       <Beagle> 
         <Evolver> 
           <BootStrapSet> 
 
             ... Population Initialization ... 
 
           </BootStrapSet> 
           <MainLoopSet> 
 
             ... Replacement Strategy ... 
 
               ... Fitness Evaluation ... 
 
                 ... Crossover ... 
 
                   ... Selection ... 
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               ... Fitness Evaluation ... 
 
                 ... Mutation ... 
 
                   ... Selection ... 
 
               ... Selection ... 
             ... Migration ... 
 
             ... Statistics ... 
 
             ... Termination Criteria ... 
 
             ... Restart File Output ... 
 
           </MainLoopSet> 
         </Evolver> 
         <System> 
         <PrimitiveSuperSet> 
           <PrimitiveSet> 
 
             ... Functions ... 
 
             ... Terminals ... 
 
           </PrimitiveSet> 
         </PrimitiveSuperSet> 
         <Register> 
 
             ... Register values ... 
 
         </Register> 
         </System> 
       </Beagle> 
 
 
 
POPULATION INITIALIZATION 
       The initialization is accomplished using the following operators: 
       GP-InitHalfOp 
 
               Koza’s ramped half-and-half generative method. An equal  number 
              of  expression  trees are generated using a depth parameter that 
              ranges between 2 and the maximum specified depth 
 
       GP-InitFullOp 
 
               The initial population will consist of  expression  trees  that 
              all have a depth equal to the maximum depth. 
 
       GP-InitGrowOp 
 
               The initial population consists of expression trees of variable 
              depths. 
 
       RestartReadOp 
 
               Read in population from a restart (milestone) file. This opera- 
              tor  replaces  the  MilestoneReadOp  operator  in Open Beagle to 
              allow the parameters in the beagle_config_file to override those 
              in  the  milestone  file. The example below checks to see if the 
              register, ms.restart.file, is set. If it is, a restart  file  is 
              read  in.  Otherwise,  a population is generated using half-and- 
              half followed by fitness evaluation and statistics output: 
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       <BootStrapSet> 
         <IfThenElseOp parameter="ms.restart.file" value=""> 
           <PositiveOpSet> 
             <GP-InitHalfOp/> 
             <EnergyOp/> 
             <GP-StatsCalcFitnessSimpleOp/> 
           </PositiveOpSet> 
           <NegativeOpSet> 
             <RestartReadOp/> 
           </NegativeOpSet> 
         </IfThenElseOp> 
       </BootStrapSet> 

 
 
 
REPLACEMENT STRATEGY AND MIGRATION 
       The replacement strategy is specified using the follow operators: 
       DecimateOp 
 
               Shrink the population size by keeping the n best individuals 
 
       GenerationalOp 
 
               Breeding tree following a generation by generation  replacement 
              strategy 
 
       HierarchicalFairCompetitionOp 
 
               HCF operator inspired by the work of Hu and Goodman 
 
       MigrationRandomRingOp 
 
               Migrate randomly chosen individuals between populations using a 
              ring topology 
 
       MuCommaLambdaOp 
 
               A (Mu,Lambda) operator generates  Lambda  children  individuals 
              from  a  population of Mu parents(where Lambda > Mu). From these 
              Lambda individual, it keeps the Mu best to  constitute  the  new 
              generation. 
 
       MuPlusLambdaOp 
 
               A (Mu+Lambda) operator generates  Lambda  children  individuals 
              from  a  population  of  Mu parents (usually where Lambda > Mu). 
              From the Mu parents and the Lambda individual, it keeps  the  Mu 
              best  individuals to constitute the new generation. 
 
       NSGA2Op 
 
               The NSGA2 replacement strategy implement the  elitist  multiob- 
              jective  evolutionary  algorithm  NSGA2  (Non-dominating Sorting 
              Genetic Algorithm) 
 
       OversizeOp 
 
               An oversize operator generates (ratio * population size)  chil- 
              dren individuals from a population of Mu parents. 
 
       SteadyStateOp 
 
               Steady state replacement strategy operator 
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CROSSOVER AND MUTATION 
       Crossover and mutation are specified using the follow operators: 
       GP-CrossoverOp 
 
               Crossover of two individuals to produce a new individual 
 
       GP-MutationEphemeralDoubleOp 
 
               Mutate the value of a randomly chosen double precision constant 
              in the tree 
 
       GP-MutationShrinkOp 
 
               Replace a randomly chosen branch with a randomly  chosen  argu- 
              ment on the branch 
 
       GP-MutationStandardOp 
 
               Canonical GP Mutation 
 
       GP-MutationSwapOp 
 
               Swap nodes in the expression tree 
 
       GP-MutationSwapSubtreeOp 
 
               Swap branches in the expression tree 
 
 
 
 
SELECTION 
       Selection is specified using the follow operators: 
       NPGA20p 
 
               Multiobjective evolutionary algorithm  NPGA  2  (Niched  Pareto 
              Genetic Algorithm) 
 
       SelectParsimonyTournOp 
 
               A simple lexicographic parsimony pressure tournament  selection 
              operator,  based  an idea presented in: Luke, S., and L. Panait. 
              2002. Lexicographic Parsimony Pressure. 
 
       SelectRandomOp 
 
               Select an individual in a population  randomly  operator  class 
              (uniform distribution). 
 
       SelectRouletteOp 
 
               Proportionnal roulette selection operator class. 
 
       SelectTournamentOp 
 
               Tournament selection operator class. 
 
 
 
 
TERMINATION 
       Optimization is terminated using the following operators: 
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       TermMaxGenOp 
 
               Maximum generation termination criterion operator. 
 
       TermMaxFitnessOp 
 
               Maximum fitness value termination criterion operator class. 
 
       TermMaxHitsOp 
 
               Number of hits required in an individual in order for the  evo- 
              lution process to terminate. 
 
       TermMaxEvalsOp 
 
               Maximum number of  fitness  evaluations  termination  criterion 
              operator. 
 
 
 
 
RESTART FILES AND POPULATION OUTPUT 
       Files output containing populations that can also be used for  continu- 
       ing  a simulation are generated with the following operators. (See also 
       POPULATION INITIALIZATION.) 
 
       MilestoneWriteOp 
 
               Write out a milestone file 
 
       ParetoFrontCalculateOp 
 
               Evaluate Pareto front from demes and vivarium  and  put  it  in 
              place  of the actual hall-of-fame. The Pareto front is evaluated 
              just before milestones are written. If previous hall-of-fame are 
              presents  in  the demes/vivarium, they are erased. This operator 
              must be in the evolver’s operator sets between  the  termination 
              criterion check operators and the MilestoneWriteOp operator. 
 
 
 
 
STATISTICS 
       Statistics on fitness, function and terminal usage, and expression tree 
       size are generated using the follow operators: 
 
       GP-StatsCalcFitnessSimpleOp,    GP-StatsCalcFitnessKozaOp,    GP-Primi- 
       tiveUsageStatsOp, GP-IndividualSizeFrequencyStatsOp 
 
 
 
ADF and Constrained Operators 
       Automatically Defined Functions (ADF)  and  constrained  operators  are 
       also available: 
 
       GP-ModuleCompressOp,  GP-ModuleExpandOp, GP-CrossoverConstrainedOp, GP- 
       InitHalfConstrainedOp, GP-InitFullConstrainedOp, GP-InitGrowConstraine- 
       dOp,  GP-MutationShrinkConstrainedOp, GP-MutationStandardConstrainedOp, 
       GP-MutationSwapConstrainedOp, GP-MutationSwapSubtreeConstrainedOp. 
 
       The additional primitives for the ADF operators include: 
 
       ADF (Automatically Defined Function) and ARG (Generic Argument for ADF) 
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FUNCTIONS 
       The following functions can be utilized as primitives in the expression 
 
               Abs,Add,Cos,Divide,Exp,Log,Multiply,Sin,Subtract 
 
       Additional functions added by PM-Dreamer are described below. Functions 
       are  added  by listing the function name and bias in the primitive set. 
       For example: 
 
             <Primitive name="ADD" bias="1"/> 
 
 
 
TERMINALS 
       The terminals are primitives in the expression tree that  do  not  take 
       arguments (e.g. constants in the expression or variables of the expres- 
       sion. Some that can be included are a double precision number  [-1,  1] 
       (E), PI (Pi), and/or a variable, (X), for the potential: 
 
             <Primitive name="E" bias="1"/> 
             <Primitive name="Pi" bias="1"/> 
             <Primitive name="X" bias="1"/> 
 
 
 
ADDITIONAL PRIMITIVES 
       The additional function and terminal primitives have been added: 
 
        E_i 
 
               Double  precision  integer  [-20,20]. Generation or mutation of 
              E_i results in an integer, however, hybrid optimization can pro- 
              duce non-integer numbers. 
 
       E_d 
 
               Double precision number [-20,20]. 
 
       Pow 
 
               Exponentiation. 
 
 
 
REGISTERS 
       The registers allow for parameterization of the operators and optimiza- 
       tion (e.g. mutation frequency, number of generations, etc.). The regis- 
       ters can be set by specifying the register and the value in the config- 
       uration file: 
           <Entry key="ec.pop.size">500/500/500/500</Entry> 
           <Entry key="ec.term.maxgen">100</Entry> 
 
       A list of registers and short descriptions is given below. If the value 
       type  of  a  register begins with U, the type is unsigned. If the value 
       type is an array, individual elements are delimeted using a /. 
 
       ec.conf.dump   <String> (def: "") 
 
               Filename used to dump the configuration. A  configuration  dump 
              means  that  a  configuration  file  is written with the evolver 
              (including the composing operators) and the register  (including 
              the  registered  parameters and their default values). No evolu- 
              tion is conducted on a configuration dump. An empty string means 
              no dump. 
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       ec.elite.keepsize   <UInt> (def: 1) 
 
               Number of individuals keep as is with strong n-elitism. 
 
       ec.hof.demesize     <UInt> (def: 0) 
 
               Number of individuals kept in each  deme’s  hall-of-fame  (best 
              individuals  so  far).  Note  that  a hall-of-fame contains only 
              copies of the best individuals so far and is  not  used  by  the 
              evolution process. 
 
       ec.hof.vivasize     <UInt> (def: 1) 
 
               Number of individuals kept  in  vivarium’s  hall-of-fame  (best 
              individuals  so  far).  Note  that  a hall-of-fame contains only 
              copies of the best individuals so far and is  not  used  by  the 
              evolution process. 
 
       ec.init.seedsfile   <String> (def: "") 
 
               Name of file to use for  seeding  the  evolution  with  crafted 
              individual. An empty string means no seeding. 
 
       ec.mig.interval     <UInt> (def: 1) 
 
               Interval between each migration, in number of  generations.  An 
              interval of 0 disables migration. 
 
       ec.mig.size    <UInt> (def: 5) 
 
               Number of individuals migrating between each deme,  at  a  each 
              migration. 
 
       ec.pop.size    <UIntArray> (def: 100) 
 
               Number of demes and size of each deme of  the  population.  The 
              format  of  an  UIntArray  is  S1,S2,...,Sn, where Si is the ith 
              value. The size of the UIntArray is the number of demes  present 
              in  the  vivarium, while each value of the vector is the size of 
              the corresponding deme. 
 
       ec.repro.prob  <Float> (def: 0.1) 
 
               Probability that an individual is reproducted  as  is,  without 
              modification.  This  parameter  is  useful only in selection and 
              initialization operators that are composing a breeder tree. 
 
       ec.sel.tournsize    <UInt> (def: 2) 
 
               Number of participants for tournament selection. 
 
       ec.term.maxfitness  <Float> (def: 1) 
 
               Fitness value to reach before stopping evolution. 
 
       ec.term.maxgen <UInt> (def: 50) 
 
               Maximum number of generations for the evolution. 
 
       gp.cx.distrpb  <Float> (def: 0.9) 
 
               Probability that a crossover point is a branch (node with  sub- 
              trees).  Value  of  1.0  means  that  all  crossover  points are 
              branches, and value of 0.0 means that all crossover  points  are 
              leaves. 
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       gp.cx.indpb    <Float> (def: 0.9) 
 
               Individual crossover probability at each generation. 
 
       gp.init.maxargs     <UIntArray> (def: 0/2) 
 
               Maximum number of arguments in GP tree. Tree arguments  are  is 
              usually useful with ADFs (and similar stuff). 
 
       gp.init.maxdepth    <UInt> (def: 5) 
 
               Maximum depth for newly initialized trees. 
 
       gp.init.maxtree     <UInt> (def: 1) 
 
               Maximum number of GP tree  in  newly  initialized  individuals. 
              More  than one tree is usually useful with ADFs (and other ADx). 
 
       gp.init.minargs     <UIntArray> (def: 0/2) 
 
               Minimum number of arguments in GP tree. Tree arguments  are  is 
              usually useful with ADFs a(nd similar stuff). 
 
       gp.init.mindepth    <UInt> (def: 2) 
 
               Minimum depth for newly initialized trees. 
 
       gp.init.mintree     <UInt> (def: 1) 
 
               Minimum number of GP tree  in  newly  initialized  individuals. 
              More  than one tree is usually useful with ADFs (and other ADx). 
 
       gp.mutephdbl.indpb  <Float> (def: 0.05) 
 
               Probability  of  mutating  a  terminal  constant  by   GP-Muta- 
              tionEphemeralDoubleOp. 
 
       gp.mutephdbl.primit <String> (def: E) 
 
               Name of the primitive mutated by  GP-MutationEphemeralDoubleOp. 
 
       gp.mutshrink.indpb  <Float> (def: 0.05) 
 
               Shrink mutation probability for an individual. Shrink  mutation 
              consists  in  replacing  a branch (a node with one or more argu- 
              ments) with one of his child node. This erases the  chosen  node 
              and the other child nodes. 
 
       gp.mutstd.indpb     <Float> (def: 0.05) 
 
               Standard mutation probability for  an  individual.  A  standard 
              mutation replaces a sub-tree with a randomly generated one. 
 
       gp.mutstd.maxdepth  <UInt> (def: 5) 
 
               Maximum  depth  for  standard  mutation.  A  standard  mutation 
              replaces a sub-tree with a randomly generated one. 
 
       gp.mutswap.distrpb  <Float> (def: 0.5) 
 
               Probability that a swap mutation point is a branch  (node  with 
              sub-trees). Value of 1.0 means that all swap mutation points are 
              branches, and value of 0.0 means that all swap  mutation  points 
              are  leaves.  Swap mutation consists in exchanging the primitive 
              associated to a node by one having the same number of arguments. 
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       gp.mutswap.indpb    <Float> (def: 0.05) 
 
               Swap mutation probability for an individual. Swap mutation con- 
              sists  in  exchanging  the primitive associated to a node by one 
              having the same number of arguments. 
 
       gp.tree.maxdepth    <UInt> (def: 17) 
 
               Maximum allowed depth for the trees. 
 
       gp.try    <UInt> (def: 2) 
 
               Maximum number of attempts to modify a GP  tree  in  a  genetic 
              operation. As there is topological constraints on GP trees (i.e. 
              tree depth limit), it is often necessary to try a genetic opera- 
              tion several times. 
 
       lg.file.level  <UInt> (def: 3) 
 
               Log level used for file output generation. Log levels available 
              are: (0) no log, (1) basic logs, (2) stats, (3) general informa- 
              tions, (4) details on operations, (5) trace of  the  algorithms, 
              (6) verbose, (7) debug (enabled only in full debug mode). 
 
       lg.show.class  <Bool> (def: 0) 
 
               Flag whether class name is outputed in the logs. 
 
       lg.show.level  <Bool> (def: 0) 
 
               Flag whether logging level in outputed in the logs. 
 
       lg.show.type   <Bool> (def: 0) 
 
               Flag whether message type is outputed in the logs. 
 
       ms.restart.file     <String> (def: "") 
 
               Name of the milestone file from which the evolution  should  be 
              restarted. An empty string means no restart. 
 
       ms.write.compress   <Bool> (def: 1) 
 
               If true, this flag indicates that milestones will be compressed 
              with gzip. Otherwise, each milestone are kept plain text. 
 
       ms.write.interval   <UInt> (def: 0) 
 
               Milestone saving interval  (in  number  of  generations).  When 
              zero, only the last generation milestone is saved. 
 
       ms.write.over  <Bool> (def: 1) 
 
               If true, this flag indicates  that  old  milestones  should  be 
              over-written.  Otherwise, each milestone has a different suffix. 
 
       ms.write.perdeme    <Bool> (def: 0) 
 
               If true, this flag indicates that separate milestones should be 
              written  after  each  demes processing. Otherwise milestones are 
              written after the processing of a complete populations. 
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FITNESS EVALUATION 
       The fitness evaluation in PM-Dreamer can be  calculated  using  several 
       different fitness statistics specified with the -s flag. The fitness in 
       each case is given by F: 
 

 
       where e represents the energies and/or forces  from  the  training  set 
       normalized  by  the number of distances used in the calculation of each 
       energy/force and p represents those normalized values as calculated  by 
       a  candidate  individual.  For the adaptive RMSD, c=1 and s(e,p) is the 
       root mean squared error between e and p. For  the  Pearson  correlation 
       coefficient, c=100 and s is given by the absolute value of the correla- 
       tion coefficient between e and p. For OLS, ordinary  least  squares  is 
       performed  to give the linear rescaling of p that results in the lowest 
       RMSD with e. In this case, s is this RMSD and c is 1.  The  calculation 
       of  p  according  to the candidate expression is performed using one of 
       several templates specified with the -t option. For  all,  the  fitness 
       calculation in the beagle_config_file file is specified using EnergyOp. 
 
 
       PAIR POTENTIALS (-t pair) 
 
       The pair potential, pair, is the default functional form used for  fit- 
       ness calculation. It is calculated as: 
 

 
       where  X_i  is a single variable describing the particle pair (e.g. the 
       inter-particle distance) and g is the function optimized using  genetic 
       programming.  The  fitness  of the function is evaluated using a set of 
       sample configurations for which the energies have been calculated.  The 
       format for the input file is: 
 
            # Comments for the input file 
            e X1 X2 ... 
 
            e X1 X2 ... 
 
            ... 
 
       Each  line begins with an energy e and is followed by a variable number 
       of data points for each pair in  the  configuration.  Empty  lines  and 
       lines  beginning with # are ignored. In order to use this template, the 
       X variable should be added to the primitive set: 
 
            <Primitive name="X"   bias="1"/> 
 
       PAIR POTENTIALS WITH FORCE (-t paird) 
 
       The pair potential with force, paird,  is  similar  to  pair  with  the 
       exception that a particle force is supplied for a particle in each con- 
       figuration allowing the potential function to be fit to both the energy 
       and the force. When this style is used the fitness is one half the fit- 
       ness statistic calculated for the energies plus one  half  the  fitness 
       statistic calculated for the forces. 
 
       Here,  the potential is calculated as described for the pair style, and 
       the force is calculated as the negative gradient of the  energy  for  a 
       particle using forward finite-difference. The format for the input data 
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       file is: 
 
            # Comments for the input file 
            cutoff C 
 
            e fi fx fy fz x1 y1 z1 x2 y2 z2 ... 
 
            ... 
 
       First a cutoff is specified such that particle pairs  with  a  distance 
       greater  than C contribute zero to the force and energy calculation. If 
       C is negative, the cutoff is infinity.  Each  of  the  following  lines 
       begins  with  an energy e followed by an index to an particle for which 
       the force is computed, f_i. The first particle index is 1. This is fol- 
       lowed  by  the Cartesian components of the force. Finally the Cartesian 
       coordinates for each particle in the system are  given.  The  equations 
       that  result  from the optimization will be in terms of the independent 
       variable X which represents the interparticle distance for  a  pair  as 
       calculated from the supplied positions. Therefore, X should be added to 
       the primitive set as described for pair. 
 
       PAIR POTENTIAL USING ONLY THE FORCE (-t pairf) 
 
       This template is similar to paird with the  difference  that  only  the 
       forces  are  used in fitness evaluation. This style can therefore allow 
       for much faster optimization followed by  refinement  by  switching  to 
       style  paird.  For  this  reason, the format for the input data file is 
       identical to that for paird. The energies specified in  this  file  are 
       ignored. 
 
       PAIR POTENTIAL USING ONLY THE X-FORCE (-t pairf1) 
 
       This  template  is similar to pairf except that only the x component of 
       the force is utilized for fitness evaluation. The input file format  is 
       identical to that for pairf and paird. 
 
       TWO/THREE BODY POTENTIALS (-t twothree) 
 
       This template evaluates two summations for the potential energy and can 
       be used to fit potentials that include a 2-body term and a 3-body term. 
       The form for the expression is: 
 

 
 
       The  sample data therefore consists of a set variables X_1,...,X_n that 
       are evaluated in the first summation and a  second  set  R1_1,...,R1_m, 
       R2_1,...,R2_m,  and A_1,...,A_m that are evaluated in the second summa- 
       tion, where n is not necessarily equal to m. For a 2/3-body  potential, 
       X might represent the interparticle distances in the 2-body part of the 
       potential. For the 3-body part, R1 and R2 might represent the distances 
       from  particle  1  to particles 2 and 3 and A might represent the angle 
       between the corresponding vectors. The format for the input  data  file 
       is: 
 
            # Comments for the input file 
 
            e TWO X1 ... Xn THREE R11 R21 A1 ... R1m R2m Am 
 
            ... 
 
       where e is the energy of the configuration. In order to use this style, 
       the variables X, R1, R2, and A must be added to the primitive set: 
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            <Primitive name="X"   bias="1"/> 
            <Primitive name="R1"  bias="1"/> 
            <Primitive name="R2"  bias="1"/> 
            <Primitive name="A"   bias="1"/> 
 
       The equations for g and h are stored in the same expression tree  where 
       g  is  the  left subtree of the root node and h is the right subtree of 
       the root node. For this template, the root node is meaningless. 
 
       TWO/THREE BODY POTENTIALS WITH FORCE (-t twothreed) 
 
       This template evaluates the twothree potential style, but  also  evalu- 
       ates  the force for a single particle in each configuration in the fit- 
       ness function. This is done in an identical manner to the paird  poten- 
       tial style and the input format is also identical. Using the cutoff and 
       particle positions, the vector X is calculated to contain all  particle 
       pairwise  distances smaller than the cutoff. Likewise, for all particle 
       triplets, the vectors R1, R2 and A are calculated to contain  the  dis- 
       tances  between  the  center atom and the other two atoms and the angle 
       between the corresponding vectors if the two distances are both smaller 
       than  the  cutoff.  As with the other twothree styles, the variables X, 
       R1, R2, and A should be added to the primitive set. 
 
 
 
 
PARALLEL PM-DREAMER 
       PM-Dreamer can be run in parallel using an island model. In serial, PM- 
       Dreamer  uses  the  Open Beagle model allowing for multiple populations 
       with individual movement according to migration operators. In  parallel 
       PM-Dreamer  allows for multiple islands, 1 per process, to be run. Each 
       island can contain multiple populations with  migration  controlled  by 
       the  standard operators. Migration between the islands is controlled by 
       additional operators which are described below.  The  output  for  each 
       island   is   written   separately   to   the   files   gp_force_0.log, 
       gp_force_1.log, ... and gp_force_0.obm(.gz),  gp_force_1.obm(.gz),  ... 
       It  should  be  noted  that in the current implementation, random seeds 
       only produce the same output when run on the same number of processors. 
       When  running  in  parallel,  the  MPITerminateOp  should be used to to 
       assure proper termination of all processes in  a  run.  The  additional 
       operators available for parallel execution are: 
 
       MigrationMPIOp 
 
               Each     time     ec.mig.mpi_interval    generations    passes, 
              ec.mig.mpi_size individuals from each population  on  an  island 
              migrate  to a randomly chosen island and are replaced with immi- 
              grants from a second randomly chosen island. The random  islands 
              are  chosen  such that all islands will participate in migration 
              at each iteration.  The  operator  does  not  perform  migration 
              between  populations  on  the  same island. This can be achieved 
              using standard migration operators in addition to MigrationMPIOp 
 
       HFCompMPIOp 
 
               This  implements a distributed parallel algorithm for the Hier- 
              archical Fair Competition inspired by the work of Hu  and  Good- 
              man. (Similar to the serial HierarchicalFairCompetitionOp). This 
              operator should not be used with the serial HierarchicalFairCom- 
              petitionOp  operator.  In this algorithm, a fitness threshold is 
              chosen such that any individuals from a population with index  i 
              will  migrate  to  the population i+1 if their fitness is better 
              than the fitness threshold for that population i+1. If any popu- 
              lations  has  excess  individuals following migration, the least 
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              fit individuals are killed off. Random individuals are added  to 
              account  for any shortages. This promotes a hierarchy of popula- 
              tions where the fitness of the best  individuals  improves  with 
              the  population  index. The migration occurs through all popula- 
              tions on a single island followed by migration of individuals of 
              the  last  population  of  one island to the first population of 
              another. In order to achieve parallel  efficiency,  their  is  a 
              1-step lag from the time individuals migrate out of an island to 
              the time they arrive at the next. The fitness thresholds for the 
              populations  can  be set in 2 ways. In the default, ec.hfc.first 
              is set to -1 and the fitness threshold for a population  is  set 
              to a value where the threshold is greater than ec.hfc.percentile 
              of the population. For example, if ec.hfc.percentile is 0.85 the 
              fitness  threshold  for  a population is set to the value of the 
              individual whose fitness is worse than only 15% of  the  popula- 
              tion.  In  the case, the fitness thresholds are adaptive. In the 
              second approach, the fitness thresholds are fixed.  ec.hfc.first 
              (float  greater  than  0  and less than 1) is set to the fitness 
              threshold of the first population accepting  incoming  individu- 
              als. The thresholds for the subsequent populations are increased 
              according to ec.hfc.scale (described below)to allow for  thresh- 
              olds up to but less than 1.0 
 
       GP-StatsCalcFitSimpleMPIOp 
 
               This   operator   can  replace  GP-StatsCalcFitnessSimpleOp  to 
              replace Vivarium statistics for a single  island  with  Vivarium 
              statistics  for all processes in the log files. The hall-of-fame 
              individuals are still reported per island however. 
 
       MPITerminateOp 
 
               This signals the application to terminate execution of all pro- 
              cesses whenever a single island is terminated by any of the ter- 
              mination  operators.  Use  this,  for example, to ensure correct 
              termination when a fitness of 1.0 has been found. 
 
       TermMaxTimeOp 
 
               Terminate  after  ec.term.maxtime  minutes have passed. If com- 
              piled with MPI, this is the MPI wall time.  Otherwise,  this  is 
              the  time  calculated  using c_time clock(). If set to zero, the 
              operator is ignored. 
 
       The registers available for parallel execution are: 
 
       ec.mig.mpi_interval 
 
               The  number  of  generations  that must pass before a migration 
              between islands occurs. 
 
       ec.mig.mpi_size 
 
               The  number of individuals that migrate from each population of 
              each island. 
 
       ec.term.maxtime 
 
               Terminate the evolution after this many minutes (default 60). 
 
       ec.hfc.percentile 
 
               Percentile of fitness measure to use as HFC migration threshold 
              of next population. For example, a threshold of 0.85 means  that 
              the  fitness  used as threshold to accept migrant into following 
              population is taken as the fitness of  the  individual  that  is 
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              better  than  85%  of  the  other individuals in its population. 
              Default is 0.85. This value is ignored if ec.hfc.first is  posi- 
              tive 
 
       ec.hfc.first 
 
               If  negative, adaptive thresholds are used for HFC according to 
              ec.hfc.percentile. If positive, the  register  must  be  greater 
              than  0 and less than 1.0. The thresholds for the populations in 
              HFC are then set evenly spaced fixed values  between  first  and 
              1.0. 
 
       ec.hfc.scale 
 
               This  parameter is used to adjust how the fitness thresholds of 
              populations are scaled  if  adaptive  thresholds  are  not  used 
              (ec.hfc.first>0).  The  ratio  between the fitness thresholds of 
              populations is given  by  ec.hfc.scale  to  create  a  geometric 
              series  between  ec.hfc.first and 1.0. If ec.hfc.first is 1, the 
              fitness thresholds are evenly spaced.  If  ec.hfc.first  is  >1, 
              more  of  the  fitness thresholds are at lower fitnesses. If <1, 
              more are at higher fitnesses. The default value is 1. 
 
       ec.hfc.interval 
 
               Interval  between each hierarchical fair competition migration, 
              in number of generations. An interval of 0 disables  HFC  migra- 
              tions. Default is 1. 
 
 
 
HYBRID PM-DREAMER 
       PM-Dreamer  supports  hybrid optimization of functional forms, allowing 
       for local optimization of constants in the  expression  tree.  This  is 
       accomplished  by adding the GP-HybridOptOp operator. The registers that 
       parameterize the operator include: 
 
       gp.hybopt.indpb 
 
               The frequency with which hybrid optimization is performed on an 
              indivual. The default value is 0.05. 
 
       gp.hybopt.primit 
 
               The name for the constants in  the  tree  that  are  optimized. 
              Default is E. 
 
       gp.hybopt.type 
 
               The type of optimization to be performed. If the  value  is  0, 
              all constants in an expression tree are optimized using multidi- 
              mensional  Nelder/Mead  Simplex  algorithm.  If  the  value   is 
              nonzero,  a  random constant in the expression tree is optimized 
              using 1D minimization (also with Simplex). The default value  is 
              1. 
 
       gp.hybopt.maxi 
 
               The maximum number of iterations of local  optimization  to  be 
              performed. Default is 10. 
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RESTARTING OPTIMIZATIONS 
       Simulations can be restart using the -c flag. This  requires  that  the 
       ReadRestartOp  operator be present in the beagle_config_file. The Read- 
       RestartOp replaces the MilestoneReadOp in OpenBeagle. When  restarting, 
       the  individuals  and  the  generation  number are read. The data, tem- 
       plate_style, and parameters from the previous run are not read in. This 
       allows the user to continue a run with new data, template_style, and/or 
       configuration parameters. When restarting a run with new data or a  new 
       template_style, the fitness of all individuals are recalculated and the 
       Hall of Fame individuals are updated with any changes that result  from 
       the  new  fitness  evaluation. Because the restart will start using the 
       last generation from the milestone files, the  ec.term.maxgen  register 
       may  need  to be increased to allow for a larger number of generations. 
       When restarting in parallel, if a smaller number of processors is used, 
       the individuals from the higher rank processes will be thrown out. 
 
 
VECTORIZATION 
       PM-Dreamer  allows  for vectorized evaluation of expression trees using 
       the -z flag. When vectorization is enabled, the expression tree  for  a 
       given  individual  needs to be parsed only a single time using the vec- 
       tor(s) of values necessary for energy/force calculation. This  provides 
       an  improvement  in  speed  because it prevents multiple parsing of the 
       same expression tree and the potential for SIMD compiler optimizations. 
       The  configuration  file does not need to be changed to utilize vector- 
       ization; internal replacements of the standard primitives  and  fitness 
       operators  are  performed  to  allow  vector math operations to be per- 
       formed. Although the runs with vectorization should  produce  identical 
       results,  changes  due  to  finite precision and the order of summation 
       operations can result in different results. Because certain Open Beagle 
       primitives have the argument types hard-coded, vectorization is left as 
       an option to aid in compatability with future versions. 
 
 
AUTHORS 
       W. Michael Brown 
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Appendix B - GP-Force Performance for Different 
Parameter Sets 

 
Figure B-1.  GP performance at varying tournament selection sizes for a Lennard-
Jones test case consisting of 10 configurations with 55-65 pair-interactions per 
configuration. Each data point is the mean best fitness calculated as an average 
over 50 runs on 32 processors with 5000 individuals per processor. HFC was run 
using fixed fitness thresholds ranging from 0.11 to 1.0. HFC migration was 
performed every generation. For the other replacement strategies, random 
migration of 50 individuals was performed every 2 generations. For the random 
case, the population is destroyed at each generation and new random individuals 
are created. For HFC, the crossover probability was 0.9 and for all others it was 
0.8. The probability of hybrid optimization was set to 0 in these cases; the 
probability of all other types of mutation was set at 0.05. The number of 
generations in the evolution for each case is shown below. 
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Figure B-2. GP performance at various crossover probabilities. Runs were 
performed as described in Figure B-1 using a tournament selection size of 6 for 
Generational, HFC, and Steady-State replacement strategies and 8 for the Simple 
replacement strategy. 
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Figure B-3.  GP performance using various probabilities for constant mutation. 
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Figure B-4.  GP performance using various standard mutation probabilities. 
 

Generational Standard Mutation Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

HFC Standard Mutation Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

 
 

Simple Standard Mutation Probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

Steady-State Standard Mutation Probability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25 50 75 100 125

<Time> (seconds)

<F
itn

es
s>

Random
n=0.05
n=0.10
n=0.15
n=0.20
n=0.25

 
 

Mean Generations per 2 Minute Wall Time Limit

0
10
20
30
40
50
60

n=
.0

5
n=

.1
0

n=
.1

5
n=

.2
0

n=
.2

5
n=

.0
5

n=
.1

0
n=

.1
5

n=
.2

0
n=

.2
5

n=
.0

5
n=

.1
0

n=
.1

5
n=

.2
0

n=
.2

5
n=

.0
5

n=
.1

0
n=

.1
5

n=
.2

0
n=

.2
5

Generational HFC Simple Steady-State

G
en

er
at

io
ns

 
 
 



 55

Figure B-5. GP performance using various shrink mutation probabilties. 
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Figure B-6. GP performance using various swap mutation probabilties. 
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