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My shock multi-physics modeling viewpoint 
 My background (30 years at Sandia) includes hydrocode (e.g. 

CTH, ALEGRA) based development and modeling of material 
effects at extreme pressure including in the presence of high 
magnetic fields (ALEGRA-MHD) and also the development of 
ALEGRA-EMMA for modeling ferroelectrics and piezoelectrics. 

 My colleagues at Sandia include experts in components 
engineering, quantum mechanical modeling of materials, 
molecular dynamics, shock and transient dynamics modeling 
and experimentation (including Z).  

 Sandia has a long history of interaction and collaborative work 
with ARL.   

 ARL is tasked with staying ahead of the game in an extremely 
complex and increasingly difficult target/threat environment. 

 I will discuss what I have learned and where we need to go. 
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Science based engineering is the only 
possible way to compete in the future.  
It is a multi-disciplinary, multi-scale, 
multi-physics enterprise. 
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EXAMPLE:  ALEGRA-MHD magnetohydrodynamic modeling 
provides for predictive design of flyer plate experiments 

Two-sided Strip-line Flyer 
Plate Experiment 2D Simulation Plane of Two-sided Strip-line 

 Resistive MHD 
 Accurate electrical conductivities 

(Desjarlais QMD/LMD).  
 Sesame EOS for materials. 
 Circuit model for self-consistent 

coupling. 
 Dakota optimization loops 
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EXAMPLE:  ALEGRA-EMMA Electromechanical 
analysis provides for Fuze/ Power Supply Modeling 

 Coupled mechanical/electric 
field based modeling 

 Circuit coupling essential 
 Advanced hydrodynamic ALE 

techniques are important. 
 Excellent coordination 

between experimental data 
acquisition and material 
modeling expertise is 
required. 

Simulation of Impact Fuze Operation 
with Electric Field Lines Shown 

Movie shows an example 
simulation of a shock actuated 
power supply. 
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EXAMPLE:   
Material Heterogeneity is Integral to Dynamic Failure 

Spatially Variable Strength Profile for Ceramics 
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Reduced Mesh Dependence: Same Model with 
Uncertainty, Size, and Rate Effects 

Comparison to Experiment 

Similar crack 
morphology for 
different mesh 
sizes 

Formal validation 
and uncertainty 
quantification will 
help identify 
remaining issues 

Initial state: small 
elements are 
stronger on 
average, but also 
more variable 

*Brannon, RM, Wells, JM, and Strack, OE ‘Validating Theories for Brittle Damage’, Metallurgical and Materials Transactions A, 38A, p. 2861-8, 2007 

Weibull distribution 
of strength*: 
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Continuum balance laws allow for engineering 
modeling (e.g. Resistive MHD Equations) 

Closure relations for the stress, 𝐓 = −𝒑 𝝆,𝒆 𝑰, electrical conductivity, 𝝈 𝝆,𝜽 , and 
heat flux, 𝒒 = −𝒌 𝝆,𝜽 𝛁𝛁 , are required to solve the equations. 
These relations are what makes the equations useful. 
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Ideal MHD 
version of these 
equations are 
mathematically 
complicated 
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Example: ALEGRA-EMMA   
Continuum Balance laws for  Electromechanics 

material 
polarization permittivity 

remnant, permanent or spontaneous 
polarization 

One would like to have 
extreme confidence that in 
any 3D configuration and 
high pressure loading 
configuration that device 
characteristics are known 
and predictable 
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Smart applied mathematics is still needed. 
 

Not very 
practical for 
some 3D 
applications 

Practical in 3D in 
certain cases 
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Numerical methods are still advancing and 
the mathematics behind them is important 

H1(Ω) 
Node  

W0 

H(Curl; Ω ) 
Edge  

W1 

H(Div; Ω ) 
Face  

W2 

L2( Ω ) 
Element 

W3 

N(Curl) N(Div) 

Grad Curl Div 

• Mimetic discretizations (e.g. deRham complex) are important. 
Implicit solvers need to understand these operators 

• Hydrodynamic methods are still being improved! 
• Robustness is critical. 
• Detailed verification studies always pay off. 
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Scalable Computing Is Essential  
(Algorithms and Hardware) 

P5 

P1 P2 P3 P4 

P9 

P8 P7 P6 

P10 P11 P12 

P13 P14 P15 P16 

 
O(N) scalable algorithms are 
required 
 
Parallel computing has and 
will undergo profound shifts.  
 
Quality software engineering 
with embedded flexibility is not 
an optional requirement to 
deal with the future. 
 
Large teams working together 
effectively is required. 
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 Given a set of modeling equations with initial conditions, 
boundary conditions and closures,  we can solve them 
on a computer and get an answer. (Forward problem) 

 Actually… the modeling equations, initial and boundary 
conditions and are uncertain on both an epistemic 
(reducible) and aleatory (irreducible) level. (Uncertainty 
Quantification (UQ)) 

 Engineers want to optimize configurations and easily 
compute optimized design or inverse problems while 
taking into account uncertainty. 

 What does this future look like? 
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Meta-Computing is the Future:  
Uncertainty Quantification, Optimization and 

Inverse Problems 
 



 0-20 Year Solution: (SAMPLING BASED ANALYSIS) 
 Sample Based Uncertainty Quantification (UQ) and Optimization 

using forward tools as a black box. (DAKOTA) 
 Can use current technology and evolve it. 
 Poor scaling with parametric dimension. 

 5-30+ year solution; (ADJOINT BASED ANALYSIS) 
 Numerical tools which naturally compute derivatives with respect  

to parametric choices. 
 Much less certain how much current technology can be evolved 

forward. 
 Excellent scaling with parametric dimension. 

 All solutions must be obtained with an increasingly 
integrated multi-scale physics modeling stack. 
 
 

13 

The Big Picture Strategy 
 



Building UQ Enabled Bridges between 
Fundamental Laws of Nature and Engineering 

Example:  Propagate uncertainty due to statistically equivalent 
possible EOS fits to the same data, to the analyst. 

Goal: The analyst 
running the continuum 
code should easily get 
results that can be 
transformed into the 
equivalent of “50% 
chance of rain” to give to 
the decision maker. 

Goal: All pathways are connected 
in a unified engineering process 
and iteratively improved. 
Upscaling bridges must be built 
with embedded UQ information. 
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Al EOS model calibration and inference 

18 parameter Al model EOS inference A marginal distribution 

Bayes’ rule 

Bayesian inference to determine posterior distribution function of parameters is costly: 
• Use adaptive Markov Chain Monte Carlo (MCMC) scheme to reduce number of steps 
• Use optimization to find Maximum A Posteriori (MAP) parameters from which to start chain 
• Each posterior evaluation is roughly equivalent to generating an entire EOS table 

• Between 2-10 seconds for the aluminum model on a single cluster processor 
• MCMC is a serial process, but prior and likelihood evaluation can be parallelized to some degree 
• Al model includes stability and smoothness conditions across the range of 
      interest in the prior, as well as 16 sets of data in the likelihood 15 



Tabular EOS generation and UQ representation 
Simultaneously tabulate N parameterizations of 
an EOS model (N=808 for the Al model): 
• New UTri format uses linear interpolation on 

triangles to capture salient features 
• Each tabulation is topologically equivalent 

(smooth mapping of nodes) 
• Optimized node placement is costly but can 

reduce table size 
• PCA mean pressure table at 0.1 tolerance 

shown with overlaid triangulation (phases: 
off table, solid, fluid, melt, vaporization) 

Principal Component Analysis (PCA) used to look for a tabular 
representation with reduced dimensionality: 
• N tables from previous meshing step are starting point 
• Export a truncated set of mode tables that capture most of 

the details (i.e. eigenspectrum energy) 
• Multi-precision floating point necessary due to dynamic 

range of multi-phase tables 
• Aluminum model had a single significant mode 
• Random variables ξ are uncorrelated, with zero mean and 

unit standard deviation, but not necessarily independent 
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Reduction of practical barriers to sampling based 
meta-analysis is critical for predictive engineering.    

Moving from potentially fragile, study-specific script 
interfaces to a unified, user-friendly capability 

SNL DAKOTA 
optimization, calibration, 
sensitivity analysis, 
uncertainty quantification 

ALEGRA 

responses 
file 

parameters 
file 

loose coupling:  
file system 

interface with 
separate 

executables 

ALEGRA Executable 

DAKOTA 

ALEGRA  

param
eters 

re
sp

on
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s 

Internal API 
integrated with 
physics input 
and response 

functions; 
single input 

file 

Current Future 
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SESAME EOS tables 

Can one surmise why the SESAME and UTri models differ? 
• Structure in the curves is of the same order as seen in low resolution UQ tables. 
• Failure to reproduce the shock timing also was seen in low resolution UQ tables. 
• UTri tables use linear C0 interpolation leading to sharp corners in the structure of the 1.0 

tolerance curve, whereas the SESAME tables use a smoother quasi-C1 interpolation 
• One cannot determine if differences between SESAME tables  are due to their models or their 

tabulation. (Often exacerbated by the inability to reproduce the original model.) 
• Understanding model inadequacy in a quantitative way is an important next step. 

Example:  Al Shock Ramp Experiment 
UQ enabled (UTri)  AL EOS tables  
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What are the requirements for upscaled material modeling 
with embedded uncertainty? (Carpenter/Mattsson/Magyar) 
 In extreme environments, experimental data is increasingly difficult to obtain for 

fitting model parameters. We need to develop our ability to calculate and thus 
bridge model data in a much more automated and connected way.  

 We MUST invest in building and reinforcing the multiscale bridges as 
engineering tools. 
 Improved DFT functional formulations including account history effects (TDDFT). 
 Fully coupled modeling of thermodynamic and transport properties (e.g. EOS+conductivity) 
 (Re-)Coupling of constitutive models with the EOS. This can have several directions, including 

properly handling metastable states such as tension, understanding the kinetics of phase 
transitions (melt and polymorphic), and improved modeling of porosity.   
 Rethink/improve the form and thermodynamic foundation of our models?  (e.g. Peshkov research) 

 Properly producing EOSs for multi-component systems (i.e. alloys) 
 A predictive reactive burn model (See next slide) 

 UQ as an integral part of all the above activities. At a minimum, this means 
extending beyond the parametric tabular EOS form described to include model 
uncertainty as well as constitutive model parameters. 

 Design Goal::  “Material models always come with error bars” 

 
 
 
 
  



The multi-scale quest is close to being bridged at some level 
for energetic materials (Thompson). 

Hydrocode        RMD 

Quantum 
Mechanical 

Methods 

Reactive 
Molecular 
Dynamics 

Continuum 
Hydro-

dynamics 

Real 
Devices 

Inform/Calibrate via 
e.g. E.O.S. 
calculations 

Inform/Calibrate via 
direct comparison 

Accurate 
description/prediction 

of real devices 

HNS 
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At the continuum end, such a vision will also require  
robust computational support for aleatory material uncertainty 

Example1: Weibull  
Material Distributions 
 (Weakest link theories) 

Example 2: Random Field 
Representations (KL expansions) 

  

 The material distributions for such continuum analyses MUST 
be derived from realistic data to be of any real use.  Tight 
collaboration with experimentalists is fundamentally required. 

 Outputs from forward models are stochastic variables. 
 Random field theory is useful. 

 
 



 The various electromechanical approximations are highly 
useful and efficient.  What is being lost?  
 Modeling of transitions between Maxwell regimes and additional 

diagnostic information. 
 Can we build a numerical method for the full Maxwell’s 

equations coupled to shock-hydro that naturally transitions 
between the electro-quasi-static and magneto-quasi-static 
regimes, that is reasonably efficient and would give useful 
electromagnetic wave propagation couplings? 

 This would open up many opportunities for additional 
diagnostic and validation modalities.  

 Similarly for other multi-physics: radiation transport, chemistry 
 We also need modeling/computational software that can deal 

with such complexity and also move us into the future. 
 

Next generation multi-physics modeling 
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 Kovetz 
 
 
 
 
 
 
 

 Constitutive theory provides                       with  
 Flux derivatives fit naturally into an ALE framework 

 
 
 

 Fully coupled to mass, momentum and energy equations. 
 
 
 

 
 
 
 
 
 
 

Example:  Full Maxwell Equations and 
Continuum Mechanics Modeling is a Challenge 
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 Excellent in many ways…but 
 Ad-hoc combinations of operator-splitting, semi-implicit, explicit 

time-integration methods and decoupled nonlinear-solvers.  
• Inaccurate and unstable results when physical mechanisms are strongly-

coupled, highly-nonlinear and have overlapping time-scales, 
• Requires very small time-step sizes and make longer-time-scale 

integration costly and inaccurate, 
• Inflexible 
• Numerical errors and appropriate adaptive time step controls are only 

empirically understood, 
• Only sampling-based black-box techniques that require many expensive 

multi-physics solve evaluations are feasible for meta-analysis. 

• This extensive code base is very useful but I do not believe it 
scales well into the future.  What is needed? 

 

Current shock hydro multi-physics numerical methods 
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• IMEX Schemes 
 
 

 
 
 

• Stability (TVD, TVB, SSP),  
• Accuracy (e.g. 1st-5th),  
• Efficiency: partition fast (G), slow (F) operators, use explicit for slow (F) and implicit fast (G), includes 

fully-explicit and implicit methods. Well defined stability criteria and flexible. 
• It is possible to develop adjoint methodologies which play well with IMEX methods. 

• Adjoint Methods 
 
 

• Allows for smarter use of resources for UQ analysis 
• Massive efficiency benefits when number of parameters grows large (spatial material design) 
• Critical for efficient optimization:  
• Difficult implementation questions. 

• How much of our software base is reusable? 

 

IMEX numerical methods and Adjoint Support 

25 



The Sandia Computational Science and Math 
 Group Strategy for Predictive Science and Engineering 

1441 
Optimization and UQ 

1442 
Computational Mathematics 

1443 
Computational Multi-physics 

1444 
Multiscale Science 

1446 
Multi-physics Applications 

 

Strategic Science and Engineering Experimental Partnerships 
e.g. ARL, Sandia component engineering groups 
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Summary (10-30+ year viewpoint) 
 How is this area evolving, and why is it relevant for science in the long term? 

 Basic continuum tools for shock electromechanics in various reduced approximation forms have been 
successful.  They still need improvement. 

 Science based collaborative approaches with modeling based design and experimentation are essential. 

 How and why should this topic area be a focus of defense science for the long term? 
 Defense science is all about design on a rapid iterative time scale.  
 Automated predictive modeling systems which are informed by both first principles computations and  

experimental data  are the foundation for keeping ahead in understanding important shock/high energy 
environments. 

 What technical elements will be required to achieve excellence in this area? 
 Multi-scale/multi-physics/UQ/optimization/inverse modeling tools which scale computationally and 

algorithmically and connect robustly into an increasing set of experimental modalities will be critical. 

 What are recommendations for new programs, infrastructure and teams to address a 
prioritized list of potential grand challenges? 
 A much more integrated experimental/modeling multi-scale enterprise for shock multi-physics is 

required.   Fund cross-cutting teams with clear objectives. 
 Next generation shock-multiphysics computational tools which scale for both forward problems and for 

efficiently solving optimization/inverse problems under uncertainty must now be developed. 
 Grand challenge related application suggestions:  

 Detonator physics coupled to energetic material modeling and design. 
 Fuze/power supply modeling in complicated 3D shock environments. 
 Full Maxwell/shock-hydro modeling and experiments for enhanced physics understanding and improved diagnostic 

modalities. 
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