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Arbitrary Lagrangian/Eulerian (ALE)

e Lagrangian:

 Mesh moves with material points.

e Mesh-qguality may deteriorate over time
 REMESH

e Mesh-qguality 1s adjusted to improve solution-

guality or robustness.

e Eulerian sets new mesh to original location
 REMAP

*Algorithm transfers dependent variables to the

new mesh.




What happens with Involution S
Constraints and ALE?

e Lagrangian:
* The kinematic complexity is simplified due to
embedding in the Lagrangian frame.
« Use of mimetic operators keeps the solution in the
right space.

« Remesh:
* Nothing special

e Remap:
 Algorithm looks like a “constrained transport”
algorithm in some way.
*The algorithm of necessity is un-split.
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Geometric Structure and ey
Numerical Methods
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= The structure of the equations is related to their geometric origins.

= This geometry can reappear in effective numerical methods.

= The deRham structure shown below is used to discuss issues of “compatible
discretizations.”

= These are related to O-forms, 1-forms, 2-forms and 3-forms.

=  Transport theorems are associated with the kinematics of such mathematical ideas.
= Presentation is “color coded”

Curl Div
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Circulation Transport Theorem ) .
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Surface Flux Transport Theorem @&

d j Bldydz+Bzdzdx+Bgdxdy=i I B, da,

dt 4 (U) dt 4,(U)
oV oV
= | dedz+B(—dx+—dy+—dz)dz
4.10) oy 0z
OW oW oW
+B.d —dx —d +—dz + ..
1y( o y+— )
OV.
- | 8 +B——B Ti)da
¢ (U) 8Xk
- I (Bt+V><(B><V)+VdiVB)idai
¢ (U)



[~v—
gEL

Volume Transport )
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Solid Kinematics
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Solid Kinematics

(Reference) Material Coordinates

N\

X(a,t)
/

(Current) Spatial Coordinates

F =0x/0a

Deformation gradient and inverse:

G=F"'=0alox

Polar Decomposition: F = VR

i

Symmetric Positive Definite Proper Orthogonal
(Stretch) Tensor (Rotation) Tensor
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Remap )

= Some material models require that the kinematic
description (i.e. F) be available. The rotation tensor in
particular is needed.

= Any method for tracking F on a discrete grid may fail
eventually.
= Det(F)>0
= Positive definiteness of the stretch, V, can be lost.
* R proper orthogonal: RR" = |, Det(R)>0.

= Rows of the inverse deformation tensor G=F! should be
gradients.

= These constraints may not hold due to truncation errors in the remap
step and finite accuracy discretizations.

= Whatis the best approach?
= “fixes” will be required.
= Storage, accuracy and speed should be considered.
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Possible Solutions

= Use an integration scheme to update V and R in the Lagrangian
step using the rate-of-deformation tensor.
= Conservatively remap components of both V and R (VR)
= Conservatively remap components of V and quaternion parameters
representing R (QVR)
= We have investigated a constrained transport remap to stay in
a curl free space (DG)

= Apply appropriate fixes or projections where possible and
necessary.



The stretch can fail to be positive definite
after remap (VR/QVR)

Limiting minimum and maximum stretches enables robustness.

Spectral Decomposition

= QA
TR

Eigenvectors Eigenvalues

/ik =min(max(4,, 4. ),1/ 4.)




Project R to rotation after remap

2D (VR) 3D (VR)
Rn = (Ry1+ Rx»)/a 3
Ry = (Ryy—Riy)/a RY — R.
Em = (Rm — RQl)/G \/tT(RTR)
EQQ = (Ry1+ Raw)/a
1
a = \/(Rn + R92)? 4+ (Ry — Ry2)? Rm+1 = §Rm [31 — (Rm)TRm]

QVR

q=q/\4qr
e




Comparison of 2D ALE Rotation e,
Algorithms for Two Test Problems
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Exponential Vortex ABC Rotate
06— 1T T~ T T T T T 7] 25T IRERRALEREN RARERAL LN RN
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15_‘ o ] \ = N a<r<b
r _ . _ r
vy = —(1 L o i wna? 2 _ 2
0 271'-]"( L Lo {1 Vy = n.ﬂ (%) b<r<e
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Time Time

Relative error growth for test problems comparing
quaternion with exponential map algorithm (QVR) versus
rotation tensor with Cayley transformation (VR)




Curl Free Constrained Transport (chJ
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Is there something more satisfying?

Representation of G on edges allows for a discrete curl-
free inverse deformation gradient.

Remap algorithm should preserve this property.

Constrained transport (CT) approach pioneered by Evans
and Hawley for div free MHD algorithm on Cartesian grid
is the prototype algorithm.

Solid Kinematics MHD




Curl Free Remap Algorithm )
 Edge element representation
@(é1,82,83) = Z rj-?ﬂ{{k}ﬁ’r;;ﬂ

it fsthe o

Use patch recovered nodal values of G to
compute trial edge element gradient
coefficients along each edge.

]-—1(){,8 (gh) _ ].:aﬁ + Saﬁfk

] iJ ij
Limit slopes along each edge
(minmod,harmonic)
Compute the node circulation

contributions in the upwind element by a
midpoint integration rule at the center of

Rows guaranteed to be curl the node motion vector.
free. © ,\ ) A
[Brds= Y TPE@)+ b0+ )i
No control on det(G). ® L i#j#k,0.3
Speed ® « Take gradient and add to edge element

circulations.
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Solid Kinematics Remap

= There are significant benefits for quaternion rotation
(LQVR,QVR) representation with volumetric remap.

= Stretch tensor reset algorithm based on eigenvalue
decomposition has been shown to provide robustness.

" |nverse deformation gradient modeling with curl free remap
required continued investigation. SAND2009-5154

= BIG question #1: How to control det(G)?

= BIG question #2: How to program the CT algorithms efficiently?
In particular one needs to find the upwind element.

= Research Question: The det(G) constraint essentially links a CT
type algorithm across 2 or 3 coordinates. Is there a better
(perhaps more coordinate free) way to think about the problem?




One possible approach to solving @,
the det(G)>0 problem

= Kamm, Love, Ridzal, Young, Robinson have investigated
whether optimization based remap ideas might help.

= Solve global optimization problem for nodal increments
using the standard CT algorithm increments as the target.

min f(u) subjectto g(u)=0 and h(u)>0.

Flu) = %z[u!- i) i) = detj(u) — >0 with & := min{dets ()}

= Solve using slack variable formulation
min f(u) subjectto g(u) =0, h(u)—s=0 and s—e>0
= Research report in progress.
= Keyidea: optimization might be able to help with remap.



Eulerian Frame for kinematics )
= Caltech group has had success with Eulerian frame equations for
solid kinematics.

= The G equation (circulation transport theorem for three
components of inverse deformation gradient) must contain a
term related to preserving consistency with mass conservation.

= Phil Barton
= Caltech and now at AWE

= Reports success with both F and G equations. (Personal communication at
Multimat 2013 (with permission)).

= Did not use the additional diffusion term of Miller and Colella.

= See also Hill, Pullin, Ortiz, Meiron JCP 229 (2010) and Miller and
Colella, JCP 167 (2001).

= |sthere something to be learned from Eulerian frame success for
ALE algorithms? Are there weaknesses about Eulerian frame that
are not clear?




Magnetohydrodynamics
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Faraday’s Law (Natural operator splitting)

A straightforward B-field update is possible using Faraday’s law.

VxE—i—a—B:O E=E+vxB

ot

Integrate over time-dependent surface S(t) , apply
Stokes theorem, and discretize in time:

if Bda+ ¢ Edx—0
dt Js(z) 85 (t)

1 " ~ n+1 n+1 Zero for ideal MHD b
+1_Rpntly, jantl . y
At / (B I ) da + 8 dX frozen-in flux theorem:
S(t+Aat) S (t+At)

d *
d_t StB-da— SﬁB-da—O

1 / ~
o B’H_l'dan'_i_l
+ At [ S(t+At)

Terms in red are zero for ideal MHD so nothing needs to be done if fluxes are degrees of freedom.

B?l .da?l

— 0

v S(t)
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Solve magnetic diffusion using edge/face
elements which preserve discrete divergence
free property

Q = a single conducting region in R3.

oB

VxH=J —+VxE=0 Exact relationship
weakly enforced ot
Vel=0 VeB=0
B=uH J=0ockE
" Exn=E, xn on ", (Dirichlet),
boundary conditions .
Hxn=H_,xn onI,(Neumann) Edge element

n+1 - n -
jaE””oEdV ﬂtjcurIE ocurIEdV :JB ocurIEd

JZ H

V- [H, xneEdA

B = magnetic flux density E = electric field H = magnetic field
1 = permeability o= conductivity  J = current density
uand o positive and finite everywhere in Q




Magnetic Flux Density Remap ) .

" The Lagrangian step maintains the discrete divergence free
property via flux density updates given only in term of curls of
edge centered variables.

= The remap should not destroy this property.

* Constrained transport is fundamentally unsplit.



Flux remap step )

[Beda=0 jB da+jB da+ZjB (v, Atxdl) =0
S

jB da+jB da+2jd| (BxV,At) =0

SId



CT on unstructured quad
and hex grids (CCT)

1 Define the low order or donor method
by integrating the total flux through the
upwind characteristic of the total face
element representation of the flux
density.
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High order method constructs a
modification to the flux so that it varies
across the element face. Compute flux
density gradients in the tangential
direction using the blue and the red
faces.

All contributions are combined.

Electric field updates are located on
edges.

Take curl to get updated fluxes.

= Requires tracking flux and circulation
sign conventions.
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Face element representation

= Obtain representation of upwind element in terms of natural coordinates of an
isoparametric element.

X=Xy +&(X —X)) +7l(X5 + & (X, —X5)) = (Xo + & (X, — X))

OX OX OX OX

cDlD (5_1)8 —(I)loscfa (Dé(??—l)8 —(Désﬁa

B=) @F = s 4 5 4 i/ 1
f X5y X5y X5y X5y

* Integrate over flux surface.

[ dxxB = 6(@7, + 5 (D — D)) — SE(DF +F (DF — D))
S.

« Normal gradient terms appear naturally.

*A cross face tangential gradient limiting is implemented
«Several limiters implemented (Van Leer, harmonic, minmod, donor)

() =D+ (M) SG-n) Q)= h + (RS (E-8)




CT 1D advection

1D advection
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Improved CCT Algorithm 1) .

« Compute B at nodes from the face element
representation at element centers. This
must be second order accurate. Patch
recovery (PR) suggested. Other means are
possible.

« Compute trial cross face element flux
coefficients on each face using these nodal
B.

e Limit on each face to obtain cross face flux
coefficients which contribute zero total
flux.

« Compute the edge flux contributions in the
upwind element by a midpoint integration
rule at the center of the edge centered

motion vector.
» Arbitrary Lagrangian-Eulerian 3D Ideal MHD Algorithms,” Int. Journal Numerical Methods in
Fluids, 2011;65:1438-1450. (remap and deBar energy conservation discussed)

* Bochev and student have looked at optimization based reconstruction for flux based remap.

* The key thing to optimize is the magnetic energy loss.




CT donar

CT Van Leer

PR CT harmonic
CT monotonic
CT harmonic

T

Paved,diagonal,
face based,
harmonic

T T T T

e B I+ (<

Cartesian
EM-diag-dt=.01:u=(.5,.5):dx=.04
L0 o
1
CT Van Leer
= PR CT harmonic
«= CT monotonic

= CT harmonic

J

D T

CT Van Leer

= = == PR CT harmonic

CT manatonic
CT harmanic

Paved

CT danar

CT Van Leer

= === PRCT harmonic
= CT monotonic

«ss CT harmonic

CT donor

CT Van Leer

= === PRCT harmonic
= CT manotonic
+» CT harmanic

EME MO

Patch Recovery Based CEE=-

TTTTTT

ndia

Randomized

EM-random-diag-dt=.01:u=(.5,.5).dx=.04
T

......... P T B T R S e e S S|

CT donor L

CT Van Leer

PR CT harmonic il

= CT monotonic -
= T harmaonic

CT donor ]

CT Van Leer

PR CT harmonic 4

CT monotonic —
« CT harmonic 1

Paved,diagonal,
patch recovery,
harmonic
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Hydrodynamics
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Hydrodynamics

= Lagrangian Step
= Mass is conserved in the Lagrangian frame.
= Discrete Lagrangian continuity equation is trivial.

= Remap Step

= Swept surfaces or overlap grids plus integration over
reconstructed densities yield mass changes.

= Remap algorithms associated with the blue box have been
worked on for a long time.

= Recent new algorithms tend to emphasize solving optimization
problems to avoid excessive dissipation. See work by Shashkov
and Bochev and their coworkers.

= My impression is that the blue box in the deRham diagram has
received most of the research attention!




Cross cutting algorithms
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Cross cutting algorithms

" |s it possible to build an ALE numerical method for the full
Maxwell’s equations coupled to mechanics that naturally
transitions between the electro-quasi-static and magneto-
guasi-static regimes, is reasonably efficient and would give a
useful approximation to at least some low frequency
electromagnetic wave propagation effects if the time and
space scales are sufficient?

= Such an algorithm if built for an ALE modeling framework and
a mimetic based numerical method would required some
cross deRham diagram linked algorithmic characteristics.
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Maxwell Equations and Continuum Mechanics

" Kovetz VxH = j+f),
V-D = g,
Vx& = —]E*B,
V-B = 0,
D = ¢E+P,
H = p;'B—vxeE—-M

" Constitutive theory provides M, P and J with £=E+v xB

= Flux derivatives
. OB OB

B = E-FVX(BXV)—FV(VB):E—I—VX(BXV)
i D D
Ik = %—t—l—Vx(va)—l—v(V-D):%—t—l—Vx(va)—l—qv

=  Fundamental equations still up for discussion, e.g. Weile, Hopkins, Gazonas and
Powers, “On the proper formulation of Maxwellian electrodynamics for continuum
mechanics,” Continuum Mech. Thermo., DOI 10.1007/s00161-013-0308-7.
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Possible Solution

= Take a page from 3D ALE MHD and place D and B as fundamental
variables (fluxes) on faces using face elements.

=  QOperator split the Lagrangian step.

=  Mesh motion occurs with constant D and B fluxes. This conserves both
the zero magnetic flux divergence property and charge.

= Update the fluxes and electric displacements using a mimetic method.

= The Bochev and Gunzberger algorithm, “Least-Squares Finite Element Methods,”
p.225 is a good candidate.

= Use an L stable time discretization method.

= Remap magnetic flux using standard constrained transport.
=  What about remap of electric displacement?
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CT plus a volume term!
0D
ot

HV x (D x v)|Hv(V - D)

New electric displacement flux is the oriented sum of edge contributions
which does not change the charge plus face flux contributions which do.



) i,
ALE Multiphysics and the deRham Complex

= There are many opportunities to use geometrically based
methods associated with the deRham complex in ALE
multiphysics modeling.

= The three integral transport theorems essential to two-step
ALE methods provide fundamental meaning.

= The ideas associated with numerical methods tend to be
intuitive and natural.

= Many opportunities are available for additional advances in
robustness, computational speed, accuracy, extended
modeling and fundamental understanding.
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