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Conventional sampling-based uncertainty quantification (UQ) methods involve generat-

ing large numbers of random samples on input variables and calculating output statistics

by evaluating the computational model for each set of samples. For real world

applications, this method can be computationally prohibitive due to the cost of the model

and the time required for each simulation run. Using response surface approximations

may allow for the output statistics to be estimated more accurately when only a limited

number of simulation runs are available. This paper describes an initial investigation into

response surface based UQ using both kriging and multivariate adaptive regression spline

surface approximation methods. In addition, the impact of two different data sampling

methods, Latin hypercube sampling and orthogonal array sampling, is also examined.

The data obtained from this study indicate that caution should be exercised when

implementing response surface based methods for UQ using very low sample sizes.

However, this study also shows that there are clear cases where response surface based

UQ provides a gain in accuracy versus conventional sampling-based UQ methods.
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1. Introduction

Simulation-based uncertainty quantification (UQ) for real-

world engineering applications often is difficult due to the

computational expense of the simulations (a.k.a. ‘code

runs’). For example, current high-fidelity finite element

models used in industry often involve millions of elements

and require hours or days of compute time on a massively

parallel computer for a single simulation run. The

simulated physics is complex, as it often involves coupled

systems of nonlinear, time-dependent partial differential

equations that arise in disciplines such as fluid flow,

structural mechanics, and radiation transport. Phenomena

such as shock waves, multi-material contact (e.g. crushing),

and random scattering are common in such simulations.

Typically, each simulation involves tens to hundreds of

uncertain input parameters involving various types of

probability density functions.

Due to the complexity and nonlinearity of these

simulations, analytic solutions for UQ statistics such as

mean value, standard deviation, and probability of failure

on the simulation outputs are almost never possible. In

some fortunate scenarios, analytic reliability methods can

be used for calculating failure probabilities, especially if the

limit state function is linear or weakly nonlinear, and the

uncertain parameters have normal distributions. However,

in many scenarios the limit state function is nonlinear and/

or the uncertain parameters are non-normal, and thus
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analytic reliability methods are more prone to inaccuracy.

In such cases, often the only viable UQ approach involves

sampling-based methods. Due to budget considerations,

one can usually afford only a limited number of simulation

runs and, of course, one would like to extract as much

information as possible from this limited amount of data.

Accordingly, this study attempts to answer the following

question, ‘Given a set of N simulation output data samples,

is it more accurate to estimate UQ statistics directly from

the N data points, or is it more accurate to extract trend

information from the N data points, and then estimate UQ

statistics from the trend models?’.

The use of trend models (a.k.a. response surface

approximations, metamodels, surrogate models) to under-

stand complex phenomena has its origins in the statistical

design of experiments literature (cf. Myers and Montgo-

mery 1995). Over the past 30 years, response surface

approximations have found increasing use in engineering

design optimization studies (cf. Simpson et al. 2001) and are

becoming increasingly common in engineering UQ studies

as well (cf. Gomes and Awruch 2004, Romero et al. 2004,

Kaymaz 2005). Indeed, it seems completely reasonable to

employ some sort of trend model for UQ purposes when

data are scarce. To date, only a few comprehensive surveys

of response surface approximation methods have been

published (cf. Jin et al. 2001). However, these studies

typically focus on function approximation accuracy and not

on statistical metric accuracy, thus motivating this study.

Due to the generality of the engineering UQ problems

being addressed (nonlinear physics simulations involving

non-normal uncertain parameters), there is limited insight

to be gained by a strictly theoretical investigation. Rather, a

more pragmatic approach is chosen in which a combination

of different UQ sampling methods and response surface

approximation methods is used to analyze a well-known

test function. While the information gained from this

initial study is largely qualitative and of limited general

applicability, it is expected that the insights gained on these

simple test problems will lead to more interesting research

topics, and will provide some guidance for performing UQ

in engineering design applications.

This study employed the publicly available DAKOTA

(Design Analysis Kit for Optimization and Terascale

Applications) software toolkit (Eldred et al. 2001) for both

sampling-based UQ methods and response surface approx-

imation methods. That is, DAKOTA can be used to estimate

UQ statistics directly fromN data samples, and it also can be

used to create response surface approximations from the N

data samples from which approximate UQ statistics can be

obtained. Additional detail on DAKOTA is provided below.

2. Background

2.1 Sampling methods for UQ

This study investigates three sampling methods that generate

data for UQ. The sampling methods are Monte Carlo (MC)

sampling (Metropolis and Ulam 1949), Latin hypercube

(LH) sampling (McKay et al. 1979), and orthogonal array

(OA) sampling (Owen 1992, Hedayat et al. 1999).

The MC, LH, and OA sampling methods are based on

random sampling according to user-prescribed joint prob-

ability density functions on the uncertain parameters.

However, the LH and OA sampling methods are refine-

ments to basic MC sampling in that they partition the

parameter space into bins of equal probability, with the goal

of attaining a more even distribution of sample points in the

parameter space than typically occurs with MC sampling.

For example, given N sample points in an n-dimensional

parameter space, LH sampling partitions the parameter

space into an Nn grid of bins, with N bins along each axis.

Then, sample points are distributed such that all one-

dimensional projections of the samples yield one sample per

bin (figure 1). Note that the LH sampling method used in

Figure 1. Examples of (a) MC sampling, (b) LH sampling, and (c) two-dimensional OA/Stratified sampling.
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this study placed the sample randomly within each selected

bin, although some LH sampling methods place the sample

at the center of each selected bin. The bin-centered LH

sampling method was not investigated in this study.

Orthogonal arrays have been developed to study main

effects by creating experimental design matrices where the

columns (the levels or settings of the uncertain variables)

are orthogonal, meaning statistically independent. For each

level of one variable, all levels of the other variables occur

an equal number of times. This allows one to test if the

influence of variable X, for example, at level A has a

significant influence on the output vs the setting of variable

X at level B. The OA sampling method is similar to the LH

approach in that it employs a partitioning scheme to

subdivide the n-dimensional parameter space into a grid of

equal-probability bins. Specifically, in OA sampling the

n-dimensional parameter space is partitioned into a
ffiffiffiffi
Nt
p� �n

grid of bins, with
ffiffiffiffi
Nt
p

bins along each axis. In an OA, the

samples are distributed such that all t-dimensional projec-

tions (for t5 n) of the samples yield at least one sample per

bin. This produces stratified random sampling (one sample

per bin) in all t-dimensional subsets of the n-dimensional

parameter space. The term t is called the ‘strength’ of the

OA. Due to the special structure of the OA sampling, it is

not always possible to create a set of OA samples for an

arbitrary value of N. Tables of commonly used OA samples

sets for various combinations of N, n, and t values are

available (cf. Hedayat et al. 1999). Note that the LH

sampling approach is equivalent to a strength-1 OA. For

the special case where the dimension of the test function

and the strength of the OA are the same value (e.g. n¼ t¼ 2

in this study), the OA produces stratified random sampling

on a
ffiffiffiffi
N
p
�

ffiffiffiffi
N
p

grid of equal-probability bins. It should be

stressed, however, this is not the case for a general

n-dimensional test function and strength-t orthogonal

arrays. The introduction of OA sampling in this study

where n¼ 2 is carried out in preparation for future studies

involving test problems with n4 2.

Figure 1 illustrates the difference between MC, LH and

OA/Stratified sampling, where, for simplicity, we have two

(n¼ 2) uniform uncorrelated uncertain parameters x1
and x2 and four samples (N¼ 4) on the parameter space

[0,1]2. For MC sampling, the stars represent randomly

selected sampling locations in the parameter space. For

LH sampling and OA/Stratified sampling, the grid lines

inside the parameter space denote equal-probability bins.

Due to the assumption of uniform uncorrelated marginal

distributions, all of the bins are of equal area as well.

The LH sampling approach generates a grid of 46 4 bins,

and four bins are chosen such that each row or column

contains exactly one sample. The OA sampling approach

with n¼ t¼ 2 creates stratified MC sampling on a grid

of 26 2 bins, with the one sample placed randomly in

each bin.

2.2 Response surface approximation methods

This study employs two general response surface approx-

imation methods: kriging interpolation and multivariate

adaptive regression splines (MARS). Each is discussed

below.

2.2.1 Kriging interpolation. Kriging interpolation techni-

ques were originally developed in the geostatistics and

spatial statistics communities to produce maps of under-

ground geologic deposits based on samples obtained at

widely and irregularly spaced borehole sites (Cressie 1991).

The basic notion that underpins kriging is that the sample

response values exhibit spatial correlation, with response

values modeled via a Gaussian process around each sample

location (i.e. samples taken close together are likely to

have highly correlated response values, whereas samples

taken far apart are unlikely to have highly correlated

response values). Kriging methods have found wide utility

due to their ability to accommodate irregularly spaced

data, their ability to model general surfaces that have many

peaks and valleys, and their exact interpolation of the given

sample response values.

The specific form of the kriging model used in this study

is described in Giunta and Watson (1998) and Romero

et al. (2004), and it is based on the work of Koehler and

Owen (1996). The form of the kriging model is

f̂ðxÞ ¼ b̂þ rðxÞTR�1ðf� b̂f1gÞ ð1Þ

where b̂ is the generalized least squares estimate of the

mean response; r(x) is an N6 1 vector of correlations

between the current point x, and all N sample sites in

parameter space; R is the N6N correlation matrix of all N

sample sites; f is the vector of N sample site response values;

and {1} is an N6 1 vector with all values set to unity. The

terms in the correlation vector and matrix are computed

using a Gaussian correlation function. The ith term in r(x) is

given by

ri ¼ exp
h
�
Xn
k¼1

ykjxk � x
ðiÞ
k j

2
i

ð2Þ

and, similarly, the i, jth term in R is given by

Ri;j ¼ exp
h
�
Xn
k¼1

ykjxðiÞk � x
ðjÞ
k j

2
i

ð3Þ

where n is the dimension of the parameter space; k is the

index on the dimension of the parameter space; i¼ 1, . . . ,N;

j¼ 1, . . . ,N; and y is the n6 1 vector of correlation

parameters. In this study, all values of y are set to unity

in order to simplify the use of the kriging method. In

the most general approach to kriging, the values of y
are computed using maximum likelihood estimation.
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However, finding optimal y values can be problematic, as it

requires an iterative search scheme that sometimes fails to

converge.

Note that the kriging interpolation method is prone to

ill-conditioning in the correlation matrix R as the number

of sample points increases. This occurs because of the

distance measure that is computed in equation (3). As the

distance between any two sample points i and j decreases,

then the ith and jth rows in matrix R become linearly

dependent, and in the limit where the points are the same,

the matrix R becomes singular. Thus, this basic kriging

method works well for a sparse set of sample points in an

n-dimensional parameter space, but as the number of

samples increases (and the inter-point distances decrease),

the kriging method becomes unstable.

2.2.2 Multivariate adaptive regression splines. The multi-

variate adaptive regression splines (MARS) function

approximation method (Friedman 1991) is based on a

complex, recursive partitioning algorithm involving trun-

cated power spline basis functions. The form of the MARS

model is:

f̂ðxÞ ¼ ao þ
XM1

m¼1
amBmðxiÞ þ

XM2

m¼1
amBmðxi; xjÞ þ . . . ð4Þ

where the Bm terms are the basis functions, the am terms are

the coefficients of the basis functions, M1 is the number of

one-parameter basis functions, and M2 is the number of

two-parameter basis functions. The MARS software allows

the user to select either linear or cubic spline basis

functions. Cubic spline basis functions are used for this

study. The regression aspect of the MARS algorithm

involves a forward/backward stepping process to adap-

tively add/remove spline basis functions from the model. It

is this regression process that generates the ao and am terms

in equation (4). The resulting MARS model is a C2-

continuous function of piecewise cubic splines, but it will

not exactly interpolate the data points that were used in

calculating the coefficients. Thus, like polynomial regres-

sion, MARS has the ability to create smooth approxi-

mations to noisy data. Unlike kriging, MARS appears to

have no upper limit on the number of samples that can be

used in the function approximation process.

Admittedly, the mathematical and statistical algo-

rithms within MARS are somewhat of a black box,

given the lack of a detailed user’s manual. However, we

elected to use MARS in this study since it is one of the

few publicly available function approximation software

packages that, like kriging, can handle arbitrarily spaced

data. In addition, MARS has received some use in the

engineering community (cf. Jin et al. 2001) and we

were interested in exploring both its utility and its

drawbacks.

2.3 Software tools

As noted above, the DAKOTA toolkit (Eldred et al. 2001)

was used in this study. DAKOTA provides an integrated

suite of data sampling methods and response surface

approximation methods. It is a publicly available software

package that can readily be employed for similar scientific

studies.

Within DAKOTA, the MC and LH sampling capabilities

are provided via the LHS software library (Iman and

Shortencarier 1984, Swiler and Wyss 2004). The OA

sampling capability is provided via the DDACE library

(Martinez-Canales and Williams 2005), which leverages the

original ‘oa.c’ software package created by Prof. Art Owen

of Stanford University (Owen 1992).

The kriging interpolation method in DAKOTA is an

extension of the work of Giunta and Watson (1998). The

MARS approximation method is available through the

DDACE library, which leverages the original ‘mars36.for’

software package (MARS version 3.6) created by Prof.

Jerome Friedman of Stanford University (Friedman 1991).

The ‘mars36.for’ program was obtained from the StatLib

online software repository.

This study employed DAKOTA version 3.3 on a 32-bit

Intel microprocessor-based computer workstation running

the Red Hat Linux Fedora Core 3 operating system. This

version of DAKOTA is available to the public, under the

restrictions of the GNU General Public License, from

http://endo.sandia.gov/DAKOTA. The DAKOTA input

files used in this study are listed in Appendix A and

Appendix B.

3. Technical approach

3.1 Test function

Figure 2 shows a plot of the Rosenbrock function (Gill

et al. 1981) that is used in this study since it provides a

simple, computationally inexpensive response function that

exhibits some of the nonlinear trends often found in data

from computationally expensive engineering/physics simu-

lation codes (cf. computational shock physics studies in

Giunta et al. 2002). The formula for the Rosenbrock

function is:

fðx1; x2Þ ¼ 100ðx2 � x1
2Þ2 þ ð1� x1Þ2 ð5Þ

where both x1 and x2 are bounded by [7 2, 2]. In this

study, three statistics of f are examined: the mean, the

standard deviation, and the failure probability, pf, which

is defined as the probability that f5 4. Figure 3

illustrates the portion of the parameter space that

falls below this threshold. Given independent uniform
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distributions for the input parameters, the mean

and standard deviation of f(x1, x2) over the region

[7 2, 2]2 are approximately 455.67 and 606.56, respec-

tively, which were calculated analytically. The failure

probability is approximately 0.04940 (approximately 5%),

which was estimated using one million MC samples of

the Rosenbrock function.

Although the true functional form of f is known, this

study does not take advantage of this knowledge, since in

general engineering applications the form of f is unknown.

Also, it is important to note that the probability density

function (PDF) of f is generally not known. Clearly, when

the form of f is unknown, simply knowing the PDFs of the

input parameters does not in itself provide that the PDF of

the output f is known. Thus, the mean, standard deviation,

and failure probability must be estimated solely from

samples of f. Note that analytic reliability methods are not

addressed in this study. Due to the nonlinearity of the limit

state function (see figure 3), analytic reliability methods

would be inaccurate.

3.2 Statistical metrics

The mean value of function f is estimated using sampled

values of f via

~m ¼ 1

N

XN
i¼1

fðxðiÞ1 ; x
ðiÞ
2 Þ ð6Þ

where N is the number of samples, and the values for x1 and

x2 are drawn randomly from their respective PDFs.

When the mean value is estimated using samples taken

from a response surface approximation, the mean value is

denoted as

m̂ ¼ 1

M

XM
i¼1

f̂ðxðiÞ1 ; x
ðiÞ
2 Þ; ð7Þ

where f̂ is the response surface approximation function

computed from N data points, and M is the number of

samples taken of the response surface approximation (note:

M�N). That is, f̂ is either a kriging model or a MARS

model that is computed from the N original data samples.

Figure 2. Rosenbrock’s function.

Figure 3. Contour plot of Rosenbrock’s function at the

failure threshold value.
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Once the f̂ approximation is constructed, M¼ 10 000

samples are used to estimate the mean value. It is important

to note that in certain cases where f̂ has a simple functional

form (e.g. polynomial response surfaces), it is easy to analy-

tically integrate the f̂ function to obtain the mean value.

However, the functional forms of the kriging and MARS

methods are not readily amenable to analytic integration as

we are treating these approximation functions as ‘black

boxes’ inside the DAKOTA software.

Following the mean value estimation approaches given

above, the standard deviation of the function f is estimated

directly from the samples as

~s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N� 1

XN
i¼1
½fðxðiÞ1 ; x

ðiÞ
2 Þ � ~m�2

vuut ð8Þ

and using the response surface approximations as

ŝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M� 1

XM
i¼1
½f̂ðxðiÞ1 ; x

ðiÞ
2 Þ � m̂�2

vuut ð9Þ

The failure probability, P(f5 4), is given by the integral

pf ¼
Z2
�2

Z2
�2

fðx1;x2Þ<4

hXðx1; x2Þdx1dx2 ð10Þ

where hX(x1, x2) is the joint probability density of x1 and x2
and hX(x1, x2)¼ 1/16 because x1 and x2 are independent

uniform random variables. Equation (10) is difficult to

evaluate analytically because of the complex integration

region (see figure 3). Thus, a very large number of random

samples were generated to approximate the true value of pf.

This approximation is given by

~pf �
Nfail

N
; ð11Þ

where Nfail is the number of samples in the failure region.

Similarly, the failure probability is estimated using the

response surface approximations as

p̂f �
Mfail

M
; ð12Þ

whereMfail is the number of samples in the failure region of

the response surface approximation function.

Haldar and Mahadevan (2000) show that the error in the

failure probability approximation can be estimated as

e% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pTf Þ
N� pTf

s
� 200% ð13Þ

where pTf is the true failure probability. Thus, the failure

probability estimate of 0.04940 for the Rosenbrock

function (where failure occurs for f5 4) made using one

million random samples probably has an error less than

0.87%. For the purpose of this paper, the true value of pf is

assumed to be within 0.04940+ 0.00043.

3.3 Sampling methods

The MC and LH sampling methods allow the user to

choose an arbitrary number of sample points. For this

study, we used MC and LH sample sizes of 10, 25, 50, 75,

100, and 121 points. Note that all samples are randomly

generated, and no set of samples is a subset of any other set.

Due to the unique structure of strength-2 OA sampling, the

sample sizes are limited to specific values. In this study we

used OA sample sizes of nine, 16, 25, 49, and 121. Note that

in practice, one need not be limited to the specific sample

sizes imposed by the OA structure. For example, with a

budget of N samples, one could find the largest OA of

K samples where K5N, and then generate the remaining

N–K samples with MC sampling.

3.4 Surface approximation methods

This study first examined statistical data generated using

MC, LH, and OA/Stratified sampling alone without

employing response surface approximation. This was carried

out in order to illustrate the variance reduction offered by

both LH and OA sampling over traditional MC sampling.

This was followed by an examination of the statistical data

found using response surface approximations. Since one

would obviously employ LH or OA sampling rather than

MC sampling, only response surfaces based on LH sample

points and OA/Stratified sample points were investigated.

Note that M¼ 10 000 LH samples are used in evaluating

equations (7), (9), and (12) for this study. This sample size

was selected somewhat arbitrarily, based on a few trials

performed with M in the range of 5000 – 50 000 samples.

Over this range, the estimates for mean value, standard

deviation, and failure probability showed negligible varia-

tion. Thus, while there is some error in the statistical

metrics introduced via a finite sample size, this error should

be much smaller than the error introduced by either the

kriging or MARS response surface approximation meth-

ods. In this study, M4N by several orders of magnitude.

4. Results and discussion

4.1 Comparison of sampling methods

Figure 4 shows the trends in the estimated mean value of

the Rosenbrock test function for MC, LH and OA/

Stratified sampling. The MC and LH data were obtained

for N¼ 10, 25, 50, 75, 100, and 121 samples; and the OA/

Stratified samples were obtained for N¼ 9, 25, 49, and 121
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samples. For each value of N, 10 runs (i.e. unique trials of

N samples) were performed in order to examine the spread

of the mean value estimate. Recall that equation (6) is used

in these mean value estimates. As expected, both LH

and OA/Stratified sampling show, generally, less spread

(variance) in the estimated means for N4 25, although for

N¼ 121 the variance reduction of LH versus MC sampling

may not be statistically significant. Note that for N¼ 10

(MC and LH) and for N¼ 9 (OA) samples, there is no

qualitative difference in the spread of the mean values

predicted by the three sampling methods. For N¼ 121,

there appears to be a qualitative difference between LH and

OA/Stratified sampling, with the OA/Stratified approach

having less spread in the mean value estimates.

Figure 5 shows the standard deviation estimates pro-

duced for the three sampling methods for increasing N,

where standard deviation was computed via equation (8).

From these results it is difficult to differentiate the

performance of the three sampling methods, but for

N¼ 121, OA sampling appears to be the most accurate.

Figure 4. Comparison of mean value estimation using MC, LH, and OA (Stratified) sampling. (LHS, LH sampling; OAS, OA

sampling).

Figure 5. Comparison of standard deviation estimation using MC, LH, and OA (Stratified) sampling.
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Figure 6 shows the failure probability estimates for

increasing N, where the failure probability was computed

using equation (11). Although 10 trials were made for each

value of N, in some cases duplicate failure probability

estimates were obtained due to the discrete nature of

equation (11). For all values of N, there is no clear

difference in the spread of the failure probability estimates

produced by the three sampling methods.

The data in figure 6 illustrate the potential error in using

equation (11) to estimate failure probabilities, especially for

low values of N. That is, in several of the replicates for

N� 50, the estimated failure probability was zero since

none of the sample points landed in a region where f5 4

for the Rosenbrock function (recall, the true failure

probability is 0.0494).

4.2 Function approximations based on LH samples

Figures 7 – 9 show, respectively, the trends in mean value,

standard deviation, and failure probability for increasing N

as estimated using kriging and MARS surface approxima-

tions based on LH sampling. Recall that the kriging and

MARS models are constructed using N samples, but then

the statistics for each function approximation are estimated

using 10 000 LH samples (i.e. the kriging and MARS

models are not readily amenable to exact integration as are

simpler low-order polynomial approximations).

Figure 7 shows the trends in estimated mean value for an

increasing number of available LH samples. Interestingly,

for N� 25, there is no clear benefit to using either the

kriging or the MARS function approximation. However,

for N� 50, both the kriging and MARS approximations

provide a more accurate mean value estimate than is

obtained from the original set of N samples (i.e. compar-

able bias, but lower variance).

Figure 8 shows the trends in estimated standard

deviation for increasing N LH samples. The 10 trials

of LH samples without function approximation exhibit

large scatter for low values of N, but the estimates

are unbiased (i.e. are centered around the exact

standard deviation value) and they converge to the

correct value as N increases. In contrast, the kriging

approximation method shows a clear bias in the standard

deviation estimates for low values of N. Upon closer

inspection of the kriging function approximation surfaces,

it was noticed that for low values of N the kriging model

was predicting f5 0 over some portions of the [72, 2]2

parameter space, whereas the true Rosenbrock function has

f � 0 over the entire parameter space. (Note that this

special knowledge about the Rosenbrock function was not

exploited in this study since, in general, such knowledge

would not be available about an unknown function.) The

MARS approximation method also performs poorly for

low values of N. In particular, for N¼ 10 all of the standard

deviation estimates are zero. Upon further inspection, it

was discovered that the MARS software generated a

constant-valued function for each of the 10 trials. (Note

that it is not clear from the output of the MARS code

whether this is an error or simply a default condition when

there are too few data points for MARS to construct a

surface approximation. Clearly this is a hidden drawback

of the MARS software.) The MARS-based standard

deviation estimates converge to the correct value as N

increases.

Figure 6. Comparison of failure probability estimation using MC, LH, and OA (Stratified) sampling.
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Figure 9 shows the trends in estimated failure

probability for increasing N LH samples. As before, the

LH samples without function approximation show a

large, but unbiased, scatter in failure probability esti-

mates. This scatter decreases as N increases. The kriging-

based failure probability estimates exhibit bias for low N

(low bias for N¼ 10, and high bias for N¼ 25), but this

bias disappears with increasing N. The MARS-based

failure probability estimates are in gross error for low N,

where either the failure probability is zero for all trials

(e.g. for N¼ 10) or the failure probability is highly biased.

As N increases, the MARS-based failure probability

predictions improve, but remain highly scattered and

biased even for N¼ 121. Note that the MARS-based

failure probability estimates typically are worse for all

values of N, when compared to the results produced by

the LH samples used alone without any use of function

approximation.

Figure 8. Comparison of standard deviation estimation using N LH samples vs estimation using response surface

approximations generated with N LH samples.

Figure 7. Comparison of mean value estimation using N LH samples vs estimation using response surface approximations

generated with N LH samples.
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Figures 10 and 11 depict, qualitatively, the difference in

accuracy between the MARS and kriging response surface

approximations for N¼ 121 LH samples. Figure 10 shows

the true Rosenbrock function (shaded contour plot) versus

a sample-based view of the MARS surface approximation.

That is, the MARS surface is first constructed from

N¼ 121 samples, and then visualized in figure 10 by

generating 10 000 samples in [72, 2]2 and plotting the

predicted function value at each point. While the MARS

function captures the general trends of the Rosenbrock

function, there are portions of the parameter space where

the MARS surface deviates from the true surface,

particularly near the extreme high and low values of the

surface. Hence, the mean value and standard deviation

estimates are accurate for N¼ 121 samples, but the failure

probability estimate is biased. While adding more samples

(i.e. increasing N) would improve the accuracy of the

MARS surface approximation, the trend shown in figure 9

indicates that the convergence rate is slow for failure

probability estimates.

Figure 10. Rosenbrock’s function and MARS approximation (dots) built with 121 samples.

Figure 9. Comparison of failure probability estimation using N LH samples vs estimation using response surface

approximations generated with N LH samples.
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Figure 11 shows a similar diagram of the kriging surface

approximation forN¼ 121 samples, where again the kriging

surface is visualized using 10 000 samples in [72, 2]2.

Qualitatively, the kriging-based sample points appear to be

much more faithful to the trends of the true Rosenbrock

function, as compared to the MARS surface in figure 10.

For the range of N values used here, the kriging model does

not suffer from any ill-conditioning effects. However, when

N is increased to 200 samples for this Rosenbrock function

example, the correlation matrix in the kriging model

becomes ill-conditioned, and the kriging function approx-

imation results become erratic (large variations in predicted

values at best, and code failures at worst).

4.3 Function approximations based on OA/stratified samples

Figures 12 –14 illustrate the estimated mean value, standard

deviation, and failure probability trends for OA/Stratified

sampling, for N¼ 9, 25, 49, and 121. In general, these results

for OA/Stratified sampling are similar to those for LH sam-

pling (in figures 8– 10). These observations are summarized as:

(a) Mean value estimates (figure 12): for low N (N¼ 9,

N¼ 25), the mean value estimates are virtually the same

between OA sampling alone, and OA sampling com-

bined with kriging and MARS surface approximations.

For large N (N¼ 49, N¼ 121), there is some improve-

ment in accuracy afforded by using OA sampling with

the surface approximations, versus OA sampling alone.

(b) Standard deviation estimates (figure 13): for low N,

the OA-based kriging approximations of standard

deviation are biased below the true value of standard

deviation. This bias disappears as N increases. For

N¼ 9, the OA-based MARS approximations of

standard deviation are in gross error. This is due

to the same constant-value MARS approximation

problem observed with LH samples. For N� 25, the

OA-based MARS estimates quickly converge to the

true standard deviation.

(c) Failure probability estimates (figure 14): the OA-

based kriging failure probability estimates converge

non-monotonically to the true failure probability. For

N¼ 121, the OA-based kriging estimates appear

unbiased, with little scatter around the true failure

probability. For N¼ 9, the OA-based MARS failure

probability estimates are in gross error, and with

larger N the OA-based MARS estimates slowly

converge non-monotonically to the true failure prob-

ability. However, even at N¼ 121 there is clear bias

and large scatter in the OA-based MARS failure

probability estimates.

4.4 Observations

While it is difficult to draw general conclusions from this study

given its limited scope, a few key observations can be made:

(a) For sampling-only estimates, the OA method tended

to perform best out of the three sampling methods for

a large number of samples, but worst at low numbers

of samples. The LH method generally outperformed

random MC sampling for all samples sizes. Also, the

Figure 11. Rosenbrock’s function and kriging approximation (dots) built with 121 samples.
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LH results were close to the OA results at the higher

number of samples.

(b) When the number of samples, N, is small (e.g. *10

samples in a two-dimensional space), the kriging-

based and MARS-based surface approximation

models do not necessarily provide a benefit over using

the original set of N data samples directly to estimate

statistical properties (mean, standard deviation, fail-

ure probability). That is, there is just as much bias and

scatter in the statistical estimates made using the

response surface approximations as there is in the

statistical estimates made using the original data. This

is a somewhat unexpected observation, and merits

further investigation. That is, we expected the kriging-

and MARS-based approaches to provide more benefit

for small N than was observed in this study. Perhaps it

is the nonlinearity of the Rosenbrock function that is

the cause of this unexpected result, and more benign

test functions may be more amenable to response

surface approximation.

Figure 13. Comparison of standard deviation estimation using N OA samples vs estimation using response surface

approximations generated with N OA samples.

Figure 12. Comparison of mean value estimation using N OA samples vs estimation using response surface approximations

generated with N OA samples.
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(c) When the number of samples is small, there is a

danger of bias in the kriging-based and MARS-based

statistical estimates, versus sampling alone. This bias

effect was most pronounced in the standard deviation

and failure probability estimates, but was not

pronounced for mean value estimates.

(d) When the number of samples is large (e.g. *100

samples in a two-dimensional parameter space), the

kriging surface approximation method more accu-

rately estimated the statistical properties as compared

to both the MARS-based estimates and the sampling-

alone estimates. This is not especially surprising, given

our past experience with kriging methods (cf. Romero

et al. 2004). However, we are fully aware of the limits

of the kriging method, particularly that it is prone to

mathematical ill-conditioning. From these studies, we

are now aware of the potential bias in under-sampled

kriging-based predictions.

(e) There is no strong evidence of interaction between

the sampling schemes and the response surface

approximation schemes. That is, kriging paired with

OA samples did not outperform kriging paired with

LH samples. The same is true for MARS/OA and

MARS/LH.

(f) ‘Black-box’ response surface approximation methods

are very useful, but they may contain hidden pitfalls.

Thus, they should be used with caution and, if

possible, in combination with other surface approx-

imation methods in a sort of cross-validation capacity.

The results of this study indicate that caution should be

exercised when applying response surface (RS) approxima-

tions for UQ. In particular, we suggest using a sampling-

based UQ approach (i.e. without RS approximations) along

with a RS approximation-based UQ approach, and we

advocate using multiple types of RS approximation func-

tions in order to cross-check the RS-based UQ predictions.

In such a combined UQ approach, if there is wide

disagreement between the various UQ predictions, then it is

likely that the sample size, N, is too small. Also, any large

disagreements could be indicative of an inherent problem

with a particular RS approximation method (see, for

example, the MARS results in figures 9 and 14).

5. Summary

Real-world computer simulations often require hours or

days for a single run, and the output may be highly

nonlinear over the range of input parameter values. When

the input parameters are uncertain, conducting an UQ

study on the output using conventional sampling methods

could require hundreds or thousands of simulation runs. A

possible alternative to conventional UQ methods is the use

of response surface approximations. When a limited

number of simulation runs are available, the output can

be used to build a response surface approximation model.

Output statistics can then be obtained by sampling the

approximation model, which is essentially free to evaluate

when compared to the original computer simulation.

This study examined the accuracy of UQ statistics

estimated using two sampling methods and two response

surface approximation methods, kriging and MARS,

based on various sample point sizes. The sample points

were generated using two commonly used methods – LH

Figure 14. Comparison of failure probability estimation using N OA samples vs estimation using response surface

approximations generated with N OA samples.
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sampling and OA sampling. The two-dimensional Rosen-

brock function was used to represent an expensive com-

puter model. The performance of the sampling methods

and of the response surface approximation methods was

assessed based on the accuracy in estimating three output

statistics on the Rosenbrock function: the mean, the

standard deviation, and the probability of exceeding a 5%

threshold.

Although this study is of limited scope, our preliminary

observations indicate that, as expected, more accurate UQ

statistics often can be estimated from the response surface

approximation functions as compared to estimates made

using the original data. However, this result did not hold

true for all sample sizes. In particular, for very low sample

sizes there were clear cases where the UQ statistics

estimated from response surface approximations were less

accurate, and biased, compared to estimates made using the

original data. This set of conflicting results clearly

motivates the need for future studies involving additional

test functions. Of particular interest are high-dimensional

(n4 2) test functions which will provide greater relevance

to engineering UQ studies.
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Appendix A

Listed below is the DAKOTA input file that performs a

sampling-based uncertainty quantification study using the

Rosenbrock function.

Appendix B

Listed below is the DAKOTA input file that performs a

combined sampling-based and response surface

approximation-based uncertainty quantification study

using the Rosenbrock function.
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