
SAND2009-1895C http://www.cs.sandia.gov/~samitch/papers/RatNest.pdf

1

The RatNest Routing Protocol for Ad-Hoc
Circuits Over Fixed Radio Networks

Scott A. Mitchell

Abstract— We propose the RatNest protocol for low-overhead

ad-hoc routing over a small wireless radio network in support of
certain novel communication patterns and nodes. Nodes have
fixed position in an urban environment and have up to five
dedicated wireless radio channels to nearby nodes. Links vary in
quality and reliability. The protocol provides for the quick
establishment and repair of routes to support circuit-like
communication of both streaming video and sensor-chirps. As in
link-state routing, our protocol stores a graph representation of
the network at each node, annotated with transient information
about the network state. Transient information is gathered using
both pro-active and reactive mechanisms. To establish a circuit, a
shortest-latency or highest-throughput path is computed locally
on this graph, then the route is locally adapted and verified on
the actual network. In this paper we focus on the main
algorithms of the protocol and some analysis. We do not report
simulation results in this paper, but we have implemented a
prototype in C++ and integrated it into OPNET Modeler.

Index Terms— Communication system routing

I. INTRODUCTION
E propose the RatNest protocol for ad-hoc
communication over a small radio network. Our

scenario of interest is non-traditional for ad-hoc networks, but
solves a particular scenario of military surveillance in foreign
urban environments. The application network is relatively
small, comprising a few hundred nodes. The dynamics of the
network are limited. The nodes are non-mobile, but fail and
recover occasionally. Nodes have essentially unlimited power,
but limited compute capabilities. Nodes are sparsely arranged
in an urban environment, say at street corners; see figure 1.
Links communicate through line of sight; mainly along streets
or urban canyons. Each node has a dedicated radio link to
each of its neighbors, but it only has a few (up to 5) neighbors.
Link quality varies slightly, so some links are preferred over
others. We weight links inversely proportional to bandwidth,
and weights are bounded between 1 and 4.

The communication pattern is that of long-lived circuits.
Circuits are requested by a central (human) controller, are
time-sensitive, and have no predictable pattern. Each circuit
transmits either high-bandwidth streaming video/audio, or

low-bandwidth (but latency-sensitive) sensor chirps. We
consider two metrics for paths: for sensor chirps we use path
length, the sum of link weights along the path; for streaming
data we use bottleneck, the maximum weight over all links
along the path.

Manuscript received March 31, 2009.
Scott A. Mitchell is with Sandia National Laboratories, MS1316, PO Box

5800, Albuquerque, NM 87185 USA (phone: 505-845-7594; fax: 505-845-
7442; e-mail: samitch@sandia.gov).

The structured society of naked mole rat colonies provides
some metaphors and inspiration for RatNest, but we are not
“bio-inspired”[12] in the sense of accurately implementing in
software specific natural activity. Nodes of the network are
called “nests,” after the hub-like nests of naked mole rats.
Unless otherwise stated, features described in this paper have
been implemented in a C++ prototype integrated with

OPNET.

Fig. 1. Right, circuit in a sample of an urban-canyon network. Left, an
induced graph G with a few edge weights labeled.

A. Protocol Goals
In our urban surveillance scenario it is important to

establish a circuit quickly and reliably maintain it in order to
monitor and record an activity of interest. The following
describes the prescribed goals and derived requirements, in
priority order:

1. Low routing overhead, especially when data are in hand.
• Only a few bits for establishing routes, a few bits of

message overhead for maintenance.
2. Low memory and computation for each nest.

• Messages are not queued. If a circuit can not be
established (or was broken and cannot be repaired)
then packets are dropped.

• Little memory for storing routing tables, graphs, etc.
• A simpler and faster routing engine is preferred.

3. High transmission data-rates (good circuits).
• High bandwidth for streams, low latency for sensors.

4. Route repair or “self-healing.”
• In the event of a nest failure, find an alternate route.

Since packets are dropped while the route is repaired,
repairing the route quickly and locally is more
important than finding the best-metric route.

In addition, a very simple protocol is desired for

W

SAND2009-1895C http://www.cs.sandia.gov/~samitch/papers/RatNest.pdf

2

verification of reliability. These goals compete, so the
protocol design seeks reasonable tradeoffs among them. The
RatNest protocol is tailored to the strengths and weaknesses of
the nests’ hardware.

B. Our Scenario Compared to Other Settings
Our setting has some similarities to traditional sensor

networks, but some key differences. Node failure patterns and
the goal of low routing overhead are similar. Network layout,
and the lack of GPS position and time information is similar to
a deliberately placed (non-scattered) sensor network.
However, our nodes are much more compute-capable and
have essentially unlimited power. Our setting includes high
bandwidth data as in other recent multimedia surveillance
sensor networks[1], but also low-latency few-bits messages,
and time-sensitive human-selected circuit establishment.
Circuits are of interest in telecommunications, but our network
is different: our network is more dynamic, smaller, and
simpler; nodes are less capable; links have less (routing)
bandwidth. Also the fraction of the network being used for
active circuits is much less so it is undesirable to pre-compute
a global schema of collision-avoiding routes because
individual routes would be inherently sub-optimal.

Our setting also has some similarities to traditional wireless
radio networks, but some key differences. The main difference
is that nodes are fixed in our setting, which motivates graphs
rather than routing tables. There has been some recent interest
in streaming video over MANETs[5] (Mobile Ad-Hoc Radio
Networks), so our interest in circuits is novel but not unique.
Centralized control, and the high-consequences for data
collection, allows the RatNest protocol to ignore some issues
of route admission. In contrast to both traditional sensor and
wireless settings, our nodes have multiple dedicated directed
channels.

II. CONCEPTS AND DEFINITIONS

A. Definitions
P = a directed circuit path from source S to destination D

over intermediate nests Ti, i.e. P = {S=T0, T1, … Tk=D}
L = the number of nests in P, i.e. k when P = {T0, T1, …

Tk}
N = number of nests in the network, between 100 and 1000.
G = persistent graph of the network: nodes are all the nests,

directed edges are radio links between pairs of nests. This
graph is fixed regardless of whether any nest is actually up.

H = transient graph of the network: G annotated with
(possibly out-of-date) information X on which nests are
currently up, and which links are in use by established
circuits.

X = set of transient network features in a packet used to
update H. Either a nest is up or it is down. Either a link is
dedicated to an established circuit or it is available.

Blinking = when a nest fails it “blinks off” and when it
recovers it “blinks on.” (Naked mole rats are nearly blind.)

Rat = a packet containing X, that traverses the network.

Nests receive, interpret, modify, and forward rats.

B. Local Graphs G and H
 Since nests are non-mobile, we chose for each nest to

maintain a graph model of the network in its local memory, as
in link-state routing, e.g. OSPF[2]. This model includes the
graph G of all nests of the network, with edge weights related
to the bandwidth of each link. This “persistent” graph G is
annotated with transient information about which nests are
currently blinked on or off, and which links are currently
dedicated to any circuit, to produce the transient graph H.
(The nest keeps detailed information about the entire circuits
through its own links, but to reduce memory requirements it
does not store which circuit is using which edge for non-local
links.) Graphs G and H require about the same memory as
distance-vector routing tables. Competing paradigms that
exploit geographic information[4], and also hierarchical
routing protocols with implicit address capabilities, are able to
use less memory; but our scenario does not have that
structure. Constructing virtual geographic coordinates[9] or
overlay networks[4] is possible but would overly complicate
our algorithms and does not seem well suited to our traffic
patterns. The graph model is size O(N), the same order as the
minimal amount of information needed to store just the
existence (address) of nests in the graph. The geographic
persistence of our network, and the nature of the transient
information makes the graph much more appealing than in
most highly mobile ad-hoc scenarios in the literature.[10]

1) Time Stamping

Transient information on H may be out of date. The
transient information comes pro-actively from rats and re-
actively from route validation and other feedback. While the
nests have a local clock for time-outs, there is no global clock,
no GPS. We consider two methods of dealing with the
asynchrony of graph information.

The first method is “overwrite,” and simply assumes that
the last-received information is most accurate, and
overwrites H whenever new information is received. This is
the simplest approach and performs well enough because the
network is relatively static on the time-scale of route
validation, repair, and pro-active and event-driven rats; and
these all have very local information based on probing the
status of a nest’s neighbors.

The second method is “sequence-numbering:”[6] nests
assign a sequence number to any packet they send out, and a
receiving nest can use it to tell whether received or stored
information is more current. Links are unidirectional, so an
edge is owned by a unique nest and its sequence numbers are
consistent. When a nest fails and recovers it must gather its
old sequence number from its neighbors’ memories. This
more complicated approach is required when the network is
changing rapidly compared to the amount of protocol traffic.
(“Sequence-numbering” is not implemented in the prototype.)

SAND2009-1895C http://www.cs.sandia.gov/~samitch/papers/RatNest.pdf

3

III. RATNEST PROTOCOL
One main algorithm of the protocol is circuit establishment,

which includes path computation, adaptation, and updating H.
We also describe route repair, which is similar to path
adaptation. Network initialization is fairly standard and
relatively unimportant in our application. Packet
acknowledgement and route dismissal are standard, modulo
some time-out values which depend on whether streaming
video or sensor chirps are expected, so these are omitted for
brevity. We describe a couple of pro-active strategies for
keeping H up to date.

A. Network and Persistent Graph Initialization
When the network is deployed, nests discover their

neighbors up to two hops away and dedicate channels to avoid
radio interference. After a delay, nests flood the network with
a packet describing its ID (address) and links. Using the radios
in promiscuous mode, rather than as dedicated channels,
speeds this process. Each nest builds G from these messages.

B. Circuit Establishment:
A distinguishing feature of RatNest is that each source nest

first computes the desired (shortest) path locally on its
transient graph H, rather than going directly to the network.
That is, the initial desired path is fully source routed as in
DSR.[4] The source nest then seeks to validate this route in
the actual network; there may be competing circuits or
blinked-off nests that the source does not know about. The
protocol attempts to deal with these problems locally. Some
data bandwidth is reserved for routing protocol traffic, so that
a nest fully participates in all rat and route traffic, even if its
links are reserved or participating in a circuit, unless the nest
itself is off. (Circuit establishment with the detour variation is
fully implemented. The fork variation is not implemented.)

1) Path Computation

A source nest S is told by the central (human) controller to
establish a circuit to a given destination nest D. It computes a
shortest weighted path to D, P = {S=T0, T1, … Tk=D}, over its
local graph H,. Here “shortest” means either highest-
bandwidth or lowest-latency, and is also specified by the
controller. The computed path may be sub-optimal, because of
stale information in H. (E.g. if a link is thought to be in
another circuit, then it is not part of H.) S then attempts to
establish this path in the “real” network. Beginning with S, a
nest Ti sends a route validation packet with the desired path to
the next nest Ti+1 on the path. Nests reserve their requested
link. If D is reached the circuit is established and two return
route acknowledgement messages are sent backward along the
route from D to S. The first message is lightweight, containing
only the loop-free circuit that was established. This is done in
order to establish the circuit as quickly as possible. The
second message is heavier weight, containing transient graph
information used to update the H of each nest.

2) Path Adaptation
It may be that a nest Ti can not establish the prescribed path

to nest Ti+1 because either Ti+1 has blinked off or the directed
link from Ti to Ti+1 is already part of an established circuit for
a different (S, D) pair; in either case we say that Ti has
encountered a problem X and must attempt to find an
alternative route. The alternate route is always the
concatenation of the sub-route of P from S to Ti, plus a new
shortest route from Ti to D. This route is likely to be longer
than the shortest route that the source could compute if it had
known about X ahead of time. Hence this protocol represents
a choice of low overhead and local adaptation (robustness)
over getting the best-metric routes, which is consistent with
our protocol goals. The protocol does not burden forward
communication with the overhead of transient information
until a problem is encountered, and then only with the
particular problems X encountered. This reduces overhead and
speeds up circuit completion. See figure 2.

a) Path Adaptation Variants Detour and Fork
We consider two path adaptation variants, called detour and

fork. Both variants accumulate and forward certain problems
X. If the problem is a competing circuit reservation for a link,
all links of the competing circuit are accumulated in X.
(Recall this information is available because a nest keeps
detailed information about the circuits it is a part of, namely
the entire route.) This transient information may be useful
downstream right away, as these nests might need to re-route
and avoid those X’s. Non-problem transient information is
updated only on route acknowledgement.

Detour. Ti computes a new shortest path from itself to D
using its H updated with any X’s in the route validation
packet. It updates the route validation packet with the new
path P′, appends X, and forwards the packet to T′i+1. The
protocol continues as before.

Fork. Ti forwards a copy of the route validation packet
(along with X) to each of its blinked-on neighbors; Ti-1 is
skipped unless it is the only blinked-on neighbor. Each
neighbor computes a new shortest path to D and the protocol
continues as in the detour variant. If another problem X is hit,
the packet detours but does not fork again. If a packet hits a
nest that another fork already visited, the packet attempts to
detour around that nest and so establish a nest-independent
alternate path to D. The first route validation packet to reach
D “wins” and generates a route acknowledgement. (“Fork” is
not implemented; given the extra overhead it would only be
worth doing in niche contexts.)

b) New Path Features
It is possible that the shortest path (perhaps the only path)

from an intermediate nest to the destination is to revisit prior
nests and re-trace prior hops, e.g. T′i+1 = Ti-1. This is allowed
temporarily in order to keep the circuit request progressing
quickly. But care is taken so that it does not degrade the final
path: backtracks and other types of loops are pruned from the
circuit when the destination is reached. Note that retracing is

SAND2009-1895C http://www.cs.sandia.gov/~samitch/papers/RatNest.pdf

4

not stymied by competing circuit reservations along the links
in the backwards direction, because a nest can determine that a
retraced link will eventually be pruned and allow the route
validation traffic to temporarily use it. See figure 2.

c) Recourse
It may be that there is no route on H from a nest to D. In

that case, the nest attempts a “recourse” strategy. Each nest
may attempt a recourse strategy only once for a given circuit
request. The nest attempts to find a path on a modified graph
H′ which has more available edges and nests than H. Here H′
is G annotated with just the accumulated problems X and any
other information ensured to be current. (E.g. It is ensured that
all the nests upstream in the traverse are blinked-on, and the
active circuits through this nest make some edges unavailable.
But it is uncertain whether circuits elsewhere in the network
have been dismissed, and whether remote nests have blinked
off, so these features are not included in H′.) If there is a
recourse route, it is validated on the real network as before.
Otherwise, the nest sends circuit acknowledgement messages
back to the source saying there is no route. To keep overhead
low, only a few, O(log(L), nests attempt a recourse.

d) Termination
This route validation strategy works well in practice for our

scenario. In addition, the protocol is provably guaranteed to
terminate, although the theoretical bounds are not optimal.
Each computed path is finite, O(N). A new path is only
computed when the route validation packet goes through a
nest that has a neighbor that is unexpectedly down, or a link
that is unexpectedly reserved for another circuit. Each nest has
only a few neighbors, 5, so the number of reroutes is also

O(N). Hence the number of messages sent throughout the
network is O(N2), and each message is O(N) in size. (The size
of a message is the length of the path plus the size of
accumulated X’s.) In practice the number and size of
messages are usually much smaller. Initial paths are usually
shorter than the diameter of the graph. Even when competing
circuits completely block the destination from the source,
usually only a handful of reroutes are attempted, and they are
usually only a few hops long in an attempt to get around a
single nest. In our scenario only 10% of the nests are likely to
be down at any given time. Hence nest-blinked-off blockages
X are rare and sparse, and it is likely that such a problem can
be re-routed around locally. Note also that nests do not
“flicker”, meaning that if a nest is down or up, it stays in that
state longer than the time needed to establish a route. Hence it
will switch states at most once and even that with low
probability. In addition, for large networks, we add a
maximum hop count to the packet.

S

D

source routed path

XC

detourAdetourC

unexpected
blocking circuit

TATC
XA

TB

S

D

source routed path

XC

detourAdetourC

unexpected
blocking circuit

TATC
XA

TB

Fig. 2. Detour example. Source S does not know about the unexpected
blocking circuit, so source-routes using one of its links. At TA the blocking
link XA is discovered and detourA is selected, which goes through TB to TC

and then continues on the original path. At TC it is discovered that nest XC is
unexpectedly blinked off. So detourC is selected, which avoids both XC and
all the links of the unexpected blocking circuit. The route validation packet
reaches D. The first link of detourA is pruned from the route and a route
acknowledgement is sent back along the other links from D to S.

e) Failure
It may be that there is no path (in either H or H′) from a

nest Ti to D. In this failure condition, the nest returns two
route validation packets with a failure message, using the
same mechanisms as described below. It sends these to its
“spawning nest.” In the detour variant, the spawning nest is S.
In the fork variant, the spawning nest is the one that generated
the multiple forked messages. Since some other fork may have
found a valid route to D, the spawning nest only sends a
failure message to S if it receives a failure messages from all
of its forks.

f) Pruning and Route Acknowledgement
The hoped-for case is that a route validation packet actually

reaches D. In this case, D generates two route
acknowledgement packets. The first is to quickly establish the
circuit, the second to update H and clean up unneeded link
reservations. The destination computes a pruned, loop-free
circuit in the following simple way. The destination checks
each nest of the loop, starting from the source, in sequence. If
the nest appears more than once in the path, the portion of the
path between its first and last occurrence is removed (pruned).
The brute-force solution takes O(L2) time and O(L) space,
where L is the length of the traverse taken from S to D.
(Theoretical bounds are O(L log L). In the worst case L is
O(N2) but in practice it is usually smaller than the diameter of
the graph. The length of the circuit is O(N), since each nest
appears at most once. The first acknowledgement packet is
sent along the pruned circuit only, and contains just the
pruned route and a message of “success.” Each nest of the
circuit stores the complete circuit, and forwards the
acknowledgement to the next nest back towards the source.
The source S is now ready to send data to D.

The simple pruning algorithm avoids some complicated
choices in the case of a complicated set of loops as in figure 3.

After a delay, the destination sends the second
acknowledgement packet, which contains the full traverse the

SAND2009-1895C http://www.cs.sandia.gov/~samitch/papers/RatNest.pdf

5

packet took from S to D, along with the pruned circuit, and
the X problems accumulated during the forward traverse.
Each nest updates its link reservations, removing any
reservations it made during the traverse that are not in the
pruned circuit. The first (or only) time a nest is visited on the
backwards traverse, the nest gathers its knowledge of all
circuits through it, and the blinked on/off status of all of its
immediate neighbors; although these graph updates are not
“problems,” it appends them to X to be forwarded to the prior
nest of the traverse. The second (or only) time a nest is
traversed, these updates X are applied to H. The updates
implied by the successful traverse and established (S, D)
circuit are also applied to H: all the nests traversed were up,
and, if the circuit was successful, the links of the circuit are

now unavailable.

g) Reservation
Care is taken so that two incompatible routes (between

different S/D pairs) are not established nearly simultaneously,
and to avoid other race conditions. Intermediate nests Ti
reserve requested links immediately upon receiving the first
route validation packet, not waiting for the route
acknowledgement (except during fork). This policy keeps
negotiations and route acknowledgement simple, but requires
that if the route is not established, or the route that is
established detours around that link, the nest should be
informed. Reservations time out if a route acknowledgement
is not received, which also covers the rare case of a nest
failure occurring between reservation and acknowledgement
which cuts off the acknowledgement packet to upstream
nests. In the fork variant, nests downstream of the fork set
reservations only on route acknowledgement. This prevents
too much of the network from being reserved for alternative
routes that are never used, at the risk of non-reserved links
being taken by other circuits. (Details of the mechanisms that
handle this case are omitted for brevity.)
3) Route Repair

Once established, a circuit can not be interrupted by any
other circuit request. However, a nest Ti (=X) on the circuit
could blink off. In this case, a route repair is initiated. The
main goal is to quickly re-establish the circuit; getting a short
path is of secondary consideration. The nest prior to the
problem, Ti-1, will be the first to notice the problem. Ti-1
computes a new shortest path from it to any nest in the sub-

path Ti+1 to D; this shortest path is called a “patch,” Ti-1 is
called the “patch head,” the sub-path Ti+1 to D is the “tail”,
and the nest of the tail that is the patch’s destination is the
“patch tail.” The patch head then attempts to establish that
path on the real network using the same basic mechanisms as
for route validation. That is, nests may locally reroute. If loops
in the whole circuit are created, which may occur even if the
patch is loop-free, they are pruned on acknowledgement as
before. If there is no path from Ti-1 to the tail, then the
protocol backs up two hops to Ti-3 and attempts to use it as a
patch head. Every time there is no route, the protocol backs up
the patch head twice as many hops as before (i.e. 2, 4, 8, 16
...) and attempts to reach the same tail. (In order to keep
overhead low, recourse rerouting is only allowed if the patch
head is S.) If it is determined that there is no route to the tail,
or a route repair is not successful within a certain number of
seconds (implemented, but the choice of the length of time has
not been vetted), then the route is dismissed. If a route repair
is successful, the patch tail prunes the new circuit and sends
an updated description to all nests upstream and downstream.
The segments of the old circuit that are circumvented are
dismissed.

Fig. 3. A trefoil presents some interesting choices for loop pruning. Since
nest C is the first nest visited twice from S to D, RatNest would prune at nest
C by removing sub-paths 6, 5, 4. The resulting circuit is sub-paths 7, 3, 2, 1.

C. Shortest Path Computations
Shortest paths are computed using dynamic programming.

When the metric is the sum of link weights, then this is
Dijkstra’s algorithm, as in OSPF[2][3]. The same basic
dynamic program also works when the metric is the
bottleneck, so implementing both options was easy. The only
difference is what value to use when updating distances. Let
Dj(S,T) denote the intermediate stage j computation of the
distance from S to T. When updating distances using link L of
nest U, then for the bottleneck metric Dj+1(S,T) = max(
Dj(S,U), weight(L)), in contrast to the usual Dj+1(S,T) =
Dj(S,U) + weight(L) in Dijkstra. Recall that dynamic
programming can compute the shortest path from S to all
nests of the graph, so that the theoretical time-bound for
shortest path computations for route repair is no more
expensive than those for circuit initialization.

D. Pro-active transient information mechanisms
Pro-active mechanisms are not included in the C++ prototype.
1) Soldier Rats

A fixed pool of soldier rats (say N/10) pro-actively roams
the network and update nests with transient information.
Having a fixed pool of agents is a common bio-inspired
strategy[12] with the following two desirable features: it is a
relatively simple protocol and it transitions well between static
and dynamic networks. By “transitions well”, we mean: it
requires no information about the rate of dynamics; it provides
a lot of useful information if the network is relatively static;
the information is less useful if the network is highly dynamic,
but the overhead does not grow if the network is dynamic.

A soldier rat saves transient information about the last 20
nests visited and their links. For a given nest, it saves its blink
state, the reservations of all the edges of all circuits through it,

SAND2009-1895C http://www.cs.sandia.gov/~samitch/papers/RatNest.pdf

6

and the blink state of its neighbors. At each hop, H is updated,
then the soldier rat is updated by deleting the oldest
information and adding the newest. We take care not to add
redundant information, but update its age, which reduces
protocol overhead at the expense of some computation.

On initialization a soldier rat picks a random destination D
in G. The nest it is on computes a shortest path on G to D and
the soldier rat deterministically follows that path until it
reaches D or encounters a nest that has blinked off. Then it
picks a new random destination. In this way, we suspect that
soldier rats will preferentially spend time in the important
parts of the graph, the areas that are on a lot of shortest paths,
as well as on problem (dynamic) areas of the graph.
(Alternatives include gossip-based strategies and ways to bias
the search towards regions that have not been explored
recently.[2])

A soldier rat may die (i.e. the nest it is on blinks off) or get
isolated (i.e. the network becomes disconnected and part of
the network has no soldier rats). These are rare but possible.
To keep the population stable, if a nest has not been visited by
a soldier rat in a given time, it generates a new soldier rat.
This is another common swarm strategy.
2) Tunneling Rats

Tunneling Rats are event-driven rats. The events that
generate a tunneling rat are route establishment, route
dismissal, nest blinking on, and nest blinking off.

When a route is dismissed, each nest on the route generates
one tunneling rat. If the nest received an explicit route
dismissal packet, then the tunneling rat contains the
information that all of the links of the circuit are now
available. Otherwise it is dismissing the route due to a time-
out, and the tunneling rat only knows that the links of that
particular nest (and perhaps its neighbors) are now available.
Each nest sends its tunneling rat to a (different) random nest
in G, using the same mechanism as for soldier rats. A
tunneling rat dies when it reaches its destination or encounters
a down nest, but recall rats may still traverse across links in an
active circuit using the protocol-reserved bandwidth.

A nest that has not received normal traffic from one of its
neighbor for a long time performs a simple handshake to
discover if the neighbor has changed state. When a nest blinks
off, each of its neighbors will detect it and generate a
tunneling rat with the fact that the nest is blinked-off. When a
nest blinks on, it recovers G and its last sequence number
from its neighbors, then sends an event-driven tunneling rat
with the fact that it is now blinked on. These rats are sent out
in a sparse broadcast as in the case of route dismissal.

IV. CONCLUSION
The RatNest protocol meets the objectives of a particular

surveillance scenario. The protocol uses a mix of features
borrowed from other protocols and adapted to this scenario’s
capabilities and needs. We have described the main algorithms
and some analysis, focusing on the aspects that appear to have
the most general interest and applicability. We believe that our
annotated graph approach has certain advantages, and has no

critical shortcomings in this particular setting where the
dynamics of the network are limited, and we are not
constrained by other layers of the protocol. Follow-on work
may involve tuning protocol parameters and simulation
studies. We speculate that naked mole rats, with their
hierarchical societies, specialized roles, complex brains, and
network-like habitat, may provide some bio-inspired
algorithms (say for network discovery and maintenance) that
are fundamentally different than the more well studied insect-
inspired ones.[12]

ACKNOWLEDGMENT
Scott A. Mitchell thanks Brian Van Leeuwen, Tom Tarman,

Cindy Phillips, and Hamilton Link for discussions regarding
protocols and applications; Scott especially thanks Brian for
his OPNET integration of RatNest which clarified many
requirements for the C++ prototype. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of
Energy’s National Nuclear Security Administration under
Contract DE-AC04-94AL85000. SAND2009-1895C.

REFERENCES
[1] I. F. Akyildiz, T. Melodia, K. Chowdhury, "A Survey on Wireless

Multimedia Sensor Networks", Computer Networks Journal, (Elsevier),
2007.

[2] R. Beraldi, The polarized gossip protocol for path discovery in
MANETs, Ad Hoc Networks, Volume 6 , Issue 1, 2008, pp. 79–91

[3] G. Berkovski, M. Marom, “OSPF Tutorial, Creating the Routing Table,”
http://www2.rad.com/networks/2002/ospf/dijkstra.htm

[4] P. Bose, P. Morin, I. Stojmenovic, J. Urrutia, ”Routing with Guaranteed
Delivery in Ad-Hoc Wireless Networks,” ACM Wireless Networks,
Nov. 2001.

[5] Y.-C. Hu and D. B. Johnson, “Design and Demonstration of Live Audio
and Video over Multihop Wireless Ad Hoc Networks,” in proceedings
of the MILCOM 2002 IEEE Military Communications Conference,
IEEE, Anaheim, CA, October 2002.

[6] The Handbook of Ad Hoc Wireless Networks, eds. M. Ilyas, R. C. Dorf,
CRC Press, Inc., 2003.

[7] D. Johnson, D. Maltz, Y.-C. Hu, The Dynamic Source Routing Protocol
for Mobile Ad Hoc Networks for IPv4, RFC 4728: Dynamic Source
Routing in Ad Hoc Wireless Networks, Mobile Computing, eds. T.
Imielinski, H. Korth, Vol. 353, Chapter 5, pp. 153–181, Kluwer
Academic Publishers, 1996.

[8] B. McBride and C. Scoglio, "Characterizing Traffic Demand Aware
Overlay Routing Network Topologies." Proceedings of IEEE Workshop
on High Performance Switching and Routing 2007, New York, USA,
2007.

[9] J. Moy. "OSPF Version 2". Internet Engineering Task Force. 1998.
[10] C. E. Perkins, E. M. Royer, “Ad-hoc on-demand distance vector

routing,” in Proceedings of the 2nd IEEE Workshop on Mobile
Computing Systems and Applications, 1999.

[11] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, I. Stoica,
“Geographic routing without location information,” in proceedings of
the 9th annual international conference on Mobile computing and
networking, 2003, San Diego, CA, USA pp. 96–108

[12] H. F. Wedde, M. Farooq, “A comprehensive review of nature inspired
routing algorithms for fixed telecommunication networks,” in Journal of
Systems Architectures, Vol. 52(8-9), 2006, pp. 461–484.

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet

	I. INTRODUCTION
	A. Protocol Goals
	B. Our Scenario Compared to Other Settings

	II. Concepts and definitions
	A. Definitions
	B. Local Graphs G and H
	1) Time Stamping

	III. RatNest Protocol
	A. Network and Persistent Graph Initialization
	B. Circuit Establishment:
	1) Path Computation
	2) Path Adaptation
	a) Path Adaptation Variants Detour and Fork
	b) New Path Features
	c) Recourse
	d) Termination
	e) Failure
	f) Pruning and Route Acknowledgement
	g) Reservation

	3) Route Repair

	C. Shortest Path Computations
	D. Pro-active transient information mechanisms
	1) Soldier Rats
	2) Tunneling Rats

	IV. Conclusion

