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Abstract – The method of discrete ordinates is commonly used to solve the Boltzmann transport equation.
The solution in each ordinate direction is most efficiently computed by sweeping the radiation flux across
the computational grid. For unstructured grids this poses many challenges, particularly when imple-
mented on distributed-memory parallel machines where the grid geometry is spread across processors. We
present several algorithms relevant to this approach: (a) an asynchronous message-passing algorithm that
performs sweeps simultaneously in multiple ordinate directions, (b) a simple geometric heuristic to pri-
oritize the computational tasks that a processor works on, (c) a partitioning algorithm that creates columnar-
style decompositions for unstructured grids, and (d) an algorithm for detecting and eliminating cycles that
sometimes exist in unstructured grids and can prevent sweeps from successfully completing. Algorithms (a)
and (d) are fully parallel; algorithms (b) and (c) can be used in conjunction with (a) to achieve higher
parallel efficiencies. We describe our message-passing implementations of these algorithms within a
radiation transport package. Performance and scalability results are given for unstructured grids with up
to 3 million elements (500 million unknowns) running on thousands of processors of Sandia National
Laboratories’ Intel Tflops machine and DEC-Alpha CPlant cluster.

I. INTRODUCTION

Radiation effects ~photonic or neutronic! are often
modeled by the discrete ordinates ~Sn ! form of the Boltz-
mann transport equation
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where the radiative flux Img~x, y, z! is discretized into a
set of energies ~groups! g and angular directions ~ordi-

nates! m. Equation ~1! describes how a single flux vari-
able Img varies as it propagates in a particular direction
Vm . The terms on the left side of Eq. ~1! are loss factors
due to absorption ~sA ! and scattering ~sS !. The terms on
the right side are additive, representing a source term
Smg due to production of radiation flux from hot or
neutron-producing material, and an inscattering term
whereby radiation I propagating in all other directions
m ' and with other energies g ' is scattered into this Img

with a weighting factor wm .
Computing the radiation field within a gridded three-

dimensional ~3-D! simulation domain requires the solu-
tion of a large set of coupled equations describing flux
propagation for all m and g. Solved at each time step, the*E-mail: sjplimp@sandia.gov
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radiation solution is an immense computational task that
can dwarf the hydro- or fluid-dynamics calculations per-
formed on the same grid. Many hundreds or thousands
of flux unknowns must now be computed within every
grid cell of the simulation. Coupling radiation effects to
large-scale multiphysics simulations can thus require all
the terabytes of memory and teraflops of computational
power of the largest parallel supercomputers.

One solution strategy for this problem is to form a
single large matrix equation for all the flux unknowns,
which includes all coupling between them. If an effec-
tive preconditioner is used, this matrix can be solved
using iterative conjugate-gradient, GMRES, or multi-
grid techniques.1,2 However for 3-D problems this
approach often becomes unworkable because of the tre-
mendous size of the resulting matrix. A more widely
used alternative strategy is source iteration. All the scat-
tering terms in Eq. ~1! are treated as constants ~for one
iteration! and moved to the right side. This decouples the
individual Img , which can then be solved for indepen-
dently in an efficient manner by “sweeping” the flux for
a single Img across the grid from the upwind to the down-
wind direction. After solving for all Img , a new right side
is computed, and the procedure is repeated. The conver-
gence of the source iteration scheme can be accelerated
by techniques such as diffusion synthetic acceleration3

or transport synthetic acceleration,4 which take advan-
tage of the physics of the problem being modeled.

In this paper we present algorithms for effectively
parallelizing the most computationally intensive portion
of the source iteration method, the sweep operations, for
radiation solutions on unstructured finite element meshes
that are distributed across processors. This is a challeng-
ing problem for several reasons. As the name implies, a
sweep solution for a single Img requires a computational
ordering of grid cells from upwind to downwind. For
distributed grids, this forces some processors to wait for
other processors’ data as a sweep progresses. How to
extract parallelism from a seemingly serial sweep oper-
ation, how to order the grid cells within a processor, and
how to distribute the grid cells across processors are all
questions we address with our proposed algorithms. An-
other challenge is that complex finite element grids can
contain “cycles” that prevent sweep solutions from be-
ing computed. We also present a parallel algorithm for
finding and deleting such cycles in distributed grids. Pre-
liminary versions of several of these ideas were pre-
sented in Ref. 5.

Other researchers have also proposed techniques for
parallelizing sweep operations within a source iteration
methodology. A comprehensive review of strategies ~for
transport as well as diffusion problems! is given by Azmy.6

An easy-to-implement approach is to assign individual
angles and energies to individual processors. Although
appropriate for modest-sized problems on modest num-
bers of processors, this approach has several limitations
for large problems. Most fundamentally, a single proces-

sor cannot store the geometry and material properties of
an entire multimillion-element grid, which is informa-
tion needed to compute a single Img . Second, it is often
not computationally efficient to perform sweeps for dif-
ferent energy groups independently.7 Rather, it is advan-
tageous to make the energy computation an innermost
loop and store fluxes for different energies contiguously
~for cache performance!. This also enables expensive
geometry-based calculations within a grid cell to be com-
puted once for several energies, a point we discuss in
Secs. II and IV. Finally, on large parallel machines, there
are often too many processors to assign each angle to a
different processor, particularly if energies are not simi-
larly distributed. Hybrid parallel machines, built as a
collection of multiprocessor nodes, can partially com-
pensate for these problems ~for some problem sizes! by
distributing angle and energy calculations via threads
within a node and storing only one copy of the grid ge-
ometry for several processors within the shared memory
of the node.7

For structured grids, the Koch, Baker, and Alcouffe
~KBA! algorithm8,9 has been very successful at parallel-
izing sweep operations. As discussed in Sec. III, it de-
composes 3-D grids in a two-dimensional ~2-D! columnar
fashion and pipelines the computation for successive an-
gles in a manner that synchronizes the needed interpro-
cessor communication. Implementations of these ideas
in Los Alamos National Laboratory ~LANL! radiation
solvers have achieved parallel efficiencies of .90% on
the Cray T3E and Intel Tflops machines for scaled-size
problems on hundreds to thousands of processors. We
exploit the KBA columnar decomposition idea in our
unstructured grid partitioning strategy of Sec. III.

The work of Nowak and Nemanic7 on distributed
unstructured grids sidesteps the issue of how to parallel-
ize serial-like sweeps by having each processor simul-
taneously perform a partial sweep only within its
subdomain. In the nomenclature of iterative methods,
this is effectively a Jacobi iteration using “old” informa-
tion from the last source iteration at subdomain bound-
aries. In general, this can lead to an increased number of
iterations and solutions that vary with the number of
processors used. However, for many problems solved
with Lawrence Livermore National Laboratory’s
~LLNL’s! TETON radiation package, this method has
proven quite effective even on large numbers of proces-
sors. This is particularly true for models of optically
thick materials where the mean free path for radiation is
much smaller than a processor’s subdomain size. Their
iteration counts do not grow dramatically even with
incomplete sweeping. By contrast, the algorithms we
discuss here implement full sweeps across the entire com-
putational grid.

Finally, recent work by Pautz10 addresses one of the
key problems discussed in this paper—parallelization of
full sweeps on distributed unstructured grids. He out-
lines a parallel sweeping algorithm similar to what is
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discussed in Sec. II and in Refs. 5 and 11. Pautz poses
the question of how to order grid cells for efficient sweep-
ing in the framework of scheduling theory and proposes
several graph-based algorithms for optimizing the result-
ing scheduling problem. He also presents performance
results for his ordered sweep algorithms running on an
SGI Origin 2000 machine with up to 126 processors. We
view the ideas we present here as complementary to the
Pautz work. Our grid-cell ordering algorithms are geo-
metrically based rather than graph based. For reasons we
discuss in Sec. III, we believe this is a useful alternative
strategy that provides a simple, easy-to-compute order-
ing that offers near-optimal performance. In this paper
we also discuss two issues not addressed by Pautz: a
KBA-like decomposition technique for unstructured grids
and a parallel cycle-detection algorithm. Both of these
are useful components in a parallel radiation solver tool
kit. We also present performance results that indicate
these ideas can be combined to achieve scalable perfor-
mance on parallel machines with thousands of proces-
sors for radiation problems with hundreds of millions of
unknowns.

In Sec. II we outline our basic parallel sweeping
algorithm. In Sec. III we describe two enhancements to
the basic algorithm that improve its parallel efficiency: a
geometric heuristic for prioritizing the work each pro-
cessor performs and a partitioning strategy for un-
structured grids that is similar to the columnar KBA
decomposition used for structured grids. In Sec. IV we
give performance results for our implementation of the
enhanced sweeping algorithm running on a large parallel
machine for several unstructured grids. Finally, in Sec. V
we address the problem of parallel cycle detection and
elimination in sweep dependency graphs, a problem
unique to unstructured grids.

II. BASIC PARALLEL SWEEP ALGORITHM

Before describing the parallel algorithm, we define
what is meant by sweeping the flux across an unstruc-
tured grid to efficiently solve the Boltzmann equation
for a particular ordinate direction. Consider the unstruc-
tured grid shown at the left of Fig. 1. Radiation propa-
gates in the direction of the arrow at the upper left of the
mesh. ~Note: This discussion is illustrated with a 2-D
grid, but 3-D grids are conceptually identical.! Each grid
cell in the mesh has one or more of its faces with normal
vectors pointing in an “upwind” direction relative to the
radiation direction. Similarly, each grid cell has one or
more “downwind” faces. The computation of flux pass-
ing through a grid cell requires that we first know the
flux entering the cell through its upwind faces. The flux
attenuation can then be computed as it crosses the cell.
The result is the flux exiting the cell through its down-
wind faces. This is the basic structure of the computa-
tional kernel in two discretization schemes for the
Boltzmann transport equation on unstructured grids: the
upwind corner balance ~UCB! method of Castrianni and
Adams12 and the discontinuous finite element method of
Wareing et al.13

This description implies that the computation for a
particular grid cell cannot be performed until the com-
putations for cells that border it in an upwind sense are
completed. Applied to the entire mesh, this means there
are constraints on the order in which the grid cell com-
putations are performed. Conceptually, this ordering is a
sweep across the mesh starting from the upwind corner
~upper left of Fig. 1! toward the downwind corner ~lower
right!. Formally, the order dependencies can be repre-
sented as a directed graph where each vertex is a grid
cell and an edge is a face between two adjacent grid

Fig. 1. A 2-D unstructured finite element mesh and an associated directed graph.
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cells. A direction is assigned to each edge from the up-
wind vertex ~grid cell! to the downwind, as in the di-
rected graph on the right side of Fig. 1. Equivalently, the
graph also corresponds to a sparse matrix form of the
Boltzmann equation, where the matrix is of order N ~num-
ber of grid cells or vertices! and a nonzero in matrix
location ~ j, i ! represents an edge from vertex i to j in the
directed graph.

An ordering of the grid cells, which satisfies all geo-
metric dependencies in the mesh and thus enables a suc-
cessful sweep, is a topological sort of the vertices in the
directed graph. If the graph is acyclic ~cycles are loops
in the directed graph, a special case we return to in
Sec. V!, then such an ordering is also a re-ordering of the
rows of the sparse matrix so as to make it lower triangu-
lar. Solving the Boltzmann equation for a given ordinate
direction on the grid is thus equivalent to traversing the
directed graph and to solving a lower-triangular matrix
equation. The latter can be done optimally via a direct
method ~i.e., the sweep!; there is no need for an iterative
solution.

Now, consider the full transport problem with mul-
tiple energy groups and angles. The equations for
different energy groups ~within a single angle! differ nu-
merically but are represented by the same directed graph
and matrix structure. However, different angles induce
different ordering constraints, which flip the direction of
some edges in the corresponding graph. Thus, each or-
dinate direction has its own directed graph and pattern of
nonzeroes in its associated matrix. The parallel version
of the full Boltzmann problem is to perform M sweeps
~or graph traversals or matrix solves! simultaneously on
a set of grid cells that are distributed across processors,
where M is the number of ordinate directions.

A basic parallel algorithm for this problem5,10,11 is
given in Fig. 2 as a pseudocode that is executed by each
processor. It is a modification of the obvious serial algo-
rithm one uses to traverse a directed graph, extended to
the case where the vertices of the graph are distributed
across processors. The parallel algorithm has the advan-
tage that graph orderings are never explicitly formed ~i.e.,
matrices are never stored!, either globally or within a
processor’s subdomain. Rather, a simple counter is used
to identify when all upwind dependencies of a grid cell
in a particular ordinate direction are satisfied. Grid cells
for which the flux can be computed ~the counter has
become zero! are stored in a task list. By task, we mean
the flux computation performed for all energy groups
associated with a particular grid cell and a single ordi-
nate direction.

Before the algorithm begins, we assume the geomet-
ric and connectivity information for the finite element
mesh has been distributed across processors in the usual
way. A grid partitioner has been used to assign each pro-
cessor some fraction of the grid cells, typically a com-
pact subdomain of the grid. In a distributed-memory sense,
we assume processors have no global knowledge of the

grid; a processor stores information for grid cells only in
its subdomain and the connections its grid cells make to
neighboring grid cells owned by other processors.

The algorithm begins with each processor precom-
puting the number of upwind faces each of its grid cells
has for each ordinate ~angular! direction. Any cell0angle
tasks with a count of zero are immediately added to the
processor’s task list; these are grid cells at the upwind
boundary of the global domain. Now, the processor en-
ters a master loop that will continue until the flux is
computed for all of its grid cells for all angles. The pro-
cessor first loops over work on its task list. After all the
energies associated with a cell0angle task are solved for,
the counters for its downwind neighboring cells can be
decremented. If the processor owns the downwind cell,
it can decrement the counter directly. If the count goes to
zero, the cell can be immediately added to the task list. If
the downwind cell is owned by another processor, a small
message must be sent to that processor, which identifies
the cell0angle pair, the shared face, and the numeric flux
values that propagate into the downwind cell.

When the processor’s task list is empty, but it still
has uncomputed work to do, this means it needs infor-
mation from other processors to proceed. It either reads
messages that have already arrived or waits for such a
message. The data in the messages are used to decrement
the counters for cells the processor owns, which then can
potentially be added to the processor’s task list. This
sequence of compute0send followed by receive is looped
over until the processor has computed fluxes for all of its
grid cells in all angular directions.

Several comments concerning this basic algorithm
are in order. First, the message passing is asynchronous
in nature. Messages are sent whether the receiver is

Fig. 2. Parallel algorithm executed by each processor for
solving the Boltzmann equation on a distributed, unstructured
grid for one or more ordinate directions.
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waiting for them or not. All of the data exchanges in
this algorithm can be implemented using the standard
message-passing interface ~MPI! message-passing li-
brary14 supported by all parallel machines, with calls to
MPI_Send, MPI_Iprobe ~to check for incoming mes-
sages!, and MPI_Recv. In principle, MPI_Send is a block-
ing ~synchronous! call, but in practice for the tiny
messages we are sending, it is nonblocking; the receiver
queues the short messages. MPI_Recv is also blocking
but is called only when a message is known to have
arrived.

A key feature of the algorithm is that the sweeps for
multiple angles and energies can be computed simulta-
neously. A processor simply works on whatever task ~cell0
angle! is next on its list. So long as information about the
relevant angle is encoded in the messages that proces-
sors send and receive, a processor can work on all the
energies associated with a grid cell0angle pair as soon as
the dependencies for that angle are satisfied. This is im-
portant because it avoids the long delay times that would
arise if the flux associated with a single direction were
being solved for across the entire grid before starting on
another direction. In this scenario, a processor that owned
grid cells far downwind would have to wait for all the
upwind processors to finish before it could begin com-
puting. The resulting idle time would seriously degrade
parallel performance. In our implementation of this al-
gorithm, we typically compute on all ordinate directions
simultaneously to keep idle time to a minimum.

We also note that this algorithm makes no assump-
tions as to how the unstructured grid is partitioned across
processors. So long as the global graph associated with
each angle is acyclic, this algorithm is guaranteed to
eventually complete no matter which grid cells each pro-
cessor owns. Even in the case of an ordinate direction
tangential to the boundary between two processors so
that flux values must potentially pass back and forth
between the processors many times to perform the sweep,
the algorithm will complete, albeit at the cost of many
messages. We return to the question of computing an
optimal grid partitioning in Sec. III.

Finally, there are several enhancements one can make
to this basic algorithm that we have omitted for purposes
of simplicity. For example, on a machine with a high
latency cost for initiating a send or receive, flux infor-
mation for several grid cells can be buffered so as to
send fewer, larger messages to neighboring processors.
Incoming messages can also be probed for in the middle
of the compute0send loop since incoming data may be
more advantageous to compute on than the cell0angle
pairs currently in the task list. We address this issue of
task prioritization in Sec. III.

The basic algorithm of Fig. 2 has been implemented
in a parallel radiation solver package for finite element
grids called SnRad, developed by the authors. The code
computes flux solutions within a grid cell using the UCB
discretization scheme of Castrianni and Adams.12 UCB

can be formulated for arbitrary finite elements such as
tetrahedra, hexes, prisms, etc., and is particularly well
suited for physical problems with sharp discontinuities
in material properties, i.e., at interfaces. The package is
used at Sandia National Laboratories ~SNL! in fluid-
dynamic and shock hydrodynamic simulation models of
fires15 and pulsed-power devices where target materials
interact with X-rays.16 SnRad is a distributed-memory
parallel code; it is written in standard C with calls to the
MPI library for message passing.

Figure 3 shows the performance of SnRad on a 3-D
unstructured grid with 6360 hexahedral elements and 160
unknowns per element ~two energy groups, S8 quadra-
ture with 80 ordinate directions!. The grid was created
by meshing a rectangular box with parameters set so as
to induce the meshing program to construct a nonuni-
form unstructured grid. With a million total unknowns,
this is a large single-processor problem. For runs on P
processors, the grid was partitioned into P subdomains
using Chaco,17 discussed more fully in Sec. III. The par-
allel efficiency of SnRad running this fixed-size prob-
lem is plotted as a function of P for two machines at
SNL. The Intel Tflops ~ASCI Red! is a traditional mas-
sively parallel supercomputer built with 333-MHz Pen-
tiums. The CPlant machine is a commodity cluster built
with 500-MHz DEC-Alpha processors. The Tflops ma-
chine has fast proprietary message-passing hardware ~310
megabytes0s bandwidth, 15-ms latencies for user-level
MPI calls!; CPlant has a slower commercial Myrinet in-
terconnect ~100 megabytes0s, 65 ms!. Anomalies in the
timing data ~e.g., Tflops efficiency on eight processors!

Fig. 3. Parallel efficiency of the basic radiation sweep
algorithm run on two different parallel machines, the Intel
Tflops ~circles! and DEC-Alpha CPlant ~squares!. The bench-
mark problem used a fixed-size unstructured grid with 6360
hexahedral elements, an S8 quadrature, and two energy groups.
The ideal curve ~triangles! is an estimated efficiency for this
algorithm running on a hypothetical machine with infinitely
fast communication.
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in this and later graphs may be due to variations in the
shape of the irregular grid partitionings provided by Chaco
since these can change dramatically when different num-
bers of processors are used. This does not, however, ex-
plain why the anomalies are not consistent between the
two machines.

This problem was first run on a single processor of
each machine; the CPlant Alpha was roughly twice as
fast as the Intel Pentium. The single-processor “grind
time” ~CPU time0grid cell0angle0energy group! for the
SnRad implementation of UCB for hex elements ~eight
corner points! was 200 ms on the Pentium and 109 ms on
the Alpha. As will be discussed in Sec. IV, the grind time
is a strong function of the number of energy groups due
to reuse of geometric calculations and cache effects in
the innermost loop of the computational kernel. For
larger numbers of energy groups, the grind time drops
considerably.

The performance data in Fig. 3 are not absolute run
times but are parallel efficiencies normalized by the one-
processor run time for each machine ~assumed to be 100%
efficient!. For example, the 60% efficiency data point on
256 processors of the Tflops machine represents a run
time 0.6{256 � 154 times faster than the one-processor
Pentium run time. For this modest fixed-size grid, the
scalability of the algorithm degrades as the processor
count grows larger than a few dozen. This is particularly
true on the CPlant machine because of its faster CPUs
and slower communication ~particularly the high la-
tency costs!. This is because the algorithm of Fig. 2 in-
herently requires a large number of small messages to be
sent and received. Buffering data so as to send fewer,
larger messages diminish the latency overhead but have
the detrimental effect of making neighboring processors
wait for information they could otherwise be computing
with. This typically degraded performance; thus, in this
benchmark small messages were sent as soon as off-
processor information was generated.

The efficiency data of Fig. 3 lead to a natural ques-
tion. How much of the inefficiency is due to the cost of
data communication on a particular parallel machine and
how much is due to one or more processors waiting for
data to be computed ~and sent! by other processors be-
fore they can proceed with further computation? Note
that no matter how fast interprocessor communication is,
processors whose subdomain is in the center of the glo-
bal grid will have to wait for sweep information to be
computed and propagate inward from the outer bound-
aries. This will contribute to the inefficiency seen in Fig. 3.
An idea suggested to us by Pautz18 enabled us to distin-
guish between these two effects; Pautz discusses his use
of this idea in his radiation solver in Ref. 10.

For diagnostic purposes an option was added to
SnRad to force the sweep algorithm to run in a synchro-
nous fashion. Each processor computes a single task ~if
it has one to work on! and then sends and receives any
messages that result. An MPI_Barrier command is then

called to ensure that all messages arrive and are read by
all processors before proceeding. All processors then ad-
vance forward one “clock tick” and repeat the same op-
erations. The resulting code runs slowly because of the
overhead of the many barriers, but the final count of how
many clock ticks elapse before all processors finish their
work enables an accurate measure of idle versus busy
time. The parallel efficiency of the computation is equal
to the total compute tasks divided by the quantity ~P
times clock ticks!. It is a measure of how scalable the
parallel sweep algorithm would be if message passing
were infinitely fast with zero latency cost. It also pro-
vides an upper bound on the scalability we can expect to
observe in an actual run. We call this the ideal effi-
ciency; it is plotted as the curve of triangles in Fig. 3 for
the 6360-element benchmark.

The inefficiency in the Tflops and CPlant data is
now broken into two pieces. The gap between the ideal
curve and 100% efficiency is scheduling inefficiency in-
herent to the sweep algorithm as tasks are executed in a
particular order by individual processors for a given par-
titioning of the global mesh. The gap between the ideal
curve and the actual observed efficiency ~triangles,
squares! is primarily communication inefficiency due to
time spent sending and receiving data on a particular
machine ~latency and bandwidth costs!. These costs are
higher on CPlant than on Tflops because of the slower
communication network. The ideal0actual gap also in-
cludes inefficiency due to small portions of SnRad that
are inherently serial and do not fully parallelize. In Sec. III
we discuss enhancements to the basic sweep algorithm
that can reduce the scheduling inefficiency and thus shift
the ideal and actual efficiency curves upward, yielding
better overall performance.

III. ENHANCEMENTS

In this section we outline two improvements to the
basic parallel sweeping algorithm of the previous sec-
tion: a simple geometric heuristic for prioritizing the cell0
angle tasks each processor works on and a partitioning
algorithm that can reduce the time processors must wait
for other processors’ computations to satisfy data depen-
dencies for their cell0angle tasks.

In the basic algorithm of Fig. 2, ready-to-compute
tasks were stored in a simple last-in, first-out stack where
the most recently added task is the first to be computed
on. More generally, the stack can be replaced with a
priority queue, where each cell0angle task is assigned a
numeric priority when added to the queue. When a task
is requested from the queue, the highest-priority task is
returned. In practice, a priority queue is implemented as
a heap; adding a task or finding the highest-priority task
are both inexpensive O~ log~k!! operations, where k is
the number of tasks in the heap at any one time. Since k
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is typically small in the algorithm of Fig. 2, the overhead
cost of using a priority queue versus a simple stack is
negligible.

Many different prioritization schemes can be used
for sweeping algorithms on distributed unstructured grids.
As discussed in Refs. 10 and 19, choosing an optimal
prioritization scheme for a grid distributed across multi-
ple processors can be recast in the most general sense as
a graph-based scheduling problem that is known to be
NP-complete ~not solvable by any algorithm whose cost
is polynomial in N, where N is a function of the number
of cell0angle tasks and processors, a very large number!.
Pautz presents several graph-based heuristic solutions
to this problem, based on analyzing the properties of
the global directed graph associated with all ordinate
directions.

By contrast, we have implemented easier-to-compute
geometric schemes that do not require graph-based in-
formation but exploit information about the single grid
cell and ordinate associated with a task. The motivating
idea is simple: Given a choice, a processor should pref-
erentially work on a cell that imposes the most depen-
dencies on other cells and other processors. Thus, a grid
cell that is farther upwind should have higher priority.
Numerically, for a particular cell0angle task, this value
is computed as the negative of the dot product between
the cell’s 3-D centroid position ~relative to the global
mesh center point! and the vector for the ordinate direc-
tion. To avoid waiting, we also want a processor to work
continuously on a single ordinate direction ~if tasks are
available! so that useful information is passed as quickly
as possible to nearby processors. We combine these two
goals into a single priority value by multiplying the or-
dinate index by a large number and adding the smaller
dot-product value to it. We call this a 3-D prioritization
scheme. As will be shown below, this strategy boosts the
ideal and actual efficiencies of the SnRad code by;10%
for large processor counts.

Another distinction between our implementation and
that of Pautz10 is in how priority values are used to per-
form sweeps. Pautz precomputes a static schedule for
each processor, which is then rigidly adhered to; each
processor computes its tasks and communicates the re-
sults in a fixed sequence. We allow deviations from the
schedule by dynamically selecting the highest-priority
task that is currently available. This allows work to be
done even when communication has delayed incoming
tasks, but it may lead to a different task ordering that
diverges from a static schedule that was otherwise supe-
rior. Note that both the graph- and geometry-based pri-
ority values must be recomputed if the grid geometry
changes because of grid movement or adaptation. For
the graph-based heuristics, this requires the ordinate
graphs be traversed before performing sweeps; for our
geometry-based approach, no precomputation is needed.
Rather, we compute each priority on the fly, at the time a
task is added to the priority queue.

We next address the question of how an unstructured
grid should be partitioned across processors so as to min-
imize processor idle time as sweeps take place. The KBA
algorithm8,9 answered this question for structured grids:
A 2-D columnar decomposition of the grid enables effi-
cient sweeping across a 3-D structured grid, as shown in
Fig. 4. Each of the nine processors in Fig. 4 owns a
cluster of vertical columns of grid cells. For the ordinate
direction shown by the large arrow, the front left proces-
sor must begin working before the others can. In the
KBA algorithm, it works on its uppermost plane of grid
cells ~fine grid! and then quickly passes needed informa-
tion to its two neighboring processors so they can begin
work. Soon each of the nine processors is working down
its column as it receives flux information from its two
upwind neighbors. This strategy pipelines the work for a
single sweep, keeping all the processors busy. The first
processor begins work on a new ordinate as soon as it
finishes its work on a previous ordinate, keeping the
pipeline filled as it loops over all ordinate directions
within a single quadrant.

It has been an open question whether a 2-D columnar-
style partitioning would yield similar benefits for sweeps
on unstructured grids. Note that standard partitioning
algorithms for 3-D unstructured grids assign equal num-
bers of grid cells to each processor while attempting to
minimize the total number of cell faces that lie on the
boundary between two processors. Tools like Chaco17

and METIS20 use graph-based algorithms such as spec-
tral bisectioning or multilevel Kernighan-Lin for this
purpose. The subdomains assigned to each processor are
typically compact 3-D subsections of the global grid;
this minimizes the surface-to-volume ratio of each sub-
domain. These algorithms are the methods of choice for
unstructured grid partitioning in a variety of finite ele-
ment applications since they minimize interprocessor
communication. An example of this style of partitioning
is shown on the left of Fig. 5 for a spherical domain

Fig. 4. A 2-D columnar decomposition of a 3-D struc-
tured grid as used by the KBA sweeping algorithm.
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meshed with an unstructured grid. Subdomains assigned
to different processors are shown in different shades of
gray; the thick black lines are the borders between pro-
cessors. We call this a 3-D decomposition strategy; it
was the algorithm used in Chaco to partition the 6360-
element grid for the benchmark results of Fig. 3.

We added an option to Chaco to enable 2-D colum-
nar partitioning of unstructured grids. An example is
shown on the right of Fig. 5. This partitioning was com-
puted in the following way, as illustrated in Fig. 6: The
centroid point of each grid cell was first computed. Each
3-D point was then projected along a chosen ~KBA! axis
into a 2-D plane normal to the axis. The resulting set of

2-D points was then partitioned geometrically using an
inertial method as shown by the lines in Fig. 6. The
inertial method21 computes the moments of inertia of a
set of points, finding the axis around which the set of
points has the smallest total inertia. The set of points is
then split by a plane perpendicular to this axis, which is
positioned so as to bisect the set of points. This proce-
dure is applied recursively to each half of the partition,
resulting in P equal-sized subsets of points for P proces-
sors. In Fig. 6, the first inertial cut on the 2-D set of
points is labeled A, the second-level cuts are labeled
with Bs, and the final level of cuts is labeled with Cs for
this eight-processor example. Advantages of geometric
partitioners such as the inertial method are that they are
very inexpensive to compute and easily parallelizable.22

The Chaco package17 has several geometric and graph-
based partitioning options; this 2-D projection method
was simple to implement as a modified Chaco option.

When the partitioning of the 2-D projected points is
mapped back to the original 3-D grid cells, the resulting
subdomain shapes are roughly columnar ~with ragged
boundaries!, as on the right of Fig. 5. We call this a
KBA-style partitioning. When using it within SnRad, we
alter the 3-D prioritization scheme described previously
in the following way: Since we want the sweep to pro-
ceed down the columnar ~KBA! axis, we assign high
priorities to cell0angle tasks at the top of the KBA col-
umns. This is done by taking a dot product of the 3-D
cell centroid with the KBA column direction and setting
the sign of the dot-product value depending on the ordi-
nate direction ~since which end of the column is the up-
wind end depends on the ordinate!. This quantity is then
added to the ordinate index ~multiplied by a large num-
ber! in the same way as before. As with the 3-D priori-
tization scheme, this KBA-priority formula can be quickly
computed on the fly using only geometric information

Fig. 5. Partitioning of a gridded spherical domain with a 3-D spatial decomposition algorithm ~left! and a KBA-style 2-D
columnar decomposition. Each processor’s subdomain is shown in a different shading; boundaries between processors are shown
as thick lines.

Fig. 6. Projection of the centroid points of the cells of a
3-D unstructured grid into a 2-D plane. The 2-D points are
partitioned geometrically using inertial cuts ~at levels A, B,
and C! to generate a 2-D columnar decomposition of the orig-
inal 3-D grid.
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for a single grid cell; it does not require any global in-
formation or a traversal of the dependency graph.

The 3-D and KBA prioritization schemes are imple-
mented as options in our SnRad transport solver. ~The
corresponding partitioning options are performed by
Chaco as a preprocessing step.! The effects of these en-
hancements on the efficiency of the basic parallel sweep-
ing algorithm are shown in Fig. 7. As before, a 3-D
rectangular domain was gridded irregularly, this time with
parameter settings that yielded a hexahedral grid with
25 032 elements. Again, an S8 quadrature with two en-
ergy groups was modeled, for a total of 4 million un-
knowns ~32 million corner points!. This problem was
too large to fit on fewer than four processors of the Intel
Tflops machine. One-processor timings ~100% effi-
ciency! were accurately estimated from the computa-
tional grind times measured for hexahedral grid cells.

On the left of Fig. 7, three ideal efficiency curves
~open symbols! are shown using the synchronized Sn-
Rad option described in Sec. II; note that the y axis in
Fig. 7 begins at 50% efficiency. The lower curve of
squares is the basic sweep algorithm of Sec. II and a
traditional 3-D partitioning of the grid. The middle curve
of triangles is for runs using the same partitioning with
the 3-D prioritization scheme described above. The up-
per curve of circles is for runs using the KBA-style par-
titioning and prioritization. Each enhancement offers an
;10% improvement in ideal efficiency on large num-
bers of processors. Their effect on actual run-time per-
formance is shown on the right of Fig. 7, using
corresponding shaded symbols. As in Fig. 3, actual per-

formance never exceeds the predicted ideal perfor-
mance, but a similar 5 to 10% improvement between the
basic and enhanced algorithms is evident.

IV. PERFORMANCE RESULTS

The algorithms of Secs. II and III were bench-
marked using SnRad on a series of unstructured hexa-
hedral meshes of various sizes on the Intel Tflops
machine. In Fig. 8 we show parallel efficiencies for the
block-shaped domain discussed in Sec. II, meshed at three
different resolutions. The grid sizes were 6360, 25 032,
and 99 702 elements. All the benchmarks were run with
an S8 quadrature ~80 ordinate directions! and two energy
groups, yielding a total number of unknowns of approx-
imately 1 million, 4 million, and 16 million for the three
problems. Efficiency curves are plotted for each fixed-
size problem running on various numbers of processors.
The larger problems cannot fit on a single processor; as

Fig. 7. Parallel scalability of the basic sweeping algo-
rithm ~squares!, the 3-D prioritization scheme with a 3-D par-
titioning ~triangles!, and the KBA prioritization scheme with a
KBA-style 2-D columnar partitioning ~circles!. Ideal efficien-
cies are on the left; actual run-time efficiencies are on the right
for the Intel Tflops machine. An irregular grid on a 3-D rect-
angular domain was used with 25032 hexahedral elements,
with an S8 quadrature ~80 ordinates! and two energy groups.

Fig. 8. Fixed-size parallel efficiency of the SnRad radi-
ation solver on the Intel Tflops machine for a block-shaped
domain meshed with an unstructured grid at three different
resolutions. N is the total number of unknowns as discussed
in the text. As in Fig. 7, the shaded circles are actual efficien-
cies for the sweep algorithm with a KBA-style decomposition
and prioritization scheme, the open circles are the associated
ideal efficiencies, and the shaded squares are the actual effi-
ciencies for the basic algorithm with a 3-D decomposition
and no prioritization.
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before, the 100% efficiency one-processor timings for
these cases were estimated from the measured grind times.

For each grid size, three curves are plotted. The top
curve ~open circles! is the ideal efficiency using a KBA-
style decomposition of the unstructured grid with the
associated prioritization scheme discussed in Sec. III.
The middle curve ~shaded circles! is the actual run-time
efficiency for the same case. The lower curve ~shaded
squares! is the actual efficiency for the basic algorithm
of Sec. II using a 3-D decomposition and no prioritiza-
tion. The same trends observed in Sec. III are evident
here. The largest problem gets an ;20% boost in actual
efficiency because of the two enhancements, with an over-
all efficiency of .80% on 256 processors ~a speedup of
.200 times versus the estimated one-processor timing!.

In Fig. 9, we plot efficiency curves for the spherical
problem described in Sec. III, gridded at four different
resolutions. These problems were also run with S8 and
two energy groups. The grid sizes used were much larger
~approximately 108 000, 500 000, 1 048 000, and 3 322 000
elements each! and were run on up to 2048 processors of
the Tflops machine. In the largest problem more than
500 million unknowns, or more than 4 billion corner
values in the UCB formalism, are being solved for dur-
ing each sweep.

The labeling ~open and shaded circles, shaded
squares! within each set of three curves is the same as
before. The data indicate some degradation in efficiency,
both ideal and actual, on thousands of processors, which
is probably due to the high communication load that a
radiation transport sweep incurs, even on a well-balanced
parallel machine like the Intel Tflops. The largest prob-
lems are running at a little more than 60% efficiency on
2048 processors, which is a reasonable aggregate perfor-
mance for a fixed-size problem.

We note that on all but the largest problem the run-
time difference between the basic and enhanced algo-
rithms is slowly shrinking as the number of processors
increases. This could be due to increased communica-
tion costs for the KBA decomposition on very large num-
bers of processors; the partitions become longer and
narrower with higher surface0volume ratios. We also note
that on the largest number of processors, all of the prob-
lems have roughly equal efficiency ~60 to 65%!, inde-
pendent of problem size. Since the ideal efficiency in
these cases also peaks at ;70%, this may indicate a
fundamental limitation with all these sweeping algo-
rithms for thousands of processors. Even with a KBA-
style decomposition, some of the 2048 processors will
be surrounded by many other processors’ subdomains
and have little work to do ~at the top and bottom of their
subdomain! before having to wait for flux information
from processors on the periphery of the global domain.

In Fig. 10, we benchmark the performance of our
algorithms in SnRad as the number of ordinates is var-
ied. A spherical geometry was used, gridded with 32 000
hexahedral elements. The benchmark was run with two
energy groups on 256 processors of the Intel Tflops.

Fig. 9. Fixed-size parallel efficiency of SnRad on the
Tflops machine for a spherical geometry meshed with an un-
structured grid at four different resolutions. The meanings of N
~total unknowns! and the curve symbols are the same as in
Fig. 8.

Fig. 10. Parallel efficiency of SnRad on 256 processors
of the Tflops machine for varying numbers of ordinate direc-
tions. A spherical geometry meshed with an unstructured grid
of 32 000 elements was used. Both ideal and actual efficiencies
are shown for the basic algorithm ~squares! and the 3-D and
KBA-enhanced versions ~triangles and circles!.
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Ordinate quadratures from n � 2 to n � 20 ~8 to 440
angular directions! were used; the total number of un-
knowns varied from 512 000 to just more than 28 mil-
lion. On the left of Fig. 10, three ideal efficiency curves
are plotted, for the basic algorithm ~squares!, the 3-D
prioritization ~triangles!, and the KBA decomposition with
a KBA-style prioritization ~circles!. The corresponding
actual run-time efficiencies are plotted on the right side
of Fig. 10 in shaded symbols. Clearly, all the algorithms
suffer from reduced efficiency for low-order quadra-
tures. This is because the wait times for some processors
to begin working are a larger fraction of the total run
time when there is less computation to perform.

As in previous plots, the actual efficiencies in Fig. 10
track the ideal efficiencies fairly closely; the ideal values
impose an upper bound for all the data points shown.
One interesting attribute of the actual run-time data for
the two enhanced algorithms ~triangles, circles!, is a
crossover in performance that occurs at about S12 ~168
ordinates!. For large numbers of ordinates, the 3-D de-
composition and its associated prioritization scheme be-
come more efficient than the KBA decomposition, by
;10%. This again could be due to the increased commu-
nication costs that the KBA decomposition, with its long
narrow subdomains, requires relative to more traditional
3-D partitionings.

Finally, in Table I we show the effect of the number
of energy groups on single-processor performance and
parallel scalability in SnRad. The 3-D rectangular do-
main of Sec. II and Fig. 8 was gridded with 6360 hexa-
hedral elements and benchmarked on 256 processors of
the Intel Tflops with an S8 quadrature ~80 ordinates! using
the basic sweep algorithm of Sec. II. The number of
energy groups was varied from 1 to 256 ~508 800 to 130
million unknowns!, yielding the parallel run times for
each sweep as shown in Table I. The one-processor time
for these runs was estimated by the fraction of the par-
allel run time spent in computation and converted to a
grind time ~microseconds per grid cell per ordinate per
energy group!. The estimated one-processor time was
then compared to the actual sweep time to compute the

efficiency of the 256-processor parallel runs, as listed in
Table I.

The data indicate that for small numbers of energy
groups, there is almost no additional computational
cost ~per sweep! to adding extra groups. This is due to
two effects mentioned briefly in Sec. I. The flux values
for different energy groups are stored contiguously in
SnRad data structures for a particular grid-cell0angle pair-
ing. Since the computations for different energy groups
are also done in the innermost loop within an SnRad
solve, this has a favorable cache effect. The relatively
expensive grid geometry operations that SnRad per-
forms as a sweep progresses ~face normals and areas,
corner orderings! do not need to be repeated for addi-
tional energy groups, giving an additional savings. A
further optimization we do not currently exploit in
SnRad would be to precompute some or all of these grid
geometry factors. This would require additional storage,
and the factors would also need to be recomputed on any
time steps where the grid deformed. The latter is a com-
mon occurrence in the shock-hydrodynamics applica-
tions, where Lagrangian grids are employed.

We note that computing fluxes for multiple ~or all!
energy groups simultaneously in a single ordinate sweep
may be detrimental to the convergence rate of the overall
source iteration. For example, in neutronics problems
with significant downscattering, it is often advantageous
to perform complete sweeps in sequence from high to
low energy. SnRad allows the user to specify how many
energy groups to work on simultaneously so these trade-
offs can be explored.

The reason that the parallel efficiencies in Table I
fall off as energy groups increase is that the message
passing in our algorithm incurs a fractionally greater cost.
For low group counts, the communication cost is latency
dominated; message sizes are small. For high group
counts, a significant amount of data must be exchanged,
and additional bandwidth costs result. For 256 energy
groups, the data for the face of a single grid cell is 8192
bytes ~four corner points, 256 groups, double precision
flux values!, which is the minimum size of a data packet

TABLE I

Grind Times ~Per Grid Cell! and Parallel Efficiencies as a Function of Number of Energy Groups for a Rectangular
Domain Gridded with 6360 Hexahedral Finite Elements on 256 Processors of the Intel Tflops

Energy Groups

1 2 4 8 16 32 64 128 256

Sweep time ~s! 1.27 1.31 1.31 1.40 1.61 2.05 3.04 5.14 10.0
Grind time ~ms! 398 200 102 52.8 28.3 16.3 10.8 8.37 7.09
Parallel efficiency ~%! 62.4 61.0 61.9 60.1 55.8 50.6 45.3 41.4 36.1
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that must be sent to an adjacent processor.a At 310
megabytes0s ~interprocessor bandwidth on Tflops!, this
requires ;25 ms to send0receive, compared with the
latency-only cost on Tflops of 15 ms. This additional
bandwidth cost accounts for the drop in efficiency of a
factor of ;2 from 60 to 35% as energy groups go from
1 to 256 in Table I.

The results of this section indicate that overall per-
formance and scalability are a complex function of grid
size, number of ordinates and energy groups, number of
processors, and choice of grid decomposition and prior-
itization. The unstructured grids we have used as bench-
marks are prototypical ~rectangular and spherical global
domains!, but results on application-specific grids might
also vary somewhat. Finally, parallel machines with dif-
fering communication characteristics can also differ in
performance, as in Fig. 3.

Our conclusion is that the KBA-style decomposition
and prioritization scheme we have outlined are generally
the fastest choices. However, their advantages are some-
times not more than a few percent over the basic parallel
sweep algorithm or other decompositions and are sub-
ject to the issues of the previous paragraph. Thus, it is
useful to have algorithmic options within a discrete
ordinates solver package, for grouping of sweeps by en-
ergy and angle, for grid decomposition, and for prioriti-
zation schemes. This allows users to perform their own
benchmark testing for a particular problem’s physics and
geometry characteristics, grid size, and choice of paral-
lel machine and number of processors.

V. CYCLE DETECTION AND ELIMINATION

The preceding discussion ignored one issue with
sweeping algorithms that is important to address for un-
structured grids: what to do if one or more cycles exist in
the directed graph associated with any of the ordinate
directions. A cycle is a loop in a directed graph, as at the
left of Fig. 11. In the radiation transport context, cycles
can occur in the dependency graphs associated with large,
complex tetrahedral or hexahedral finite element meshes.
They occur quite commonly if a Lagrangian mesh is
twisted or deformed because of material response. Note
that if the simulation grid never changes during a simu-
lation, identifying cycles can be done as a serial prepro-
cessing step, though it can be an expensive computation
for large grids and high-order quadratures. However, if
the grid geometry changes because of deformation or
adaptation, finding cycles in parallel is a necessity.

The sketch at the right of Fig. 11 is a simple example
of a cycle. Imagine a circular ring of hexahedral ele-

ments whose top surface is twisted slightly relative to
the lower surface. A radiation direction down the ring
axis will create a cycle in the associated graph. The prob-
lem that cycles cause for the algorithm of Fig. 2 is that
the computation for one or more elements cannot be per-
formed because their upwind dependencies will never be
satisfied; a grid cell depends on itself. In parallel, the
sweep algorithm will “hang” as a processor waits for a
message that will never be sent. In matrix terms, a cycle
means there is no ordering of elements that creates a
lower triangular matrix equation; it is impossible to solve
in a single sweep.

In serial, the solution to this problem is typically to
“break” the cycle by removing one or more edges of the
dependency graph, which is equivalent to zeroing matrix
elements in the upper-triangular portion of the associ-
ated matrix equation. Old radiation flux values ~from a
previous source iteration or a previous time step! are
used for this face, and the sweep is performed as before.
The physical justification is that one ~or more! of the
element faces that make up the cycle will likely be ori-
ented obliquely with respect to the ordinate direction.
Since very little flux passes through that face, using old
values for its contribution to the solution should have a
negligible effect on the convergence rate of the overall
source iteration.

In graph terminology, the strongly connected com-
ponents ~SCCs!within each ordinate’s dependency graph
must be identified. An SCC is a set of vertices in a di-
rected graph, any of which are reachable from all the
others. An SCC may contain multiple cycles; consider a
figure-eight–shaped SCC where the center vertex is part
of two cycles. The best serial algorithm for finding SCCs
is due to Tarjan.23 It requires time that is linear in the
number of graph edges and relies on depth-first traversal
~DFT! of the graph. Unfortunately, DFTs do not paral-
lelize well for distributed graphs. This is because a DFT
is performed by walking from grid cell to grid cell across
the entire grid, which is an inherently serial operation.
By contrast, the sweeping algorithm of Fig. 2 operates in
an order more akin to a breadth-first traversal ~BFT! of

aLarge messages may cause the send operations in the
algorithm of Fig. 2 to block in some MPI implementations.
This can typically be overcome by user-defineable MPI set-
tings that allow for large nonblocking sends.

Fig. 11. A directed graph with a cycle ~left! and a twisted
ring of mesh elements that induces a cycle.
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the graph. When the computation for one grid cell is
performed, all of its downwind neighbors are ~poten-
tially! added to the task queue. BFTs are more readily
parallelizable than DFTs, as evidenced by the parallel
efficiency results of Sec. IV.

We have developed an alternative SCC-finding al-
gorithm that is based on BFT-style operations and is thus
more parallelizable than Tarjan’s algorithm. A detailed
description of the algorithm and its complexity analysis
is given in Refs. 24 and 25 from a computer-science
perspective. Here, we provide a brief description of its
basic ideas in the context of radiation transport sweeps
and additional details about how it is used to both find
and break cycles within our SnRad transport solver. We
first describe how the new algorithm works for a single
graph ~ordinate direction! and then outline the full par-
allel implementation for multiple ordinates.

Imagine a finite element mesh with two cycles, shown
as oval rings at the left of Fig. 12, and a directed graph
associated with the ordinate direction given by the arrow
at the upper left. Recall that in the sweep operation any
elements whose upwind counters decrement to zero can-
not be in a cycle ~or SCC!. This fact is exploited by first
performing a downwind sweeplike operation called a
trim, which identifies and discards elements that are not
in an SCC.

In parallel, the trim operates like the algorithm of
Fig. 2 with two modifications. First, no flux or UCB
computations are performed. The graph is simply tra-
versed, counters decremented, messages sent and re-
ceived, and grid cells flagged for deletion when their
upwind dependencies are all satisfied. Second, if an SCC
is present, the trim will not complete, and the parallel
code must detect when this occurs ~and not hang!. Spe-

cial termination-detection logic is added to the sweep
algorithm to enable this. In addition to owning a portion
of the finite element grid, each processor is also assigned
a location within a binary tree containing all the proces-
sors. When a processor is waiting for an incoming trim
message, it sends a special message to its parent in the
tree, saying it is waiting. If the parent processor is also
waiting, it looks for wait messages coming from both its
children in the binary tree and then sends a wait message
to its parent. The processor at the root of the tree re-
verses the direction of the message passing and sends a
message to its children. These wait messages percolate
up and down the tree of processors as the trim is pro-
ceeding. If a processor does further trim work before a
wait message returns to it, it flags the wait message ap-
propriately, and the up0down percolation continues. If
the wait messages ever go completely up and down the
tree without any processor doing additional trim work
~and if all sent messages have also been received!, then
all processors are waiting because of an SCC, and they
can exit the trim.

For the mesh of Fig. 12, the upper SCC ~oval ring!
will block the first downward trim so that grid cells in its
“shadow” between the two open arrows are never reached.
A second upwind trim is then performed, which will
block at the second SCC, leaving grid cells between the
shaded arrows. When all grid cells ~vertices! reached by
both trim operations are deleted from the dependency
graph, the shaded region remains; the six-sided polygon
at the right of Fig. 12 represents this remaining portion
of the original graph.

A random pivot vertex ~black dot! is now selected
within the remaining graph. A BFT-style mark operation
is then performed, that flags vertices that are upwind and
downwind of the pivot. In the mark operation, each ver-
tex is flagged as upwind or downwind when it is reached,
and its neighbors ~ancestors or descendants! can then be
likewise marked, without all their dependencies being
satisfied. As in the sweep, messages are sent to proces-
sors owning neighboring vertices ~grid cells! when ap-
propriate. As in the trim, termination-detection is also
implemented so that all processors know when the mark-
ing is complete.

Note that unlike the sweep or trim, which only ad-
vances when all dependencies are satisfied, a mark op-
eration does not block at an SCC but passes through it in
both directions. After the marking is complete, some ver-
tices may have been flagged as being both upwind and
downwind from the pivot. If so, this set of vertices ~in-
cluding the pivot! is precisely an SCC. The graph edges
that make up the SCC are tested to find the correspond-
ing cell face with the smallest projected surface area
with respect to the ordinate direction. That edge is re-
moved from the graph, which breaks at least one cycle in
the SCC.

Also note that the mark operation partitions the graph
into four disjoint subgraphs: the vertices upwind from

Fig. 12. A finite element mesh ~2-D blob! containing two
cycles shown as oval rings. The original mesh on the left is
trimmed, leaving the shaded portion. On the right, the remain-
ing portion is marked, which breaks the mesh into three parti-
tions: upwind ~lines!, downwind ~checked!, and unreachable
~unshaded!.
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the pivot ~lined region at right of Fig. 12!, the vertices
downwind ~checked region!, vertices that are neither ~un-
shaded region!, and the SCC itself ~minus the removed
edge!. The key observation24 that makes this algorithm
work is that no SCC remaining in the graph can include
vertices from more than one of these subgraphs. The
overall algorithm ~trim, pick pivot, mark! can thus be
invoked on each subgraph. The algorithm proceeds in a
recursive fashion, breaking the graph into smaller and
smaller pieces, detecting and eliminating cycles one by
one whenever a pivot vertex is in an SCC.

The recursive nature of this algorithm leads to an
expected complexity of O~N log N ! ~Ref. 24!, com-
pared with the linear-time complexity of the Tarjan al-
gorithm. However, from a parallel perspective, this
algorithm is more parallelizable than Tarjan’s because
the trim and mark operations both involve breadth-first
style graph traversals. Since dependency graphs for many
ordinate directions must be searched for SCCs, the trim
and mark operations can also be performed on multiple
graphs simultaneously to achieve greater parallelism, as
in the parallel sweep algorithm of Fig. 2. The parallel
version of the algorithm is outlined in Fig. 13. It is in-
voked within SnRad initially and whenever the geom-
etry of the finite element mesh changes ~via movement
or adaptation!, since such changes alter the ordinate de-
pendency graphs.

The first step of the parallel-cycle–detection algo-
rithm is to identify the set of graphs to search for SCCs.
Sn quadratures typically include pairs of ordinates in op-
posite directions. The two graphs associated with such a
pair have the same structure; their edge directions are
simply the reverse of each other. Thus, only one graph
from each pair need be searched for SCCs. A list of these

graphs is generated, with each processor owning the sub-
piece of each graph corresponding to its grid cells. The
algorithm then enters its recursive phase. All the graphs
are trimmed simultaneously ~in parallel!, first in the down-
wind direction ~which will completely eliminate any
graphs that have no SCCs!; then, the remaining portions
are trimmed in the upwind direction. A pivot vertex is
chosen within each remaining portion; then, the portion
is marked. The marking may identify an SCC in some of
the graphs. An appropriate edge is eliminated from each
SCC, and the edge ~cell face! information is stored so
that the radiation solver can later eliminate the edge from
the sweep graphs and use appropriately modified flux
values in the UCB solution for the affected grid cell.

For each marked graph, three new subgraphs are
formed ~four if an SCC was found! using the sets of
upwind, downwind, and unmarked vertices and their as-
sociated edges. At the end of each recursive stage, a new
list of distributed graphs has been formed, and the old
list is discarded. The new list is processed in the same
fashion until all cycles in all of the graphs have been
detected and eliminated. At this point there are no graphs
left in the list, so the algorithm exits, returning a distrib-
uted data structure containing the information for broken
edges ~face0ordinate pairings! on each processor.

It is important to realize that each stage of the algo-
rithm in Fig. 13 is synchronous and parallel in nature; all
the processors work on all the graphs together and then
move to the next stage of the algorithm. Initially, each
processor owns a portion of every top-level graph. As
the graphs are trimmed and partitioned, an individual
graph may end up spanning only a subset of processors.
But, even if a processor owns no vertices in any graph of
the current list ~no cycles remain in its portion of the

Fig. 13. Parallel recursive algorithm for detecting and breaking cycles in the directed graphs associated with radiation
transport in one or more ordinate directions on a distributed unstructured grid.
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grid!, it still continues to step through the algorithm with
the other processors until all are finished.

The trim and mark steps within Fig. 13 are asynchro-
nous operations similar to the sweep algorithm of Fig. 2.
Other operations such as picking a pivot vertex or iden-
tifying the correct edge to remove require coordination
between the processors that jointly own a particular sub-
graph. As with sweeping, the cycle-detection algorithm
does not require any global graphs ever be assembled;
simple counters for each cell0ordinate pair are used to
flag upwind0downwind dependencies as graphs are tra-
versed in the trim and mark operations using only the
finite element connectivity information. Overall, the data
structures needed for this algorithm require considerably
less memory than the transport flux solution since the
storage for energy groups and corner points is not needed.

We have benchmarked the cycle-detection algo-
rithm on two grids that enable cycles to be generated in
a controlled fashion. The grid geometries are shown in
Fig. 14. The first is a hollow cylinder where the grid is
twisted by 10% along the cylinder axis. As in Fig. 11,
this induces SCCs for ordinate directions close to the
cylinder axis. The SCCs tend to be large and highly con-
nected ~many cycles in a single SCC!. The second ge-
ometry is a cube where each grid point is displaced in a
random direction by a random amount up to 30% of the
distance between neighboring grid points. This induces
many small SCCs because of the large deformation of
individual grid cells.

The performance of the cycle-detection algorithm
within SnRad on these two benchmark geometries is
shown in Fig. 15. For these timings entire SCCs were
removed from an ordinate graph when found, rather than
breaking single edges inside the SCCs and performing
further recursion ~see discussion below!. An S20 quadra-
ture was used with 440 ordinate directions or 220 unique
dependency graphs. For both meshes the grid resolution
was varied with the number of processors so as to keep
the grid-cell0processor ratio constant at 1000. The cubic

geometry was meshed at a 10 � 10 � 10 resolution for
one processor and at an 80 � 80 � 160 resolution for
1024 processors. In the cylindrical meshes, increasing
resolution did not change the total number of 40 SCCs in
all 220 graphs. In the cubic meshes, the number of SCCs
increased rapidly with the grid size. On the smallest mesh
of 1000 cells, there were 65 SCCs; on the largest mesh
of 1 024 000 cells, there were 41 999 SCCs. Thus, from a
parallel perspective these two problems are both scaled-
size benchmarks in grid size, but the cylinder is a
fixed-size benchmark in SCC count while the cube is a
scaled-size benchmark in SCC count.

The run times are plotted for varying numbers of
processors on both the Intel Tflops ~circles! and DEC-
Alpha CPlant ~squares! machines. For the twisted cylin-
der, perfect scalability would be a horizontal line on these
scaled-size grids. The performance is reasonably scal-
able up to 64 processors on both machines and then in-
creases to 12.8 s on 1024 processors of Tflops ~a parallel
efficiency of 24.5%!. The inefficiency is due in part to
load imbalance that occurs after trimming and recursion
when some processors no longer own grid cells in the
graphs that remain.

It is more difficult to quantify what perfect scalabil-
ity should be for the deformed cube grids since the num-
ber of SCCs rises dramatically with increasing processor
count. This induces much deeper levels of recursion in
the cycle-detection algorithm as longer and longer lists
of graphs are generated. Each machine’s one-processor
time for the deformed cube problem is about the same as
its time on the twisted cylinder problem, but the run
times rise to 45.1 and 159.6 s on 512 processors of the
two machines.

The more important metric is how the cost of cycle
detection compares to the sweep times for a transport

Fig. 14. Two grids for testing cycle detection. Left: a hol-
low cylinder with the grid twisted along the vertical axis;
right: a cube where each grid point is displaced by a small
random amount.

Fig. 15. CPU run times for cycle detection within SnRad
on the Tflops and CPlant machines for the two grid geometries
of Fig. 14 using an S20 quadrature ~440 ordinates!. For both
problems the mesh resolution was scaled with the processor
count; all grids contain 1000 elements per processor.
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solution. For a grind time of 200 ms on the Tflops ma-
chine ~see Sec. II!, a 512 000 grid cell problem with 440
ordinates and two energy groups would give a sweep
time of 176 s on 512 processors if the run were 100%
parallel efficient. In this context, the 45.1-s cycle-
detection time is roughly the same expense as a single
sweep in a source iteration solution ~requiring many
sweeps! within a single time step.

As mentioned, the timings of Fig. 15 were for find-
ing SCCs but not breaking them. The breaking algorithm
described above worked well for the deformed cube prob-
lem. Because its SCCs contain only a few grid cells on
average, breaking a single minimum-flux edge typically
eliminated the entire SCC on the next round of recur-
sion. The overall run time with breaking enabled in-
creased by only a few percent. However, for the twisted
cylinder problem, single SCCs can contain hundreds or
thousands of grid cells and similar numbers of cycles.
Breaking edges one at a time is inefficient, causing the
algorithm to recurse much more deeply and consume
more memory. For example, the run time on eight Tflops
processors increased from 3.83 to 51.6 s when breaking
was enabled. The ideal solution to this problem would be
to identify the minimal set of edges to break within an
SCC that would eliminate all cycles. In graph nomencla-
ture, this is the minimum arc feedback set, and unfortu-
nately, finding it would be difficult in parallel and is an
NP-complete problem in the number of edges in the SCC.
A simpler heuristic would be to break multiple edges,
perhaps all those with associated radiation flux below
some threshold. We are still experimenting with practi-
cal solutions to the edge-breaking task in special cases
such as this and the effect edge-breaking choices have
on subsequent radiation sweeps.

VI. CONCLUSIONS

We have presented two parallel algorithms that ad-
dress issues relevant to solving the Boltzmann transport
equations via the method of discrete ordinates on unstruc-
tured grids. They are suitable for transport problems re-
quiring large grids running on large parallel machines,
where the grid must be distributed across processors.
The algorithms allow the radiation equations to be solved
with the same sweeping method that is often optimal for
a serial implementation.

The first algorithm performs full sweeps in multiple
ordinate directions simultaneously. The second finds and
eliminates cycles in all sweep dependency graphs, a
necessary precursor to computing sweep solutions on
unstructured grids. We have also described two enhance-
ments to the sweep algorithm that improve its parallel
efficiency. The first is an easily computed geometric for-
mula that prioritizes a processor’s choice of which grid
cell0ordinate task to work on. The second is a grid-

partitioning algorithm that enables unstructured grids
to be decomposed across processors in a 2-D columnar
fashion, similar to the structured grid partitions used
effectively in the KBA sweeping algorithm. The two
enhancements can be used separately or in tandem. For
example, if the grid-partitioning strategy is constrained
by other portions of the simulation ~e.g., by fluid or hy-
drodynamic solvers!, then using the prioritization idea
by itself can improve parallel performance.

The algorithms have been benchmarked on two large
parallel machines for several finite element meshes with
up to 3 million elements ~500 million radiation flux un-
knowns or 4 billion UCB corner point unknowns!. Par-
allel efficiencies on large numbers of processors ~up to
2048! were typically .50% for the basic sweep algo-
rithm and up to 80% for the enhanced algorithm. We
note that these results are for fixed-size problems, not
scaled-size problems ~constant element0processor ratio!
on which it is typically easier to achieve high efficiencies.

Finally, we note that parallelizaton of a complete
source iteration scheme requires that the acceleration
method also be parallelized, not only the sweep opera-
tions. Since the transport synthetic acceleration method4

performs sweeplike operations, it can potentially be par-
allelized by algorithmic ideas similar to those proposed
here.
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