16

17

18

19

26

RANDOMIZED SKETCHING ALGORITHMS FOR LOW-MEMORY DYNAMIC
OPTIMIZATION*

RAMCHANDRAN MUTHUKUMAR', DREW P. KOURI¥, AND MADELEINE UDELL'

Abstract. This paper develops a novel limited-memory method to solve dynamic optimization problems. The memory
requirements for such problems often present a major obstacle, particularly for problems with PDE constraints such as optimal
flow control, full waveform inversion, and optical tomography. In these problems, PDE constraints uniquely determine the state
of a physical system for a given control; the goal is to find the value of the control that minimizes an objective. While the
control is often low dimensional, the state is typically more expensive to store.

This paper suggests using randomized matrix approximation to compress the state as it is generated and shows how to
use the compressed state to reliably solve the original dynamic optimization problem. Concretely, the compressed state is
used to compute approximate gradients and to apply the Hessian to vectors. The approximation error in these quantities is
controlled by the target rank of the sketch. This approximate first- and second-order information can readily be used in any
optimization algorithm. As an example, we develop a sketched trust-region method that adaptively chooses the target rank
using a posteriori error information and provably converges to a stationary point of the original problem. Numerical experiments
with the sketched trust-region method show promising performance on challenging problems such as the optimal control of an
advection-reaction-diffusion equation and the optimal control of fluid flow past a cylinder.

Key words. PDE-constrained optimization; matrix approximation; randomized algorithm; single-pass algorithm; sketch-
ing; adaptivity; trust-region method; flow control; Navier—Stokes equations; adjoint equation

AMS subject classifications. 49M37, 491.20, 68W20, 90C30, 90C39, 93C20

1. Introduction. In this paper, we introduce novel low-memory methods to solve discrete-time dy-
namic optimization problems based on randomized matrix sketching. Such problems arise in many practical
applications including full waveform inversion [21, 28, 33], optimal flow control [13, 23], financial engineering
[17] and optical tomography [2, 18] to name a few. Let M be the dimension of the state space and m be
the dimension of the control space. For many practical applications M > m. We consider the discrete-time
dynamic optimization problem

N
(1.1) 1 CRM o R ;fn(“n*h“mzn)
subject to ¢p(Up—1,Up,2,) =0, n=1,...,N,

where z, € RM | u, € R™ are the control actions and system states at the n'" time step respectively,
ug € RM is the provided initial state of the system, f,, : RM x RM x R™ — R is a “cost” or “objective”
associated with the n'® state and control, and ¢, : RM x RM x R™ — RM is a constraint function that
advances the state from u,,_; into u,. One major application of Problem (1.1) is to optimize (a discretized
version of) a continuous-time dynamical system. In this case, the form of ¢,, presented above corresponds to
single-step time integration schemes. Other time stepping methods can also be handled with the approach
described here. Additionally, our approach can handle dynamic optimization problems with static controls
including, e.g., initial conditions, material parameters, and shape or topological designs. However, for
simplicity we focus on problems of the form (1.1).

1.1. Memory versus computation: trade-offs. Memory limits often constrain numerical algorithms
for (1.1). For example, suppose the objective and constraints are twice differentiable. To solve (1.1) using
a traditional sequential quadratic programming algorithm, we must store the entire state trajectory {u,},
the Lagrange multipliers associated with each constraint function in (1.1), and the control trajectory {z,}:
in total, a memory requirement of N(2M + m) floating point numbers. For example, discretizations of full
waveform inversion problems for petroleum exploration regularly result in state vectors of size M = 64 billion

*Submitted to the editors [DATE].

TDepartment of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853
(rm949@cornell.edu, udell@cornell.edu).

fOptimization and Uncertainty Quantification, Sandia National Laboratories, Albuquerque, NM 87185
(dpkouri@sandia.gov).

This manuscript is for review purposes only.

mailto:rm949@cornell.edu
mailto:udell@cornell.edu
mailto:dpkouri@sandia.gov

S O O U gt Ut Ot ot Ot gt Ut
N = O © 00 9 O Ut = W

63
64
65
66
67
68

69

=~
Tt = W N

[«

-

b I N SRS TS BEE RS |

79
80

81

with the number of time steps exceeding N = 400, 000 [22]. In view of the onerous memory requirements of
straightforward algorithms, algorithm designers must make hard choices to reduce the fidelity of the model
or to repeat computation.

One can reduce the storage and computational complexity — at the cost of accuracy — using coarse
spatial and temporal grids to model the problem. A more ambitious approach then coarsening is to solve
(1.1) using a reduced-order model (ROM) [1, 8, 16]. However, ROMs are often tailored for specific dynamical
systems and demand significant domain expertise. Moreover, ROMs can be difficult to implement in practice,
requiring significant and often invasive modification of the simulation software. Naively implemented, ROMs
are also a poor fit for optimization. For example, proper orthogonal decomposition ROMs are constructed
using snapshots of the state trajectory {u, }, which depend on the current control trajectory {z, }. Therefore,
as the control changes during optimization, the approximation quality of the ROM degrades. Adaptive ROM
generation for optimization is an active research topic [9, 36].

An alternative approach substitutes computation for memory. Suppose the dynamic constraint in (1.1)
uniquely determines the state given the control, and form the equivalent reduced optimization problem by
eliminating the state “nuisance variable”. The optimization variable in this approach is simply the control
{zn}: Nm floating point numbers. However, evaluating the objective function requires solving the dynamic
constraint. Worse, evaluating the gradient of the objective function requires the solution of the backward-
in-time adjoint equation [15]: to solve it, we must traverse the state trajectory backward, from the end to
the beginning. Unfortunately, the state must generally be computed forward in time.

Checkpointing methods perform this backward pass without storing the full state [3, 10, 25, 32]. Instead,
they store judiciously chosen snapshots of the state variables u,, in memory or to hard disk. The state is
then recomputed from these checkpoints to solve the adjoint equation. This procedure results in lower
memory requirements, but drastically increases the cost of computing gradient information. For example,
if we can store at most k state vectors in memory (i.e., kM floating point numbers) and we solve the
dynamic optimization problem (1.1) using the checkpointing strategy described in [10] with & checkpoints,
then Proposition 1 of [10] guarantees that the minimum number of additional state time steps required to
perform the backward pass of the adjoint equation is

w(N,k) :=7N - (k+1,7—-1) where B(s,t) := (S +t>

S

and 7 is the unique integer satisfying 5(k,7—1) < N < (k, 7). This cost is compounded when higher-order
derivatives are required.

1.2. Randomized sketching for dynamic optimization. In contrast to checkpointing methods,
our sketching methods can achieve O(N) computation with O(N + M) storage, where the constant hidden
by the big-O notation depends on the rank of the state matrix. Indeed, our methods solve the state equation
only once at each iterate. The sketching method is simple and easy to integrate into existing codes: 1)
compute the sketch while solving the state equation by forming a random projection, 2) reconstruct the
approximate state via simple linear algebra, and 3) use the low-rank approximation in place of the state
throughout the remainder of the computation; for example, to solve the adjoint equation and compute
an approximate gradient. Under standard assumptions, we can quantify the effect of these approximate
gradients on the quality of the approximate solution to the dynamic optimization problem (1.1). We also
develop a trust-region algorithm to solve (1.1) that ensures convergence by adaptively choosing the rank.

1.3. Outline. We first introduce notation and describe the problem formulation. We then introduce a
sketching methods for matrix approximation and analyze the error committed when solving (1.1) with a fixed-
rank sketch. Subsequently, we introduce an adaptive-rank trust-region algorithm and discuss its convergence.
We verify our assumptions for a class of optimal control problems constrained by linear parabolic partial
differential equations (PDE). We provide numerical results for this class of problems as well as for a class of
flow control problems for which the assumptions have not been verified.

2. Problem formulation. To begin, we introduce notation for the dynamic optimization problem.
We consider the control vectors z,, and the state vectors u,, to be column vectors and collect the control and

2

is manuscript is for review purposes only.
This manuscript is for review purp omnly

90

91

92
93

94

95
96
97
98
99
100
101

105
106
107
108
109

110

112

113
114
115
116
117
118

119

120
121

state trajectories into the stacked column vectors

Z u;
, 2, €R™ VYn=1..N, and U=| : |, u,eRY vn=1..N
ZN uy
We denote the feasible sets of control and state vectors by 3 := R™V and Y := RMN_ Moreover, we consider
the family of coordinate projections p,, : RM x R™ — RM x RM x R™ defined by

p1(U,Z) := (ug,uy,21) and (U, 2Z) == (uy_1,u,2,), n=2,...,N,

where the initial state ug is given. Other choices of the projection mappings {p,, } result in different orderings
of the trajectory. These model, e.g., delays in the dynamics or different time stepping schemes. Throughout
the paper, all norms || - || are Euclidean (for matrices, Frobenius) unless stated otherwise. For later results,
we will require the weighted norms [|v]|3 = v Av for v € R® where A € R**¢ is a symmetric positive
definite matrix. In addition, we denote the singular values of a matrix B € RM*¥ by ¢, (B) = 01(B) <
< Omin(ur,N)(B) = Omax(B).

Using this notation, we can represent the dynamic constraint and objective as the functions

C1 0Pp1 N
¢(U,Z) := : (U,Z2) and f(U,Z):=) fuopa(U,2),

CN ©DN n=1

where c: U x 3 — $land f: 4 X 3 — R and we can rewrite the dynamic optimization problem (1.1) as

minimize f(U,Z)
(2.1) U€, Z€3
subject to ¢(U,Z) = 0.

2.1. Assumptions and the reduced problem. Throughout this paper, we will assume that f and ¢
are continuously differentiable on i x 3. In general, we denote by d; the partial derivative of a function with
respect to its i'" argument. We assume that the state Jacobian of the constraint, d;c(U, Z) has a bounded
inverse for all controls Z € 3 and that there exists a control-to-state map S : 3 — U such that for any control
Z c 3, U := S(Z) is the unique state trajectory that satisfies the dynamic constraint,

c(U,Z) =0.
Note that the unique state trajectory U = S(Z) has the form
S1(ug,z1)
S(Z) = SQ(Sl(uo',Zl),ZQ)
SN (Sy_1(er e 7n1),2)
where @, = S, (Qy—1,2n) € RM denotes the unique solution to
cn(Up—1,0p,2,) =0 Vn=1,...,N.

Under these assumptions, the Implicit Function Theorem (cf. [15, Th. 1.41]) ensures that the operators S,
and S are continuously differentiable. In addition, if ¢ has continuous ¢*"-order derivatives for £ € N, then
S, and S are /*M-order continuously differentiable. Using the control-to-state map S, we can reformulate
(2.1) as the reduced dynamic optimization problem

inimi F(Z):= f(S(Z2),2)}.
(2.2) minimize {F(Z) := f(3(Z),2%)}
Our goal is to solve the reduced dynamic optimization problem (2.2) efficiently. This reduced formulation is

helpful when the problem size, and therefore the memory required to store the state, is large.
3

This manuscript is for review purposes only.

122
123
124
125
126

130
131
132

144
145
146

147

148

149

150

2.2. Gradient computation and adjoints. We focus on derivative-based optimization approaches
to solving the dynamic optimization problem (2.2). These require computing first-order and (if possible)
second-order derivative information. To compute the gradient of the reduced objective function F', we employ
the adjoint approach [15], which results from an application of the chain rule to the implicitly defined reduced
objective function F. In particular, the variation of F' in the direction V € 3 is given by

(VF(Z),V)3 = (d1f(S(2).2), S"(Z)V)u + (d2f(S(Z), Z), V)3,
= (S"(Z)"d1f(S(Z),Z) + d2f(S(Z). Z), V)3,

where S’(Z) denotes the derivative of the control-to-state map S at Z and S’(Z)* its adjoint. Here, (-,)3 and
(-,)y denote inner products on 3 and i, respectively. The Implicit Function Theorem ensure that S’(Z)V
satisfies the linear system of equations

(2.3) d1c(S(Z), 2)S"(Z)V + dsc(S(Z), Z)V = 0.

By the assumption that the state Jacobian of the constraint, dic(S(Z),Z), has a bounded inverse for all
control Z € 3, we have that (2.3) has a unique solution given by

$'(Z) = ~(c1e(S(2), Z)) " duc(S(Z), Z).
Therefore, the adjoint of the derivative of the control-to-state map is given by
S'(Z)" = —(d2c(S(Z), Z))" (d1c(5(2), Z)) ™.
Substituting this expression into (2.2) yields the gradient
VF(Z) = (d2¢(S(2), Z))"A + d2 £ (S(Z), Z),
where the adjoint, A = A(Z) € 4, is the unique trajectory that solves the adjoint equation:
(2.4) (d1c(S(2), Z))"A = —d1 f(S(2), Z).

This discussion gives rise to Algorithm 2.1 for computing gradients of the reduced objective function F'.

Algorithm 2.1 Compute gradient using adjoints.

Input: Control Z
Output: Gradient of reduced objective function VF(Z)
1: function GRADIENT(Z)
Solve the state equation, c¢(U,Z) = 0 and denote the solution U
Solve the adjoint equation, (d;c(U,Z))*A = —d; f(U, Z) and denote the solution A
Compute the gradient as VF(Z) = dof (U, Z) + (d2c(U, Z))*A
return VF(Z)

AR A o

Algorithm 2.1 hides the dynamic nature of the state and adjoint computations. In fact, we compute U
forward in time starting from u; to uy. In contrast, the adjoint equation is computed backward in time.
To see this, express the adjoint equation in terms of the N components f, and c,:

N
0=dif(S(2),Z) + (he(S(Z), 2)" A =Y di(fn 0Pn)(S(Z), Z) + (di(cn 0 p0)(S(Z), Z))" A

We can calculate partial derivatives of ¢, o p, and f,, o p,, using the chain rule. To this end, we have that

0 0

vlcn(unfla Up, Zn)

— Vlfn(llnfhumzn)
V2cn(un71,un7zn) and dl(fn opn)(U,Z) =

di(cn opn)(U,Z) = Vo fn(Un_1,p,2,)

is manuscript is for review purposes only.
This manuscript is for review purp mly

164
165
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

184

Hence, the adjoint equation reduces to the following system of equations for n =1,..., N,

(deen(Gn—1,TnN,2N)) AN = — dofy(Gn—1, TN, 2N),
(d2cn(ﬁn71a ﬁn» Zn))*An = - d2fn<ﬁn717 ﬁn; Zn) - dlfnJrl(ﬁ’ru ﬁn+17 Zn+1)
- dlanrl(ﬁna ﬁn+17 Zn+1)*>\n+1a
where 0, = Sn(ﬁll_l,zn) for n = 1,...,N. Here, information required for the solve flows backward in
time from Ax to Aj: in general, computing A, requires the state vectors ti,,—1, G, and T,4+1. The most
straightforward computational approach is to solve the state equation and store the full state trajectory

before computing the adjoint. The adjoint vectors A, are used to form the gradient vector g, at the ntP
time step as

gn = d3fn(un—17unazn) + (d3cn(un—17 Up, Zn))*An

The data dependency of the gradient computation is shown in Figure 1 for N = 5. The dependencies of
the green nodes (state) flow forward, while the dependencies of the red nodes (adjoint) flow backward. The
target nodes of the computation are the gradient vectors g,. Both the state U and adjoint A are intermediate

Figure 1: Data dependency between computations.

IXIX XX
| A

variables used to compute the gradient VF(Z), and both require M N storage. The control requires only
mN storage, which is often much smaller in practical applications, i.e., M > m.

3. Low-memory matrix approximation. Our method forms a low-memory approximation to the
state matrix in order to solve the dynamic optimization problem without storing or recomputing the state
matrix. In this section, we describe this approximation in detail. Given a fixed storage budget, in a single
pass column-by-column over the matrix, the method collects information about the matrix from which the
matrix can be accurately reconstructed. This information is called a sketch of the matrix. The approach
we adopt in this paper uses a random projection of the matrix to compute the sketch. This approach has
been studied extensively in the numerical analysis and theoretical computer science communities, and many
different methods are available [5, 6, 12, 24, 29, 30, 31, 34, 35]. When the state space itself has tensor
product structure, a tensor sketch that respects that structure can further reduce memory requirements [26].

Consider a matrix A € RM*N and a target rank parameter r. Each of these methods produces a
low-rank matrix approximation A that is (in expectation) not much farther from A than the best rank-r
approximation, using O(r(M + N)) storage. For concreteness (and for use in our numerical experiments),
we describe the method developed in [31].

Define the sketch parameters r < k < s. The quality of the approximation, and also the storage required
for the sketch, increases with these parameters. In this paper, we choose k£ := 2r + 1 and s := 2k + 1, and
adjust the target rank parameter r to obtain satisfactory performance. To define the sketch, fix four random
linear dimension reduction maps (DRMs) with iid standard normal entries:

Y e RF*M and Qe RV,

®cRM and W e RV,
5

is manuscript is for review purposes only.
This manuscript is for review purp omnly

Note that other random ensembles work similarly; see [31]. The sketch of the target matrix A consists of

X :=TA € RF*V, the range sketch;
Y = AQ* € RMXF the co-range sketch;
Z = ®AT* ¢ R°*%, the core sketch.
Roughly speaking, the range sketch X captures the row space (top left singular vectors) of A; the co-range

sketch Y captures the column space (top right singular vectors); and the core sketch Z captures their
interactions (singular values). Linearity of the sketch allows us to compute it without storing the full matrix

A. Suppose A = [a;---ay] is presented column by column. Then, we can compute the range sketch
X = X®) by the recursion
(3.1) X® =0, XO=X0Y4yrae, i=1,...,N,

where e; is the i*" unit vector, and similarly for the co-range sketch Y and core sketch Z.
Sketch object. We use {A}, to denote an object of the sketch class, which contains the sketch parameters
k, s, the dimension reduction maps Y, €2, ®, ¥, and the range, co-range, and core sketches X,Y, Z.
Storage. The sketch matrices X, Y, and Z can be stored using k(M + N) + s? floating point numbers.
Hence the memory required to store a sketch object with target rank parameter r is O(r(M + N)+7r?). When
storage is limited, the DRMs can be regenerated on the fly from a random seed or generated from a random
ensemble with lower storage requirements [26, 27], so we omit the DRMs from our storage calculation.

3.1. Reconstruction. We can reconstruct a low-rank approximation from the sketch. To reconstruct,
compute the thin QR factorizations of X* and Y,

X*=:PR; where P eRV*F:

3.2
(3:2) Y =: QR; where Qe RM*¥,

Use the core sketch Z to compute a core approximation by solving two small least-squares problems
(3.3) C:= (®Q)'Z((¥P)")* € RF*F,
Then compute a rank-k approximation of the target matrix A as

(3.4) {A}}, = QCP".

This approximation can be truncated to rank r by replacing C € R**® by its best rank-r approximation.

For use in the dynamic optimization problem, after reconstruction we store the low-rank factors of the
approximation, Q € RM** and W = CP* € R**¥in the sketch object {A},. (To reduce storage further,
one can overwrite X and Y with Q and W). From these, we can reconstruct the j'! column (the state at the
7' time step) as needed, via {{A}},[;, 5] = QW][:, j]. Each of these operations uses storage proportional to
k(M + N), so the total storage complexity to approximate A € RM*¥ (in factored form) is O(k(M + N)).
We summarize the sketch class and its methods in Algorithm A.1 in Appendix A.

Sketching provides a tractable way to control the relative error in approximation by varying the target
rank parameter 7, since the error tends to zero as r increases. We state the reconstruction error bound estab-
lished in [31] and a useful lemma that shows any fixed error tolerance can be achieved by an approximation
with sufficiently large r. For use in these results, the j¥ tail energy of a matrix A is defined by

5(A):= min [|A—B| = (Zafw)%.

B Rank(B)<; =7

THEOREM 3.1 (Reconstruction Error [31]). Let A € RM*N be a matriz and let r be the target rank
parameter. Choose sketch parameters k = 2r+1 and s = 2k +1. Compute range, co-range and core sketches
(X,Y,Z) according to (3.1). The low-rank approzimation {{A}}, computed in (3.2)-(3.4) satisfies

E[A - {{A} | < V6 711(A).
6

This manuscript is for review purposes only.

238
239
240
241
242
243
244

This result shows that the rank-k approximation to A computed by sketching is only a constant factor
farther from A than the best rank-r approximation. It is also possible to obtain an unbiased estimate of the
error in approximation, ||A — {{A}},||, in one streaming pass over the target matrix A; see [31] for details.
In the following sections, we state several bounds on the expected error of various quantities. Notice that
these all yield high probability bounds using the following result.

LEMMA 3.2. For any A € RMXN qand for all §,e > 0, there exists a rank r(6,¢) such that for any
r > r(d,€), the sketching approzimation error is bounded by € with probability ¢ :

Prob(||A — {A}}, | =€) <4.

Proof. Observe that for any target matrix A € RM*N 7 (A) > ... > Tmin{M,N}(A) = 0. Therefore
for any ¢ and e, there is some rank r such that E ||A — {{A}},|| < de. Combining this fact with Markov’s

inequality yields the desired bound. |

4. Randomized sketching for dynamic optimization. This section presents our limited-memory
algorithm to solve the dynamic optimization problem (2.2). Any first-order optimization method relies on
the gradient of the objective function, so we begin with a discussion of how to compute a limited-memory
approximate gradient in Subsection 4.1. We also discuss how the same approach can be extended to apply
the Hessian to a vector using limited memory. This enables usage of second-order methods. We next
quantify the error in the approximate gradient. To quantify this error, we rely on regularity assumptions
detailed in Subsection 4.2. This analysis undergirds our results on the optimization algorithms presented
in the next two subsections. In Subsection 4.3, we present our first approach that considers computing the
gradient using a fixed-rank sketch. This method has the advantage that it uses a fixed storage budget.
However, for this method to work well, the state corresponding to any control must be well approximated
by a fixed-rank sketch whose rank is known in advance. In Subsection 4.4, we present our second approach,
an adaptive method that updates the sketch rank to control the error in the gradient. We obtain a provably
convergent optimization method by using this adaptive approach to compute the gradient within a trust-
region algorithm. Unlike the fixed-rank method this approach does not require a rank estimate a priori.
However, this approach has the disadvantage that the storage budget required is dictated by the progress of
the optimization algorithm and is not known a priori.

4.1. Computing first- and second-order information with limited memory. To compute the
gradient and to apply the Hessian with limited memory, we can sketch the state while solving the state
equation, ¢(U,Z) = 0. Upon solving the adjoint equation, we reconstruct from the sketch to compute an
approximate state. This allows us to compute an approximate gradient based on the approximate state.

4.1.1. Solving the state equation. Fix the target rank parameter r. To set notation, denote
by mat(U, M, N) the state vectors at different time steps u,, collected into a matrix, mat(U, M, N) :=
[u; -+ uy] € RMXN With some abuse of notation, we define the approximate state to be the low-rank
approximation reconstructed via sketching the state matrix {{U}}, = {{mat(U, M, N)}},. Since the state
matrix is computed forward in time starting from u; to uy, we can simultaneously update the sketch
matrices X,Y and Z using the CoLuMNUPDATE! function of the sketch class Algorithm A.1. The reduced
objective function can be simultaneously exactly evaluated in this procedure. This method is presented as
Algorithm 4.1. Here the notation Funct1on!() denotes a method that can modify its arguments or associated
class. In the context of the approximate state, we shall refer to ¢(U, Z) as the state residual.

4.1.2. Computing an approximate gradient from the sketched state. Recall that variables
with bars denote exact solutions to the state or adjoint equation, while variables with hats are approximate
solutions: fixing the control Z, the true adjoint A solves the adjoint equation (2.4) at the true state U, while
the approximate adjoint A, solves the adjoint equation (2.4) at the sketched state U, = {Uy,:

(d1e(U,, Z))*A, = —d1 f(U,, Z).
By analogy with the state residual ¢(U, Z), define the adjoint residual at (A, U,Z) € 4 x il x 3 as

h(A,U,Z) :=dy f(U, Z) + (d1¢(U, Z))*A.
7

is manuscript is for review purposes only.
This manuscript is for review purp omnly

Algorithm 4.1 Solve state equation and compute exact objective function value.

Input: A controliterate Z € R™*¥ sketch object {U}, for state and sketch rank parameter r < min{M, N}

Output: Updated sketch object {U}, and reduced objective function value F(Z)

Storage: O(r(M + N)+ mN)

1: function Sorvestate! ({U},, Z)

(uold, F) < (uo, 0)

for n < 1to N do
Solve ¢, (Uold, Unew, Zn) = 0 for Upeyw Solve nt! state equation
F <« F + fn(Uold, Unew, Zn) Update objective function value
{U},.CoLUMNUPDATE! (Upew, 1) Update sketch with n'h column of state
Uold < Upew

»

return F'

The adjoint residual evaluated at arguments (A, U, Z) is zero when A solves the adjoint equation (2.4) for
any control Z and state U. Consider in particular the special cases of this equality using the true state
h(A,U,Z) = 0 and using the sketched state h(A,, U,.,Z) = 0. For arbitrary A, U and Z, we define the map
g:UxUXx3I—3as

g(A,U,Z) :=do f(U,Z) + (doc(U, Z))*A.
This function computes the gradient at Z when we use the true state U and true adjoint A:
9(A,U,Z) =do f(U,Z) + (d2c(U, Z))*A = VF(Z).
On the other hand, the function g can approximate the gradient using the sketched variables as
9:(Z) == 9(A,, U, Z).

Algorithm 4.2 describes a backward-in-time procedure for computing a limited-memory approximate gra-
dient g,-(Z) from the sketched state U,. One can also use the sketching method to compute second-order
information with limited storage. Matrix-free second-order optimization methods such as Krylov-Newton
methods require only the application of the Hessian to a vector: for an arbitrary vector V € 3, we must com-
pute V2F(Z)V. Using the chain rule, we can apply the Hessian to V by first computing the state sensitivity
W = S(Z)V € 4 (i.e., the solution to (2.3)) and then the adjoint sensitivity P := A’(Z)V € il. The state
sensitivity is computed forward in time, while the adjoint sensitivity is computed backward in time. We can
control the storage footprint for these operations by sketching the state, adjoint, and state sensitivity. Algo-
rithms A.3 to A.6 detail the steps required to apply the Hessian with storage O((r; +r2+73)(M +N)+mN)
for rank parameters rq,r2, 73 < min{M, N'}.

4.2. Regularity assumptions. Throughout the remainder of the paper, we make the following regu-
larity assumptions. These assumptions allow us to develop provable guarantees on the optimization error in
the algorithms presented in the next two subsections. These conditions are adapted from [36].

ASSUMPTION 1. Assume that the following conditions hold for the dynamic optimization problem (2.2).

1. The set of states corresponding to controls in an open and bounded set 39 C 3 is bounded: there

exists g C U open and bounded such that {U € | IZ € 3y, ¢(U,Z) =0} C .
2. There exist singular value thresholds 0 < o9 < 01 < 00 such that for any U € Uy and Z € 39, the

state Jacobian matriz d1c(U,Z) satisfies 09 < omin(d1¢(U,Z)) < 0max(di1c(U,Z)) < oy.
3. The following functions are Lipschitz continuous on g X 3¢ with respect to their first arguments:

(a) The state Jacobian of the constraint, dic(U,Z);

(b) The control Jacobian of the constraint, d2c(U, Z);

(c) The state gradient of the objective function, di f(U,Z);

(d) The control gradient of the objective function, dof(U,Z).

8

is manuscript is for review purposes only.
This manuscript is for review purp omnly

Algorithm 4.2 Compute gradient from sketched state.

Input: A control iterate Z € R™*" and sketch object {U}, for state
Output: Approximate gradient g = ¢,(Z) ~ VF(Z)
Storage: O(r(M + N)+ mN)

1: function GrapientT({U},, Z)

2:
3:

10:

11:

12:
13:

(UWeurrs Unext) < ({U},.CoLumn(N — 1), {U},.Corumn(N))
Solve the adjoint equation at index N for Apext,

(dQCN (ucurr7 Unpext, ZN))*Anext = d2fN (ucurr7 Upext, ZN)
Compute gradient at index N,
gN — d3fN (ucurra Upext ZN) + (dBCN (ucurra Upext ZN))*Anext

forn<+ N—-1to1ldo

if n =1 then
Uprev < Up
else

Uprev < {U},.CoLuMn(n — 1))

Solve the adjoint equation at index n for Acurr,

(dZCn(upreV7 Ucurr, zn))*)‘curr = d2fn(uprev; Ucurr, Zn) + dlfn+1 (ucurra Unpext, Zn+1)

- (d 1Cn+1 (ucurra Unext Zn+1))* >\next
Compute gradient at index n,
gn < d3fn(uprevu Ucurr, zn) + (d3cn (uprevv Ucurr, Zn))*Acurr

(unext7 Ucurr; Anext) — (ucurra uprev7 Acurr)

return g = [g1,...,gn]

These assumptions are often satisfied in applications. For example, we show in Section 5 that they hold for

optimal control problems with parabolic PDE constraints.

4.3. A fixed-rank approach. A natural limited-memory algorithm to solve the dynamic optimization
problem (2.2) is to fix the sketch rank parameter r used to compute the gradient a priori. Algorithm 4.3
shows the steps involved in this method. The resulting approximate gradient can be used inside any first-
order optimization method to (approximately) solve the dynamic optimization problem (2.2). In this section,
we analyze the error of the resulting method and prove a useful stopping criterion under Assumption 1.

Algorithm 4.3 Fixed-rank algorithm for approximate gradient.

Input: A control iterate Z € R™*" and rank parameter r < min{M, N}.
Output: Approximate gradient g,(Z)
Storage: O(r(M + N)+ mN)

1: function FIXEDRANKGRADIENT(Z)

2:

{U}, < SkeTcH(M, N,rank = r)

F + Sorvestate! ({U},., Z) Solve state equation
{U},.RECONSTRUCT! () Reconstruct low rank factors
g < Gradient({U},, Z) Compute gradient

return g

PROPOSITION 4.1. Suppose Assumption 1 holds for a bounded control set 3¢. Then there exists kg, k1 >

9

This manuscript is for review purposes only.

Initialize sketch object for state

314

316

317

0 such that the error in the state satisfies
(4.1) ko [[U =T < [|e(U,2)[| < k1 ||[U=-T|| VU € Yy, Z € 30,

where gy C 3 is defined in Assumption 1.1. Furthermore, the error in the adjoint is controlled by the adjoint
residual together with the state residual: for some ko > 0 and k3 > 0,

(4.2) A=Al < k2 llc(U,2)|| + k3 [|R(A, U, Z)| YU, A€y, VZE€ 3.
Hence, the error in the gradient is controlled by the adjoint and state residuals: for some kg > 0 and K5 > 0,

Remark 4.2. All constants in Proposition 4.1 depend only on finite quantities defined by Assumption 1.

Proof. The proof of this result is similar to the proofs of Propositions A.1-2 in [3@ To bound the error
in the state, recall that the state residual is zero when evaluated at the true state, ¢(U,Z) = 0. Therefore,

c(U,Z) =¢(U,Z) - ¢(U,Z) = /01 dic(U+t(U-1U),Z)- (U-1U)dt.
The error bound (4.1) then follows from Assumption 1.2 using ko = 09 and k1 = 1. Similarly we show the
bound on the adjoint error using the adjoint residual,
h(A,U,Z) = h(A,U,Z) — h(A,U,Z) = (d1c¢(U,Z))*(A — A),
together with the Cauchy-Schwarz inequality and Assumption 1.2 to see that
70]|A - &) < (A, 0.2)] < o0 A - &
We now bound the adjoint residual as

(A, U,2)|| < [M(A, U, Z)|| +||n(A, U, Z) — h(A, U, Z)||,

The bound (4.2) follows from the Lipschitz continuity of dic and d f, the boundedness of Iy x 3¢, and (4.1).
The proof of (4.3) is identical to the proof of Proposition A.2 in [36]. In particular, (4.3) follows from (4.1),
(4.2) and the assumed Lipschitz continuity of dac and do f. d

COROLLARY 4.3. Suppose Assumption 1 holds for a bounded control set 3¢. Fiz a control Z € 30 and
rank parameter r. Suppose the approzimate state U, = {U}}, isin 8y almost surely. Then the state residual
is bounded by the tail energy of the true state U on average:

E ||c(U,, Z)| < 261 741 (mat(T, M, N)).

Now recall the approximate adjoint KT solves the adjoint equation (2.4) at the approzimate state IAJT. Suppose
that A, € 3y almost surely. Then the error in the adjoints satisfies

(4.4) E|A, — A|| < 2k152 Try (mat (T, M, N)).
Finally, the approzimate gradient g,.(Z) = g(.//ir,ﬁr, Z) satisfies the error bound
(4.5) E | g.(Z) — VF(Z)| < 2K1k4 Try1(mat(U, M, N)).

Proof. This result is a direct consequence of Proposition 4.1 and Theorem 3.1.]

Corollary 4.3 suggests that we should choose the fixed rank parameter r so that the tail energy,
Tr41(mat(U, M, N)), is small. However, it can be difficult to choose a good fixed rank parameter in advance,
since the tail energy of the true state U depends on the control variable Z. Under stronger assumptions on
the reduced objective F', we can bound the distance from a given control to the optimum as a function of
the approximate gradient and the state residual. Both of these are easy to compute, and hence this result
can be used as a stopping criterion.

10

This manuscript is for review purposes only.

w
ot Ot Ot
N

360

385

363
364
365

366

381
382
383
384
385

386

THEOREM 4.4. Instate the assumptions of Corollary 4.3 for control Z € 3¢ and rank parameter r.
Additionally assume that the reduced objective function F' is strongly convex on 3¢ with parameter o > 0.
Let Z* € 3¢ denote the solution to the reduced dynamic optimization problem (2.2). Then

(4.6) al|Z=Z"|| < ralc(Ur,)| + lgr(Z)]] -

Proof. Using the strong convexity of F' and the optimality of Z*, the error in control is bounded above
by the gradient of the reduced objective function F' as

a||Z—-2*|]° < (VF(Z) - VF(Z"),Z - Z*)5 = (VF(Z),Z — Z*)3.
Applying the Cauchy-Schwarz inequality and employing (4.3) ensures that
al|Z =277 < IVF(Z) — go(Z) + 9+ (Z)|| < |[VF(Z) = g+(Z)|| + llgr(Z)| < 54 ||c(Ur, Z) || + [lgr(Z)] . DO

To use Theorem 4.4, run any optimization method using the approximate gradient g,(Z). Suppose the
method terminates after k iterations at control Z(*) so that ||g,(Z*)| < e. Theorem 4.4 shows that the
error in our optimal control is controlled by the state residual:

al|Z%) — Z¥|| < kal|e(U,, Z)|| + €.

4.4. An adaptive rank approach. In this section, we introduce an optimization algorithm, the
sketched trust-region method, that dynamically adjusts the sketching rank parameter used to compute the
approximate gradient. The rank is chosen to guarantee convergence to a stationary point of the dynamic
optimization problem (2.2). This algorithm relies on the trust-region framework [7], which converges despite
inexact first- and second-order information [14, 19, 20]. Unlike the fixed-rank method described in the
previous section, the sketched trust-region method is a complete limited-memory optimization recipe.

Let us describe the standard trust-region method and the conditions required for convergence in the
context of the dynamic optimization problem (2.2). Let Z*) be the control at the k' iteration, with
corresponding reduced objective function value f*) := F (Z(k)). The trust-region method approximates the
reduced objective function centered around Z*¥), v s F (Z(k) + v), by a quadratic model

1
mB @) = 19 + (g, 0)3 + S (HOw,v)s,

To find the next iterate, the trust-region method computes a step & which approximately® solves the trust-
region subproblem constrained by the trust-region radius A®):

(4.8) minimize m* (v)
’ subject to [Jv|| < A,
This step is accepted so long as the actual decrease in the objective function value is large enough relative
to the predicted decrease according to the model m*) . If the step is accepted and the actual reduction
exceeds a specified threshold, the trust-region radius A®) is increased. If the step is rejected we decrease
the trust-region radius.

To ensure global convergence of the trust-region method, the model used to form the trust-region sub-
problem must satisfy Assumption 2 [19].

AsSUMPTION 2 (Trust-region model).
I Formally, the algorithm computes a step ¥ that satisfies the fraction of Cauchy decrease condition [7],

(k)
*) (0) — m® (5) i 4 At M9
(4.7 m"(0) — m") (D) > keeqllg!™ || min {A T [0 [

for some Kkg.q > 0 independent of k. This condition is easy to achieve using, e.g., the Dogleg or truncated Conjugate Gradient
method to compute &.

11

This manuscript is for review purposes only.

409
410

111

112

1. The approzimate gradient g**) is close to the true gradient VF(Z(k)) in that it satisfies
(4.9) lg®) ~ VF(Z%)| < omin { @], A0}

for some fized 0 > 0 independent of k.
2. The approzimate Hessians H*) are bounded independent of k: there exists 7, > 0 such that

IH®|<m <o Vhk=1,2,....

We will show below how to ensure the first requirement with an approximate gradient g(*) := gr(Z(’“))
computed using the sketched state ﬁr with a sufficiently large rank parameter r. The second requirement is
easily ensured by setting H*) to be the identity, while we expect (and observe) faster convergence in practice
when H*) is the approximate Hessian. See Algorithm A.5, which shows how to apply the approximate
Hessian. Convergence is guaranteed regardless of the rank chosen for the Hessian approximation. We
suggest fixing this parameter to be the same as the rank parameter for the approximate gradient.

4.4.1. Choosing the rank to guarantee convergence. The sketched trust-region method sets g(¥) =
gT(Z(k)) for some rank r. Algorithm 4.4 ensures that r is chosen large enough that this approximate gradient
satisfies the error bound (4.9), as proved in the following lemma. The function p : N x [0,00) — N on line 9
of Algorithm 4.4 dictates how the rank r is increased and therefore is increasing in its first argument and
decreasing in its second. A simple choice would be wu(r,7) = 2r or p(r,7) =r + 1.

LEMMA 4.5. Instate Assumption 1. Compute the gradient approzimation ¢*) using the Adaptive Rank
Algorithm 4.4. Then g*) satisfies the gradient error bound (4.9) with = KaFgrad-

Proof. The adaptive-rank algorithm controls the error in the gradient approximation by increasing the
target rank parameter until the constraint residual satisfies

(4.10) e(Tr, Z®)|| < rgraa min { g (20, A®) .

A rank that satisfies (4.10) necessarily exists since the residual norm ||c(IAJT, ZM)|| — 0 as r — min{ M, N'}.
Therefore, Proposition 4.1 provides a bound on the error in the gradient approximation,

1 N S

Algorithm A.2 presents a function ResidualNorm that computes the Frobenius norm of the state residual.

9:(29) = VP(Z)| < s

c(ﬁr, Z(k)) H < K4Kgrad min {’

Algorithm 4.4 Adaptive-rank algorithm for approximate gradient.

Input: A control iterate Z € R™*¥ | initial rank estimate r, sketch object for state {U},., trust-region radius
A > 0, state residual tolerance Kgraq > 0, and rank update function g : N x [0,00) — N.
Output: Approximate gradient g,(Z) ~ VF(Z) for rank parameter r such that the bound (4.10) is satisfied.
Storage: O(r(M + N) + mN) for some rank parameter r < min{M, N}.
1: function ADAPTIVERANKGRADIENT(Z, 7, {U},)

2: repeat

3: {U},.ReconsTRUCT! () Reconstruct low-rank factors

4: rnorm < REs1DUALNORM({U},, Z) Compute norm of constraint residual
5: g < Gradient({U},,Z) Compute gradient

6: rtol <= Kgraa - min{||g||, A}. Compute residual tolerance

7 if rnorm < rtol then Gradient approximation satisfies (4.9)
8: return g

9: r + p(r,rtol) Increase rank parameter

10: {U}, + IniT1ALIZE! (M, N,rank = r) Initialize sketch object for state

11: F < sorLveSTaTE! ({U},, Z). Solve state equation

12: until » > min{M, N}

13: return g

12

is manuscript is for review purposes only.
This manuscript is for review purp omnly

427

428
429

430
131
132
433
134

135

436

4.4.2. Sketched trust-region algorithm. We present the resulting sketched trust-region algorithm
as Algorithm 4.5. To start the optimization we use an initial trust-region radius A(), initial rank param-
eter 79 and the initial control Z(®). The trust-region hyper-parameters of Algorithm 4.5 are the ratio of
reduction thresholds 0 < 1; < 73 < 1 and the trust-region radius update parameter v € (0,1). The func-
tion SoLVETRSUBPROBLEM computes the step ¥ that approximately solves the trust-region subproblem (4.8)
and satisfies the fraction of Cauchy decrease condition (4.7). Internally, SOLVETRSUBPROBLEM may use the
function APPLYFIXEDRANKHESSIAN (see Algorithm A.5) to apply the fixed-rank Hessian approximation. To
validate the trust-region step, we compare the actual and predicted reductions,

ared® .= F(Z®) — F(Z® +5) and pred®™ := m®(0) — m® (o).

We accept the step if their ratio is greater than the threshold n;. The predicted reduction can be readily
computed as the model m(¥) is known. The actual reduction requires us to solve the state and evaluate the
reduced objective function at the control candidate Z(*) + . The sketched trust-region method sketches
the state at Z(*) + & while computing the actual reduction so that (if the step is accepted) the approximate
gradient can be computed using the sketch without solving the state equation again. The following theorem

Algorithm 4.5 Sketched trust-region algorithm

Input: Initial control Z(©), trust-region radius A target rank parameter 7o,
and trust-region hyper parameter set P = {n1,72,7}
Output: Control iterate Z¥) such that the stopping criterion is satisfied
1: function SKETCHEDTRUSTREGION(Z(), A©) 1y P)

2: {U}, < IniTIALIZE! (M, N,rank = ro) Initialize state sketch
3: F < sorveState! ({U},, Z") Sketch state and evaluate objective
4: 4T Set sketch rank
5: while “Not Converged” do
6: (g*®),r) « ApaPTTVERANKGRADIENT(Z®) 7 {U},) Approximate gradient
7 (7, pred®) «— SoLvETRSuBPROBLEM(g(*), A(K)) Compute trial step
8: {U}, < InrTiaLIZE! (M, N,rank = r) Reinitialize state sketch
9: f*+D) < soLvestate! ({U},, 2 + o) Compute new objective function value
10: pF) = (f*) — f(kH))/pred(k) Compute ratio of reduction
11: if p(*) > 1, then Validate step using ratio of reduction
12: Z0+) =70 4 p
13: else
14: VAGRIEY AR
15: if p(*) > 1, then Update trust-region radius
16: AR € [APR) | o0)
17: else if p(k) < m; then
15 A € (0,57
19: else
20, A € [y]3], A®)

shows that the sequence of iterates {Z(k)} generated by Algorithm 4.5 converges to a stationary point of the
reduced objective function F'.

THEOREM 4.6 (Convergence of the sketched trust-region algorithm). Instate Assumption 1, and further
suppose that the reduced objective function F is bounded below and twice continuously differentiable with
locally uniformly bounded Hessian: for any bounded convex set 3¢ C 3, there exists g > 0 such that

HVQF(Z)H <19< o0 VZE€ 3.

Suppose that the iterates Z*) generated by Algorithm 4.5 lie in the open, bounded and convex set 3o C 3 for
all k. Then, the sequence of iterates {Z®} satisfies

lim inf |g¥|| = lim inf |[VF(Z®)|| = 0.
k—oo k— o0

13

is manuscript is for review purposes only.
This manuscript is for review purp omnly

437
438
439

140
441
442
443

444
445
446
447
148
449
450
451
452

NN
[ERSIS;
ot =

S C

458
459
460

461

462

463

464

165

466

467
468

469

470

Proof. Notice that the trust-region model used by Algorithm 4.5 satisfies Assumption 2. Therefore, the
proof of this result follows from the convergence analysis for the inexact trust-region method in [19] with
only a slight modification to account for the local assumptions associated with 3.]

Remark 4.7. The assumption that F' is twice continuously differentiable can be relaxed to the require-
ment that F is continuously differentiable with Lipschitz continuous gradient. In this case, the proof of
Theorem 4.6 is virtually identical to the proof in [19]; however, the proofs of Lemmas A.2 and A.3 in [19]
must be updated accordingly.

5. Optimal control of linear parabolic PDEs. In this section, we introduce a class of linear
parabolic optimal control problems and discuss how to discretize them to obtain a problem of the form
(2.1) that satisfies Assumption 1 and the inexact gradient condition (4.9). Let © C R¢ be an open, con-
nected, and bounded set and let I' C Q U 92 where 02 denotes the boundary of 2. The set I" is the spatial
support of the control function and permits both boundary and volumetric controls. The state is supported
on the space-time cylinder Qp := (0,7) x © and the control is supported on I'r := (0,7) x I" for T" > 0.
We denote by H'(£2) the usual Sobolev space of L?(Q)-functions with weak derivatives in L?(Q2) and let
V C HY(Q) be a separable Hilbert space such that V is continuously and densely embedded into L?()
(typically, V = H*(Q2) or V = H}(Q)). Furthermore, we assume that I' is sufficiently regular so that

vH/gdeeV* Vg€ L*(I),
r

where V* denotes the topological dual space of V.
Let L(t) : V — V* denote a second-order linear elliptic partial differential operator for ¢ € [0,T]. For
example, L(t) could represent the weak form of the advection-reaction-diffusion operator

(5.1) ur {=V - (A(t,)Vu) + b(t,) - Vu + c(t, -)u},

where A : Qp — R%*? is the diffusivity tensor, b : Q7 — R? is an advection field, and ¢ : Q7 — R is a reaction
coefficient. Here, V refers to the derivative with respect to . To guarantee the existence of solutions, we
assume that the linear operator £ is uniformly bounded and uniformly coercive, which we define below.

DEFINITION 5.1. The operator L is uniformly bounded if for some g9 > 0 independent of t € [0,T],
(L) u,v)v= v <eollullvivly Yu,veV,
for almost all (a.a.) t € [0,T]. Moreover, L is uniformly coercive if for some g1 > 0 independent of t € [0,T],
eflollfy < (Lt 0)v-v Yo eV,

for a.a. t € [0,T]. Here, (-,-)y~ v denotes the duality pairing between V* and V.

In addition to uniformly bounded and coercive, we assume that ¢t — (L(t)u,v)y- v is measurable for all
u,v €V, B € L?*0,T;V*) is a forcing term, and ug € L*(Q) is the initial state. We consider the optimal
control problem

(5.2a) minimize{ / / (u —w)*dadt + — / /z dxdt}

subject to uw € W(0,T), z€ L*(T'r)

/ N Jvdz + ([L(@&)u](t,), v)v v = (B(t),v)v= v + / z(t,-)vdx a.a.te€l0,T], VoeV

r
,x) = ug(x) a.a. x €),

(5.2b)

where a > 0 is the control penalty parameter, w € L?(27) is the desired state, and
W(0,T):={v:Qr =R |veL*0,T;V) and dv/dt € L*(0,T;V*)}

is the solution space for (5.2b). In fact, under the stated assumptions, (5.2b) has a unique solution in W (0, T')
for any 2z € L?(T'r) (cf. [15, Th. 1.35]).

14

This manuscript is for review purposes only.

477
478
479
4180
481
482
483
484

485
486

487
488

489

493

194

495

5.1. Discretization. To obtain a finite-dimensional approximation of (5.2), we discretize the PDE
(5.2b) using Galerkin finite elements in space and implicit Euler in time. The subsequent results also hold
for other time discretizations including Crank-Nicolson or explicit Euler. We partition the time interval
[0,T] into N subintervals (¢,,_1,t,) with 0 =ty < t; < ... < tn_1 < txy =T and denote the finite-element
approximation space for the state by Vay C V where M is the dimension of Vj;. We further denote by
Zm C L2(T) the control approximation space where m is the dimension of Z,,. Using these spaces, we
can write the discretized state equation as: for fixed 2, , € Z,, with n = 1,..., N, find up,, € Vi with
n=1,..., N such that up o = uo where ty € Vs is an approximation of ug and

/UM’nUd.’IJ‘i‘(Stn([:(tn)uM,nyU)V*,V:/
Q

UM n—10dx + 0t (B(tn), V)v+ v + 5tn/ Zmavdz Yov e Vi,
Q r

where dt,, 1= t, — t,_1. Given bases {¢;}M, and {¢;}™, of Vis and Z,,, respectively, we can rewrite the

discretized PDE as the linear system of equations: given z, € R™ forn =1,..., N, find u,, € R™ such that
(5.3) cn(Up_1,4y,2,) = (M + 0t, K,)u, — Mu,,_1 — ét,b, — 6t,Bz, =0, n=1,..., N,
where

[M];; 1:/Q¢j¢id1177 Knlij := (L(tn)dj, di)v=v, [Bli 3:/F1/)j¢id$, and [by]; = (B(tn), ¢j)v=,v-

With this notation, the discretized version of (5.2a) is

N
o1 .
(5.4) minimize o nz_:l 5ty {(u, — w,) M(u, —w,) + azIRzn} subject to (5.3),
where we have approximated the temporal integral in the objective function using the right endpoint rule,
w,, € RM are the coefficients associated with an approximation of w(t,,-) in Va7, and

(R} Z/F%%d%

The assumptions on £ and the choice of discretization ensure that (M + 6t,K,,) is invertible for all n =
1,...,N and therefore Assumption 1.2 is satisfied. In addition, since the dynamic constraint in (5.4) is
linear in the state and control variables, and the objective function in (5.4) is quadratic, Assumption 1.3 is
satisfied. Finally, since the matrices (M + 6¢,K,,) are invertible and the constraint is linear, the dynamic
constraint has a unique solution that depends linearly on the control Z € 3. Therefore, Assumption 1.1
holds for any bounded set of controls. To verify (4.9), we employ stability estimates for (5.3).

5.2. Stability estimates. The linearity of (5.2b) and the uniform coercivity of £ provide numerous
convenient properties associated with the discretized PDE (5.3). In this section, we use these properties to
ensure that the required assumptions for our sketching algorithm are satisfied. We first have the following
error bound associated with the discretized state equation (5.3).

THEOREM 5.2. Let U € U denote the solution to (5.3) for fived control Z € 3 and let U € i be arbitrary.
Then, the following bound holds

n
u, — @)l < (14 0tpwer) {||u0 —Tollm + Y ||ci(ui1,ui,zl-)||M_1} , n=1,...,N,
i=1

where W, and u,, are the n'* subvectors in U and U, respectively, and w > 0 is the embedding constant
associated with V — L*(12).

Proof. First, we write ¢, (W,_1, Uy, 2,) " (W, —1,) in the form of (5.1). To this end, let UM, UMn € Vi
denote the functions

M M
Unrn = [Onlig and uprn =Y [un]igs,
i=1 =1

15

This manuscript is for review purposes only.

ot
at

516

517
518
519
520

536

546

547
548

549

(S0
S0
o

ot
ot
no

respectively, and 7, = (uar,n, — Unr,n). Then we have that ¢, (up—_1, Uy, z,)" (u, — 1,) is equal to

UM, n—1Tn dx — 6tn <ﬁ(tn)a 77n>V*,V - 6tn / Zm,nTn dz

/'U/M,nnn dx+6tn<£(tn)uM,nann>V*7V _/
Q T

Q

:/nidx+6tn<£(tn)nnann>V*,V_/nn—lnndxv
Q Q

since @iz, solves (5.3). The Cauchy-Schwarz inequality, the continuous embedding of V into L?(Q2), and the
uniform coercivity of £ then ensure that

(1 + 6tnw£1)‘|un - l_lnHM S ||cn(un—17 u’rL)Zn)HM*l + Hun—l - 1_11'7,—1||M~
Repeated application of this inequality yields the desired bound. 0

Theorem 5.2 ensures that the lower bound in (4.1) holds for all Z € 3 and U € 4 (rather than only on
some bounded sets 3¢ and $lp). The upper bound in (4.1) follows due to the linearity of ¢, and holds again
for all Z € 3 and U € 4. Moreover, if U, is the sketched state, then Theorem 5.2 yields

n
W — Tl < (1 + Otpwer) Z llei(ri—1, Wi, 2) -1
i=1

Next, we demonstrate that the adjoint error bound (4.2) holds globally as well. To this end, we write the
adjoint equation associated with the discretized problem (5.4):

(5.5&) (M + 5tNKN)*)\N = —5tNM(uN — WN),

(5.5b) (M + 6t, Kp,)* A = M, 11 — 6t,M(u, —w,) for n=N-1,... 1

As before, we denote the solution to (5.5) with u,, replaced by @, for n = 1,...N by A. We have the
following useful stability estimate associated with (5.5) that bounds the error in the adjoint.

THEOREM 5.3. Let A € sl be the solution to the adjoint equation (5.5) associated with U € it and let
A, U € U be arbitrary. Then the following bound holds

N
An — Anllv < (1 + 5tnw51)1{ Z (M + 6t, K,)* Ay — M, 11 + 0t M(u,, — wy) || v

Jj=n
(5.6) +>\N5\N||M+6tn||unﬁn||M}, n=1,...,N,

where X, and X, denote the n' subvectors of A and A, respectively and w > 0 is the embedding constant
associated with V — L*(12).

Proof. Using similar notation as in the proof of Theorem 5.2, we can write adjoint residual evaluated at
A and U as

(57) /)\M,n”dm+5tn<£(tn)*)\M,n7'U>V*,V —/
Q

A n+1vde + 6ty / (unr,n — warn)vde,
Q

Q

for v € Vy where wys, € V) is the appropriate approximation of w. Evaluating this residual at A and U
returns zero. Let e, = (Aar,n — Anr,n) and 1, = (Unr,n — Uar,n). With this notation, (5.7) is equal to

/envdx+5tn<£(tn)*€naU>V*7V_/
Q

ent1vdr + 6tn/ Mo de.
Q Q

Set v = e,,. Then, applying the Cauchy-Schwarz inequality, and using the uniform coercivity of £ and the
continuous embedding of V' into L?(Q) yields

(1 + 6tnw51)||)\n - xnHM SH(M + 6tnKn)*An - MATH-I + 6tnM(un - Wn)HM—l
+ H>\n+1 - 5\n+1”M + 5tn||un - ﬁn”M

Repeated application of this bound proves the desired result. 0
16

This manuscript is for review purposes only.

ot Ot

ot = C

ot Ot

ot Ot

(=2

ot
ot
BN

DO OO OO GOt
© 00 9 O TR W= O O

[SLENNG, S, IS, BING) B, BING) BN, G, BING) SIEG) B, BIG) B
1

v Ov Ov Ot Ot Ot Ut Ot Ot

80

wt
oo

By Theorems 5.2 and 5.3, we see that the adjoint error bound (4.2) holds globally. In particular, let A,
denote the solution to (5.5) associated with the sketched state U,. Then Theorems 5.2 and 5.3 ensure that

n
||>\'r,n - XnHM S (1 + 6tnwgl)_15tn”ur,n - l_lnHM S (1 + 6tnw<€1)_25tn Z Hci<ur,i717ur,iyzi)”M*l'
i=1

Hence Algorithm 4.4 ensures that the inexact gradient condition (4.9) is satisfied.

6. Numerical examples. We demonstrate the effectiveness of the sketched trust-region algorithm on
two PDE-constrained optimization problems. We present one example, the optimal control of an advection-
reaction-diffusion equation, that satisfies the assumptions of the previous section, and therefore is guaranteed
to converge. We also present results on optimal flow control. This application is governed by the Navier-
Stokes equations for which it is difficult to verify the assumptions of our theory, and so our algorithm does
not necessarily admit guarantees for this problem. Nevertheless, we show remarkably good performance for
this application.

In the numerics, we compute the function ResidualNorm using a domain-specific weighted norm (instead
of the Frobenius norm) that respects the natural problem scaling. The guarantees of the method still hold:
since all norms are equivalent in finite-dimensional vector spaces, we can ensure the gradient error bound
(4.9) holds (with a different value of the parameter 6) using any norm to measure the state residual. In
addition, for both examples we set Kgraq = 1, A =10, 5, = 0.05, 72 = 0.9, and v = 0.25 in Algorithm 4.5.
We terminate the algorithm if the norm of the gradient is smaller than a prescribed tolerance gtol or when
it exceeds a set maximum number of iterations maxit.

6.1. Optimal control of an advection-reaction-diffusion equation. For this example, our goal
is to control the linear parabolic PDE (5.2b) where @ = (0,0.6) x (0,0.2), I' = Q, and L is given by (5.1)
with time-independent coefficients. In particular, the forcing term g is the characteristic function of the
intersection of the ball of radius 0.07 centered at (0.1,0.1)T with €, the diffusivity coefficient A = 0.11
where I € R4*? is the identity matrix, the reaction coefficient is ¢ = 1, and the advection field is given
by b(z) = (7.5 — 2.5z, 2.525) . We further supply (5.2b) with zero initial concentration uy = 0 and pure
Neumann boundary conditions (i.e., V = H!(Q)). Note that £ is constant in time and is uniformly coercive
since V-b=0in Q and b-n > 0 on 02 where n denotes the outward normal vector. Moreover, we set the
target state w = 1. Our optimization problem is then given by (5.2) with a = 10~*. We discretized (5.2b)
in space using Q1 finite elements on a uniform mesh of 60 x 20 quadrilateral elements. In time, we discretize
using Implicit Euler with 500 equal time steps. This discretization results in 1,281 x 500 = 640,500 degrees
of freedom. Moreover, the maximum possible rank of the state matrix is 500. Figure 2 depicts the tail
energy and sketching error averaged over 20 realizations for the uncontrolled and optimal states. Both the
tail energy and sketching error decay exponentially fast until saturating below O(10~!2).

We solved this problem using a Newton-based trust-region algorithm with fixed sketch rank and using
Algorithm 4.5 with the rank update function p(r,7) = max{r + 2, [(b —log7)/a]} where ¢ > 0 and b € R
are computed by fitting a linear model of the logarithm of the average sketching error as a function of the
rank for the uncontrolled state. For this problem, a = 2.6125, b = 2.4841, gtol = 107, and maxit = 20.
The final objective value, the iteration count, the number of function evaluations, the number of gradient
evaluations, the cumulative truncated conjugate gradient (CG) iteration count, and the compression factor

¢ defined to be
full storage 640,500

¢= reduced storage k(1,281 + 500) + s2

where k = 2r + 1, s = 2k + 1 for each rank parameter r from 1 to 5 are displayed in Table 1. Notice that
with rank 1 the algorithm did not converge, whereas the optimal objective function value is achieved up
to 6 digits with rank 2. This is likely due to inaccuracies in the gradient. For this problem, the rank-2
sketch requires roughly three times more CG iterations (which dominate the computational work) than the
full-storage algorithm; however, using the rank-2 sketch reduces the required memory by a factor of 70.96.

The iteration history of Algorithm 4.5 is listed in the top section of Table 2. For comparison, we have
also listed the iteration history for the full-storage algorithm in the bottom section of Table 2. We notice
that the sketched trust-region algorithm performs comparably to the full-storage algorithm, but reduces the

17

This manuscript is for review purposes only.

Uncontrolled Optimal

—»— Sketch Error
—e—Tail Energy

—»— Sketch Error
—e—Tail Energy

0 50 100 0 50 100
Rank Parameter r Rank Parameter r

Figure 2: The sketching error averaged over 20 realizations and the tail energy for the uncontrolled
state (left) and the optimal state (right) of the advection-reaction-diffusion example. Recall that
the rank of the sketch is k = 2r + 1.

602 required memory by a factor of (= 23.14 at the final iteration. It may be possible to further reduce the
memory burden by tuning the parameter kgraq or by employing a different rank update function f.

rank objective iteration nfval ngrad iterCG compression (

*1 | 5.544040e-4 20 21 11 196 118.79

2 | 5.528490e-4 5 6 6 151 70.96

3 | 5.528490e-4 4 5 5 78 50.46

4 | 5.528490e-4 4 5 5 67 38.08

5 | 5.528490e-4 4 5 5 59 31.83
Adaptive | 5.528490e-4 4 5 5 65 23.14
Full | 5.528490e-4 4 5 5 53 1.00

Table 1: Algorithmic performance summary for the advection-reaction-diffusion example for fixed
rank, adaptive rank and full storage: objective is the final objective function value, iteration is
the total number of iterations, nfval is the number of function evaluations, ngrad is the number
of gradient evaluations, iterCG is the total number of truncated CG iterations, and compression
¢ is the compression factor. *The rank 1 experiment terminated because it exceeded the maximum
number of iterations.

604 6.2. Optimal control of flow past a cylinder. For this example, we follow the problem set up in
605 [13] and consider fluid flow past a cylinder. The cylinder impedes the flow; our goal is to rotate the cylinder

06 to improve the flow rate. Formally, we let cylinder C' C R? denote the closed ball of radius R = 0.5 centered
607 at the origin xp = (0,0)7, define the domain D = (—15,45) x (—15,15) and let Toy = {45} x (—15,15)
608 denote the outflow boundary. We consider the optimal flow control problem

T
1
609 (6.1) rgggg{ggg} /0 {/ac (Reg;’ —pn) (2T — Vo) dz + gz(t)2} dt, a>0,
610 where the velocity and pressure pair (v, p) : [0,7] x D — R? x R solves the Navier-Stokes equations
0 1
611 (6.2a) & AVH(V-V)VEVp=0 in (0,7) x D\ C
ot Re
612 (6.2b) V-v=0 in (0,7)x D\ C
1 Ov
613 (62C) g% —pm =0 on (O,T) X Fout
614 (6.2d) V="V on (0,T) x 9D\ Touy
6lp (6.2e) v =2zT on (0,T) x 9C

18

This manuscript is for review purposes only.

617
618

619

620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

iter value gnorm snorm delta iterCG | rank rnorm

o 0 5.446e-2 5.990e-3 --— 1.000e+1 - 1 2.707e-4
= 1 1.375e-2 2.205e-3 1.000e+1 2.500e+1 1 1 1.990e-4
2, 2 1.475e-3 1.408e-4 2.499e+1 6.250e+1 5 5 6.700e-7
§ 3 b5.531e-4 6.431e-7 4.077e+l 1.563e+1 27 7 3.893e-9
4 5.528e-4 5.039e-9 1.059e+0 3.906e+2 32 7 1.508e-9

0 5.446e-2 5.989%e-3 --— 1.000e+1 - - -

o 1 1.375e-2 2.201e-3 1.000e+1 2.500e+1 1 - -
= 2 1.472e-3 1.40le-4 2.500e+1 6.250e+1 5 - -
R 3 b5.538e-4 1.36le-6 4.05le+l 1.563e+1 19 - -
4 5.528e-4 8.416e-9 2.178e+0 3.906e+2 28 - -

Table 2: The iteration histories for the adaptive rank (top) and full storage (bottom) algorithms:
iter is the iteration number, value is the objective function value, gnorm is the norm of the
gradient, snorm is the norm of the step, delta is the trust-region radius, iterCG is the number of
truncated CG iterations, rank is the rank of the sketch, and rnorm is the maximum residual norm
associated with the sketched state. In the adaptive rank algorithm, the rank is updated using the
rank update function p(r, 7) if the maximum residual norm exceeds the prescribed tolerance.

with appropriately specified initial conditions on v and p. In (6.2), n is the outward normal vector on T'oy,

T is the tangent vector

r(a) = { 0 é](m—xo), x € dc,

and Re is the Reynold’s number. Problem (6.1) minimizes the power required to overcome the drag on C.
See [13, p. 87] for a comprehensive physical interpretation of this problem. The control action z defined in
(6.2¢) is the angular velocity of the cylinder. The vector v, := (1,0)T is the freestream velocity profile
and the boundary condition (6.2c) is stress-free. Similar to [13], we generate initial conditions for (6.2) by
simulating (6.2) on the time interval (—Tp,0) for some Ty > 0 starting with v(—Tp,+) and p(—Tp,) set to
the potential flow around C [4]. The first row of Figure 3 depicts the computed initial velocity vy.

We discretized (6.2) in time with Implicit Euler and approximated the temporal integral in (6.1) with the
right end-point rule. Moreover, we discretized (6.2) in space using Q2—-Q1 finite elements on the quadrilateral
mesh depicted in Figure 4. The mesh contains 2,672 elements and 2,762 vertices. For our results, we set the
time step dt,, = 0.025, Ty = 80, T = 20, and Re = 200. We refer to [11, 13, 15] and the references therein
for partial verification of Assumption 1 for various flow control problems.

The second row of Figure 3 depicts the optimal vorticity at the final time ¢ = 20 (left) and the velocity
field near the cylinder (right), while in the final row of Figure 3, we plot the computed optimal control.
As seen in Figure 3, the optimal control effectively eliminates the vortex shedding seen in the first row of
Figure 3 for the initial velocity. In Figure 5, we plot the sketching error averaged over 20 realizations and the
tail energy (ranks 1 through 200) for the uncontrolled state (left) and the optimal state (right). We see that
the decay in the sketching error and tail energy is roughly exponential, suggesting that our method should
only require modest storage.

We solved the discretized optimization problem using a Newton-based trust-region algorithm with fixed
sketch ranks {8,16,32,64} and using Algorithm 4.5 with the rank update function p(r,7) = 2r. The
performance of the fixed rank, adaptive rank, and full storage experiments is summarized in Table 3. For
each experiment, we set gtol = 107° and maxit = 40. The only fixed-rank experiment to converge was
rank 64. However, the rank-32 experiment produced an objective function value that was within 6 digits
of the optimal value. The rank-32 experiment likely did not converge due to inaccuracies in the gradient.
For the adaptive algorithm, we started with the initial rank set to 8. The behavior of the rank updates as
well as the required gradient inexactness tolerances and computed residual norms are plotted in Figure 6.
Algorithm 4.5 required comparable computation as the full-storage approach, but reduced the memory by
a factor of (= 5.88 at the final iteration. The memory burden could be further reduced by tuning kgrad or
by choosing a less aggressive rank update function u.

19

This manuscript is for review purposes only.

Initial Vorticity (¢ = 0) Initial Velocity (¢ = 0)

—_—

e

Controlled Vorticity (¢ = 20) Controlled Velocity (¢t = 20)

Optimal Control

-0.6 1 1 1 1 1 1 1 1 1

Figure 3: The initial velocity (first row) and the final, controlled velocity (second row). These
images include the magnitude of vorticity (V X v) on the subdomain [—5,15] x [—5, 5] (left) and
velocity v on the subdomain [—2, 6] x [—2, 2] (right). The bottom row depicts the computed optimal

control.

rank | objective iteration nfval ngrad iterCG compression (

* 8 18.35919 40 41 15 136 45.44

*16 18.20003 40 41 33 897 23.35

*32 18.19779 40 41 31 236 11.80

64 18.19779 29 41 34 110 5.88

Adaptive 18.19779 23 24 24 121 5.88
Full 18.19779 29 30 24 107 -

Table 3: Algorithmic performance summary for the flow control example for fixed rank, adaptive
rank and full storage: objective is the final objective function value, iteration is the total
number of iterations, nfval is the number of function evaluations, ngrad is the number of gradient
evaluations, iterCG is the total number of truncated CG iterations, and compression (is the
compression factor. *The rank 8, 16, and 32 experiments terminated because they exceeded the
maximum number of iterations.

20

This manuscript is for review purposes only.

15 N

\VTTTT / T
\ VLT TT7
Ressss:
10 N 717 5
O
S
LTI
~10 M A]
71T\
)
J 71T T 1N
~15 / [T TTUN N | .
-10 0 10 20 30 40

Figure 4: Quadrilateral mesh with 2672 elements and 2762 vertices.

Uncontrolled Optimal
10° ‘ ‘ : 10° ‘ ‘
—— Sketch Error —»— Sketch Error
—e—Tail Energy —e—Tail Energy
100 ¢ 100
1075 ¢ 105!
10 -10 L 10 -10 L
0 50 100 150 200 0 50 100 150 200

Rank Parameter r Rank Parameter r
Figure 5: The sketching error averaged over 20 realizations and the tail energy for the uncontrolled

state (left) and the optimal state (right) for the flow control example. Recall that the rank of the
sketch is k = 2r 4 1.

70

100F SN
E—__—— \ ,

60 r R N
o .
3
45 50 [10'2 \
= R
£ 40 N
[a W) 1
A | . 1
% 30 10 4 |‘,
[ae] \

20 | = = =Tolerance |

——Residual Norm
10 : - - - 10 6 : - - -
0 5 10 15 20 0 5 10 15 20
Iteration Iteration

Figure 6: Inexact gradient behavior of Algorithm 4.5 applied to the flow control problem. Left:
The sketch rank as a function of iteration. Right: The required gradient inexactness tolerance and
computed residual norm as functions of iteration.

649 Acknowledgments. MU and RM were supported in part by DARPA Award FA8750-17-2-0101. DPK
650 and RM (in part) were supported by the Laboratory Directed Research and Development program at Sandia
21

This manuscript is for review purposes only.

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

National Laboratories. Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective
views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

(9]

[10]

[11]

[12]

13]

REFERENCES

A. C. ANTOULAS, Approximation of large-scale dynamical systems, vol. 6 of Advances in Design and Control, Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005, https://doi.org/10.1137/1.9780898718713.

S. R. ARRIDGE AND J. C. SCHOTLAND, Optical tomography: forward and inverse problems, Inverse Problems, 25 (2009),
p. 123010, https://doi.org/10.1088,/0266-5611,/25/12/123010.

G. Aupry, J. HERRMANN, P. HOVLAND, AND Y. ROBERT, Optimal multistage algorithm for adjoint computation, STAM
Journal on Scientific Computing, 38 (2016), pp. C232-C255, https://doi.org/10.1137/1.9780898718713.

G. BATCHELOR, An Introduction to Fluid Dynamics, Cambridge Mathematical Library, Cambridge University Press, 2000,
https://doi.org/10.1017/CBO9780511800955.

C. Bourtsipis, D. P. WOODRUFF, AND P. ZHONG, Optimal principal component analysis in distributed and streaming
models, in Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, ACM, 2016, pp. 236—
249, https://doi.org/10.1137/1.9780898718713.

K. L. CLARKSON AND D. P. WOODRUFF, Numerical linear algebra in the streaming model, in Proceedings of the Forty-First
ACM Symposium on Theory of Computing, Bethesda, 2009, https://doi.org/10.1145/1536414.1536445.

A. ConN, N. GouLDp, AND P. TOINT, Trust Region Methods, Society for Industrial and Applied Mathematics, 2000,
https://doi.org/10.1137/1.9780898719857.

L. DEDE, Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control
problems, SIAM Journal on Scientific Computing, 32 (2010), pp. 997-1019, https://doi.org/10.1137/090760453,
http://link.aip.org/link/?SCE/32/997/1.

M. FAHL AND E. SACHS, Reduced order modelling approaches to PDE—constrained optimization based on proper orthogonal
decompostion, in Large-Scale PDE-Constrained Optimization, L. T. Biegler, O. Ghattas, M. Heinkenschloss, and
B. van Bloemen Waanders, eds., Lecture Notes in Computational Science and Engineering, Vol. 30, Heidelberg, 2003,
Springer-Verlag, https://doi.org/10.1007/978-3-642-55508-4_16.

A. GRIEWANK AND A. WALTHER, Algorithm 799: Revolve: An implementation of checkpointing for the reverse or adjoint
mode of computational differentiation, ACM Trans. Math. Softw., 26 (2000), pp. 19-45, https://doi.org/10.1145/
347837.347846.

M. GUNZBURGER, Perspectives in Flow Control and Optimization, Society for Industrial and Applied Mathematics, 2002,
https://doi.org/10.1137/1.9780898718720.

N. HaLko, P. G. MARTINSSON, AND J. A. TROPP, Finding structure with randomness: probabilistic algorithms for
constructing approzimate matriz decompositions, SIAM Rev., 53 (2011), pp. 217-288, https://doi.org/10.1137/
090771806.

J.-W. HE, R. GLOWINSKI, R. METCALFE, A. NORDLANDER, AND J. PERIAUX, Active Control and Drag Optimization for
Flow Past a Circular Cylinder: I. Oscillatory Cylinder Rotation, Journal of Computational Physics, 163 (2000),
pp. 83 — 117, https://doi.org/10.1006/jcph.2000.6556.

M. HEINKENSCHLOSS AND L. VICENTE, Analysis of inexact trust-region sqp algorithms, STAM Journal on Optimization,
12 (2002), pp. 283-302, https://doi.org/10.1137/S1052623499361543.

M. Hinze, R. PinNAu, M. ULBRICH, AND S. ULBRICH, Optimization with PDE Constraints, Mathematical Modelling;:
Theory and Applications, Springer Netherlands, 2008, https://doi.org/10.1007/978-1-4020-8839-1.

A. A. JavLaLl, C. S. SiMs, AND P. FAMOURI, Reduced order systems, vol. 343 of Lecture Notes in Control and Information
Sciences, Springer-Verlag, Berlin, 2006, https://doi.org/10.1007/11597018.

C. KAEBE, J. H. MARUHN, AND E. W. SAcHS, Adjoint-based monte carlo calibration of financial market models, Fi-
nance and Stochastics, 13 (2009), pp. 351-379, https://doi.org/10.1007/s00780-009-0097-9, https://doi.org/10.1007/
s00780-009-0097-9.

A. D. KLOSE AND A. H. HIELSCHER, Optical tomography using the time-independent equation of radiative transfer—part
2: inverse model, Journal of Quantitative Spectroscopy and Radiative Transfer, 72 (2002), pp. 715 — 732, https:
//doi.org/https://doi.org/10.1016/S0022-4073(01)00151-0.

D. Kouri, M. HEINKENSCHLOSS, D. RIDZAL, AND B. VAN BLOEMEN WAANDERS, A trust-region algorithm with adaptive
stochastic collocation for PDE optimization under uncertainty, STAM Journal on Scientific Computing, 35 (2013),
pp. A1847-A1879, https://doi.org/10.1137/120892362.

D. P. Kouri AND D. RiDzAL, Inexact Trust-Region Methods for PDE-Constrained Optimization, Springer New York, New
York, NY, 2018, pp. 83-121, https://doi.org/10.1007/978- 1-4939-8636-1_3.

J. R. KreBs, J. E. ANDERSON, D. HINKLEY, R. NEELAMANI, S. LEE, A. BAUMSTEIN, AND M.-D. LACASSE, Fast full-
wavefield seismic inversion using encoded sources, Geophysics, 74 (2009), pp. WCC177-WCC188, https://doi.org/
10.1190/1.3230502.

M.-D. LAcAssg, L. WHITE, H. DENLI, AND L. Qiu, Full-Wawvefield Inversion: An Extreme-Scale PDE-Constrained Opti-
mization Problem, Springer New York, New York, NY, 2018, pp. 205-255, https://doi.org/10.1007/978-1-4939-8636-1_

22

This manuscript is for review purposes only.

https://doi.org/10.1137/1.9780898718713
https://doi.org/10.1088/0266-5611/25/12/123010
https://doi.org/10.1137/1.9780898718713
https://doi.org/10.1017/CBO9780511800955
https://doi.org/10.1137/1.9780898718713
https://doi.org/10.1145/1536414.1536445
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1137/090760453
http://link.aip.org/link/?SCE/32/997/1
https://doi.org/10.1007/978-3-642-55508-4_16
https://doi.org/10.1145/347837.347846
https://doi.org/10.1145/347837.347846
https://doi.org/10.1145/347837.347846
https://doi.org/10.1137/1.9780898718720
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://doi.org/10.1006/jcph.2000.6556
https://doi.org/10.1137/S1052623499361543
https://doi.org/10.1007/978-1-4020-8839-1
https://doi.org/10.1007/11597018
https://doi.org/10.1007/s00780-009-0097-9
https://doi.org/10.1007/s00780-009-0097-9
https://doi.org/10.1007/s00780-009-0097-9
https://doi.org/10.1007/s00780-009-0097-9
https://doi.org/https://doi.org/10.1016/S0022-4073(01)00151-0
https://doi.org/https://doi.org/10.1016/S0022-4073(01)00151-0
https://doi.org/https://doi.org/10.1016/S0022-4073(01)00151-0
https://doi.org/10.1137/120892362
https://doi.org/10.1007/978-1-4939-8636-1_3
https://doi.org/10.1190/1.3230502
https://doi.org/10.1190/1.3230502
https://doi.org/10.1190/1.3230502
https://doi.org/10.1007/978-1-4939-8636-1_6
https://doi.org/10.1007/978-1-4939-8636-1_6
https://doi.org/10.1007/978-1-4939-8636-1_6

23]

6.

C. LEE, J. KiM, AND H. CHOI, Suboptimal control of turbulent channel flow for drag reduction, Journal of Fluid Mechanics,
358 (1998), p. 245-258, https://doi.org/10.1017/5002211209700815X.

M. W. MAHONEY, Randomized algorithms for matrices and data, Found. Trends Mach. Learning, 3 (2011), pp. 123-224,
https://doi.org/10.1561/2200000035.

P. StuMM AND A. WALTHER, New algorithms for optimal online checkpointing, STAM Journal on Scientific Computing,
32 (2010), pp. 836-854, https://doi.org/10.1137/080742439.

Y. SuN, Y. Guo, C. Luo, J. A. TrRoPP, AND M. UDELL, Low-rank tucker approzimation of a temnsor from streaming data,
arXiv preprint arXiv:1904.10951, (2019), https://arxiv.org/abs/1904.10951.

Y. Sun, Y. Guo, J. A. Tropp, AND M. UDELL, Tensor random projection for low memory dimension reduction,
in NeurIPS Workshop on Relational Representation Learning, 2018, https://r2learning.github.io/assets/papers/
CameraReadySubmission%2041.pdf.

A. TARANTOLA, Linearized inversion of seismic reflection data, Geophysical Prospecting, 32 (1984), pp. 998-1015, https:
//doi.org/10.1111/j.1365-2478.1984.tb00751.x.

J. A. TrROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER, Fized-rank approzimation of a positive-semidefinite matrix
from streaming data, in Adv. Neural Information Processing Systems 30 (NIPS), Long Beach, Dec. 2017.

J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER, Practical sketching algorithms for low-rank matriz approxi-
mation, STAM J. Matrix Anal. Appl., 38 (2017), pp. 1454-1485, https://doi.org/10.1137/17M1111590.

J. A. TRoOPP, A. YURTSEVER, M. UDELL, AND V. CEVHER, Streaming low-rank matriz approximation with an application
to scientific simulation, STAM Journal on Scientific Computing, (2019), https://arxiv.org/abs/1902.08651.

Q. WANG, P. MoOIN, AND G. IACCARINO, Minimal repetition dynamic checkpointing algorithm for unsteady adjoint calcu-
lation, STAM Journal on Scientific Computing, 31 (2009), pp. 2549-2567, https://doi.org/10.1137,/080727890.

M. WARNER AND L. GUASCH, Adaptive waveform inversion: Theory, GEOPHYSICS, 81 (2016), pp. R429-R445, https:
//doi.org/10.1190/ge02015-0387.1.

D. P. WOODRUFF, Sketching as a tool for numerical linear algebra, Found. Trends Theor. Comput. Sci., 10 (2014),
pp. iv+157, https://doi.org/10.1561/0400000060.

F. WooLrE, E. LIBERTY, V. ROKHLIN, AND M. TYGERT, A fast randomized algorithm for the approximation of matrices,
Appl. Comput. Harmon. Anal., 25 (2008), pp. 335-366, https://doi.org/10.1016/j.acha.2007.12.002.

M. J. ZaHr, K. T. CARLBERG, AND D. P. Kouri, An efficient, globally convergent method for optimization under
uncertainty using adaptive model reduction and sparse grids, arXiv e-prints, (2018), https://arxiv.org/abs/1811.
00177.

23

This manuscript is for review purposes only.

https://doi.org/10.1007/978-1-4939-8636-1_6
https://doi.org/10.1007/978-1-4939-8636-1_6
https://doi.org/10.1017/S002211209700815X
https://doi.org/10.1561/2200000035
https://doi.org/10.1137/080742439
https://arxiv.org/abs/1904.10951
https://r2learning.github.io/assets/papers/CameraReadySubmission%2041.pdf
https://r2learning.github.io/assets/papers/CameraReadySubmission%2041.pdf
https://r2learning.github.io/assets/papers/CameraReadySubmission%2041.pdf
https://doi.org/10.1111/j.1365-2478.1984.tb00751.x
https://doi.org/10.1111/j.1365-2478.1984.tb00751.x
https://doi.org/10.1111/j.1365-2478.1984.tb00751.x
https://doi.org/10.1137/17M1111590
https://arxiv.org/abs/1902.08651
https://doi.org/10.1137/080727890
https://doi.org/10.1190/geo2015-0387.1
https://doi.org/10.1190/geo2015-0387.1
https://doi.org/10.1190/geo2015-0387.1
https://doi.org/10.1561/0400000060
https://doi.org/10.1016/j.acha.2007.12.002
https://arxiv.org/abs/1811.00177
https://arxiv.org/abs/1811.00177
https://arxiv.org/abs/1811.00177

744

Appendix A. Sketching Routines.

In this appendix, we provide pseudo-code for the sketching

745 algorithms described throughout the paper. In particular, we first present the abstract sketch class and then
746 describe the methods required to apply the sketch-based approximation of the Hessian to a vector.

Algorithm A.1 Sketch class and methods

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:

21:
22:
23:
24:
25:
26:
27:
28:
29:

class SKETCH

member variables k,s
member variables Y,Q, &, ¥
member variables X,Y,Z
member variables Q, W
member variables rec
function Sketrcu(M, N, rank = r)
Initialize!(M, N, rank = r)
function IniT1ALIZE! (M, N, rank = r)
reconstructed < FALSE.
k<2r+1,s<2k+1
Y « randn(k, M), Q < randn(k, N)
® «+ randn(s, M) ,¥ < randn(s, N)
X « zeros(k,N), Y < zeros(M, k)
Z + zeros(s, s)
Q < zeros(M, k), W + zeros(k, N)
function CoLumnUpDATE! (h, n, § = 1.0, n = 1.0)
X + 60X +n(Yh)ej,
Y < 0Y +nh(Qe,)*
Z + 0Z + n(®h)(Pe,)*

function REconsTRUCT!()
(Q)RQ) — qr(Y7O)
(P,R1) < qr(X*,0)
C« ((2Q)\Z)/((¥P)")
W «~ CP*
reconstructed < TRUE
function CoLumn(j)
if reconstructed then

return Q - W[, j]

sketch parameters
random test matrices
sketch matrices

low rank factors
reconstruction flag
Sketch class constructor

Sketch class initializer

Test matrix for range and co-range
Test matrices for core
Approximation sketch of zero matrix

Low rank factors

Update sketch matrices

Reconstruct low rank factors

Reconstruct a single column

Algorithm A.2 Compute residual norm for control Z.

Input: A control iterate Z € R™*Y and sketch object {U},. for state U € RMNx*1

Output: Residual norm : rnorm = ||¢(U, Z)

I?

Storage: O(r(M + N))
1: function REsipuaLNorM({U},., Z)

2:

3
4
5:
6
7

(uelq, rnorm) <— ({U},.CoLumMn(N), 0)

for n < N to 1 do
Upew < {U}T.CULUMN(W, — 1)
rnorm <— rnorm + ||¢, (Unew, Wold, zn)||2
Uold < Unew

return rnorm

24

This manuscript is for review purposes only.
This manuscript s for review purp nly

Algorithm A.3 Solve adjoint equation.

Input: Control Z € R™*N and sketch objects:
{U}, for state U € RM*N
{A}, for adjoint A € RM*N
Output: Updated adjoint sketch object {A},
Storage: O((r1 + r2)(M + N)) for adjoint rank parameter ro < min{M, N}
1: function SorveApsoint!({A},, {U},, Z)
2: (UWeurrs Unext) < ({U},.CoLumn(N — 1), {U},.CoLumn(N))
3: Solve the adjoint equation at index N for Apext,

dQCN (ucurra Upext ZN)}\next - deN (ucurr, Upext ZN)

{A},.CoLUMNUPDATE! (Apext, IV)
forn=N-1to1ldo
if n =1 then
Uprev <~ Ug
else
Uprev < {U},.CoLumn(n — 1)

10: Solve the adjoint equation at index n for Acurr,

d2cn (uprevv Ucurr, Zn)Acurr = d2fn (uprevv Ucurr, Zn) + dlfnJrl (ucurra Upext szrl)

- d 1 Cn+ 1 (ucurra Upext Zn+1) >\next

11: {A},.COLUMNUPDATE! (Acurr, 1)
12: (unext7 Ucurr, Anext) — (ucurra upreV7 Acurr)

Algorithm A.4 Solve state sensitivity equation.

Input: Control Z € R™*¥ | direction vector V € R™*¥ and sketch objects:
{U}, for state U € RM*N
{W}, for state sensitivity W € RM*N
Output: Updated state sensitivity sketch object {W},
Storage: O((r1 +r3)(M + N)) for state sensitivity rank parameter r3 < min{M, N}
1: function SoLvESTATESENSITIVITY!({W}, {U},, Z, V)
2: for n=1to N do

3: if n =1 then
4: (Uprev, Ucurr, Wprev) < (19, {U},.CoLumn(1),0)
5: else
6: (upreva Ucurr, Wprev) <~ (ucurra {U}T.CDLUMN(’H,), Wcurr)
7: Solve the state sensitivity equation at index n for weyp,
dQCn(upreV7 Ucurr; Zn)wcurr = dSCn(upreva Ucurr; Zn)vn - dlcn(upreva Ucurr; Zn)wprev
8: {W},.COLUMNUPDATE ! (Wcyrr, 1)

25

This manuscript is for review purposes only.
This manuscript s for review purp nly

Algorithm A.5 Apply fixed-rank Hessian approximation to a vector.

Input: Control Z € R™*¥ sketch object for state {U},., direction V € R™*N

and rank parameters ro, r3 < min{M, N}

Output: Application of approximate Hessian to vector V, H ~ V2f(Z)V
Storage: O((r1 +r2 +173)(M + N))
1: function APPLYFIXEDRANKHESSIAN(Z , {U},, V, rq, 13)

2:

{A}, < SkeTCH(M, N,rank = r5) Initialize adjoint sketch object
SorveApJjoint! ({A},,{U},,Z) Solve adjoint equation
{A},.ReconsTRrUCT! () Get low-rank factors for adjoint

{W}, + SkeTcH(M, N,rank = r3) Initialize state sensitivity sketch object
SoLvESTATESENSITIVITY! ({W},,{U},,Z,V) Solve state sensitivity equation

{W}, REconsTruCT! () Get low-rank factors for state sensitivity
H « ApplyHessian({W},,{A},,{U},,Z,V) Apply Hessian to V

return H

Algorithm A.6 Apply Hessian to a vector using sketching.

Input: Control Z € R™*¥ direction vector V. € R™*¥ and sketch objects:

{U}r for state U € RMXN
{A}, for adjoint A € RM*N
{W}, for state sensitivity W € RMxN

Output: Application of approximate Hessian to vector V, H ~ V2 f(Z)V
Storage: O((ry +r2 +173)(M + N))
1: function AppLYHESSIAN({W}, ,{A},,{U},, Z) V)

2:
3:
4:

10:
11:

(ucurra Unext Anext) — ({U}T-COLUMN(N - 1)7 {U}T'COLUMN(N)a {A}T'CULUMN(N))
(Weurrs Wnext) < ({W},.CoLumn(N — 1), {W},..CoLumMn(N))
Solve the adjoint sensitivity equation at index N for ppext,

(dQCN(ucurra Unext ZN))*pnext - *d2,3LN (ucurra Unexty)ZN Anext)VN

+ d2,2LN (ucurra Upnexts ZN Anext)vvnext + dQ,ILN (ucurn Upext) ZN, Anext)vvcurr

Apply Hessian of Lagrangian at index N,

hN = d3,3LN(ucurr7 Unext) Zn,)\ncxt)vn - d3,1LN(ucurr7 Unexts Zn,)\ncxt)wcurr

*
- d3,2LN (ucuru Upext, Zny Anext)wnext + (d3CN(ucurr7 Upext, ZN)) Pnext

forn=N—-1to1ldo
Solve the adjoint sensitivity equation at index n for peyrr,

* *
(d2cn(uprew Ucurr, Zn)) Pcurr = *(dlcn+1(ucurr7 Upext, zn)) Prnext
- d2,3Ln(upreV7 Ucurr; Zn, Acurlr)Vn - d1,3Ln+1 (ucurr7 Unexts Zn, Anext)vn-l-l
+ d2,2Ln (upreV7 Ucurr; Zn, Acurr)Vchrr + d1,2Ln+1 (ucurry Unext; Zn, Anext)vvnext

+ dZ,ILn (uprcva Ucurr; Zn, Acurr)wprcv + dl,an+1 (ucurrv Unext s Zn, Ancxt)wcurr

Apply Hessian of Lagrangian at index n

hn — dS,SLn(uprev; Ucurr; Zn,)\curr)vn - dS,an(uprev; Ucurr; Zn,)\curr)wprev

*
- d3,2Ln (upreva Ucurr; Zn, Acurr)vvcurr + (dSCn(upreV7 Ucurr, Zn)) Pcurr

(unext7 Ucurr, Anext) <~ (ucurra Uprev, Acurr)
(Wncx‘m Weurr, pncxt) — (Wcurm Woprev, pcurr)
return H = [hy,... hy]

26

This manuscript is for review purposes only.
This manuscript s for review purp nly

	Introduction
	Memory versus computation: trade-offs
	Randomized sketching for dynamic optimization
	Outline

	Problem formulation
	Assumptions and the reduced problem
	Gradient computation and adjoints

	Low-memory matrix approximation
	Reconstruction

	Randomized sketching for dynamic optimization
	Computing first- and second-order information with limited memory
	Solving the state equation
	Computing an approximate gradient from the sketched state

	Regularity assumptions
	A fixed-rank approach
	An adaptive rank approach
	Choosing the rank to guarantee convergence
	Sketched trust-region algorithm

	Optimal control of linear parabolic PDEs
	Discretization
	Stability estimates

	Numerical examples
	Optimal control of an advection-reaction-diffusion equation
	Optimal control of flow past a cylinder

	References
	Appendix A. Sketching Routines

