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The self-similar converging-diverging shock wave problem introduced by Guderley in 1942 has been the source of
considerable mathematical and physical interest. We investigate a novel application of the Guderley solution as a
unique and challenging code verification test problem for compressible flow algorithms; this effort requires a unified
understanding of the problem’s mathematical and computational subtleties. Hence, we review the simplifications
and group invariance properties that reduce the compressible flow equations for a polytropic gas to two coupled
nonlinear eigenvalue problems: the first for the similarity exponent in the converging regime, and the second for a
trajectory multiplier in the diverging regime. The information we provide, together with previously published
material, gives a complete description of the computational steps required to construct a semi-analytic Guderley
solution. We employ the problem in a quantitative code verification analysis of a cell-centred, finite volume, Eulerian
compressible flow algorithm. Lastly, in appended material, we introduce a new approximation for the similarity
exponent, which may prove useful in the future construction of certain semi-analytic Guderley solutions.
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1. Introduction

The problem of a strong shock wave converging
cylindrically or spherically in a gas is well known in
hydrodynamics and is considered important in varied
contexts. For example, the problem of converging
compressible flow is familiar to the laser fusion
community (Motz 1979, Atzeni and Meyer-ter-Vehn
2004, Clark and Tabak 2006, Rygg 2006) and in
astrophysical contexts, e.g. with relevance to double-
detonation supernovae (Fink et al. 2007).

Guderley (1942) was the first to investigate the
basic problem of a strong cylindrically or spherically
symmetric shock wave converging into an inviscid,
non-radiating, non-heat-conducting, perfect gas
(though this particular problem was also solved
independently by Landau and Stanyukovich (Stanyu-
kovich 1970) in 1944). Guderley recognised that
certain physical assumptions lead to a self-similar
problem formulation. The solution of the self-similar
problem is contingent upon the determination of the
numerical value of a so-called ‘similarity exponent’
that characterises the space–time path of the infinite-
strength incoming (converging) and finite-strength
reflected (diverging) shock waves in proximity to the
location of collapse. In the years following Guderley’s
seminal work, various authors including Butler (1954),
Lazarus and Richtmyer (1977), Lazarus (1981) and

Hafner (1998) calculated the numerical value of this
similarity exponent (a function of the adiabatic
exponent and geometry) to several significant figures
using various techniques.

The ‘classic’ Guderley problem, also reviewed by
Meyer-ter-Vehn and Schalk (1982), Zel’dovich and
Raizer (2002) and Sachdev (2004), has variations that
have been explored in some detail. Axford and Holm
(1978) used group theoretic techniques to determine a
more general equation of state (represented through
the adiabatic bulk modulus) that admits self-similar
solutions for a Guderley-type problem. Wu and
Roberts (1996) investigated the special case of a strong
shock wave converging into a Van der Waals gas, and
various authors have found similarity solutions for
strong shock waves converging into dusty gases (Jena
and Sharma 1999), variable-density gases (Toqué 2001,
Madhumita and Sharma 2003), and radiating gases
(NiCastro 1970, Hirschler 2002). In addition, Axford
and Holm (1981) explored a quasi-self-similar solution
regime for finite-strength shocks, Ponchaut et al.
(Ponchaut 2005, Ponchaut et al. 2006) also relaxed
Guderley’s original strong shock assumption, and
Hornung et al. (2008) considered the universality of
imploding shock solutions from examination of
approximate solutions for the Guderley problem
and computed solutions of converging shocked flows.
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The stability of Guderley flows was first investigated
by Morawetz (1951) and subsequently discussed by
Häfele (1956), Axford and Holm (1978), Brushlinskii
(1982) and Clarisse (2007).

Consistent with the assumptions motivating the
governing Euler equations of inviscid, non-heat-con-
ducting, compressible flow, the converging shock wave
reflects through the origin, resulting in a diverging
shock wave immediately following focus. It is easily
proven that the similarity exponent governing the
trajectory of the reflected shock is the same as that
determined for the incoming case; consequently, many
authors do not address reflection. Some authors, such
as Fernández (1977), Lazarus and Richtmyer (1977),
Rodrı́guez and Amable (1978), Lazarus (1981), Bilbao
and Gratton (1996), Wu and Roberts (1996), and
Ponchaut (2005), engage in discussions describing the
flow into and out of the reflected shock wave.

In fact, the reflected portion of Guderley’s conver-
ging shock wave problem constitutes a separate
eigenvalue problem. In addition to the similarity
exponent determined as part of the analysis of the
converging portion, an a priori unknown trajectory
multiplier must be determined in order to fully realise
the (scale-invariant) physical flow variables. This
multiplier is determined numerically through integra-
tion of the reduced flow equations on either side of the
reflected shock, supplemented by boundary condition
matching; this is achieved through the satisfaction of
the generalised Rankine-Hugoniot jump conditions at
a certain point in similarity variable space. Once the
trajectory multiplier is determined, the Guderley
problem is effectively solved.

Despite the preceding and almost entirely mathe-
matical attention devoted to the problem, there is, to
the authors’ knowledge, no published description of all
details required to numerically evaluate its semi-
analytic solution. Moreover, there appears to be no
example in the literature exploiting the unique features
of this challenging problem for the purposes of
quantitative code verification of a compressible flow
algorithm. Among the contributions of this article, we
seek to fill both of these gaps.

The realisation of these goals requires a unified
approach to understanding both the mathematical and
computational subtleties of the problem. Accordingly,
we rigorously examine both the converging and
diverging portions of the Guderley solution. We
present a reduction of the one-dimensional inviscid
flow equations to self-similar form based on Lie Group
techniques in the spirit of the work of Coggeshall et al.
(Coggeshall and Axford 1986, Coggeshall 1991,
Coggeshall and Meyer-ter-Vehn 1992), as opposed to
ansatz or dimensional arguments.1 We focus only on
the determination of standard solution modes (i.e. not

those implied to exist by Lazarus and Richtmyer
(1977) and by Lazarus (1981), and discussed in further
detail by Van Dyke and Guttmann (1982)).

A complete description of the subtleties involved in
the numerical solution of the problem will follow the
analytic and semi-analytic considerations; as a corol-
lary to this development, various useful approxima-
tions to the value of the similarity exponent – including
a new one based on the work of Hirschler and Gretler
(2001) – are reconciled in Appendix 1. With all
necessary mathematical and computational matters
understood, we proceed with what we believe to be the
first quantitative verification analysis performed using
the Guderley problem. This analysis (reviewed, e.g. by
Oberkampf et al. (2004) and Roy (2005)) exemplifies
the process of determining that a model implementa-
tion (e.g. a software instantiation of an algorithm for
approximate numerical solution of partial differential
equations) accurately represents the developer’s con-
ceptual description of and solution to the model. This
process complements that of validation analysis, or
determining the degree to which a model is an accurate
representation of the real world from the perspective of
the intended uses of the model (and, thus, necessarily
involves the comparison of simulation results with
experimental data).

The structure of this article is as follows. In Section
2 we provide a brief review of the Guderley problem.
The presentation in Section 3 describes how, using
group-theoretic methodology, this problem is reduced
to its self-similar form for both the converging-shock
and reflected-shock phases. We discuss details sur-
rounding the construction of the semi-analytic (‘exact’)
solution in Section 4. Comparisons of compressible
flow code simulations of the Guderley problem with
the exact solution are given in Section 5, including
quantitative code verification analysis of an Eulerian
finite-volume code. We conclude in Section 6.

2. Review of the Guderley problem

The ‘classical Guderley problem’ begins with the
consideration of an infinitely strong, symmetric shock
wave focusing perfectly on an infinite axis (cylindrical
geometry) or point (spherical geometry). The source
of the shock wave is not discussed in this scenario, but
the initial state of the gas into which the wave is
propagating is well-defined. Denoting physical flow
variables in this unshocked region by the subscript 0
(see Figure 1), the initial state is given by:

u0ðr; tÞ ¼ 0; ð1Þ

r0ðr; tÞ ¼ constant; ð2Þ

P0ðr; tÞ ¼ 0; ð3Þ

80 S.C. Ramsey et al.

D
ow

nl
oa

de
d 

by
 [t

he
 L

A
N

L 
Re

se
ar

ch
 L

ib
ra

ry
], 

[S
co

tt 
Ra

m
se

y]
 a

t 0
7:

31
 2

8 
Fe

br
ua

ry
 2

01
2 



where r denotes position (r$ 0), t time (7?5 t5 0
for the converging mode, 05 t5? for the reflected
mode), u velocity, r mass density, and P material
pressure. For a one-dimensional (1-D Cartesian,
cylindrical or spherical), smooth flow free of viscosity,
heat conduction, radiation and body forces, the Euler
equations describe fluid motion at all continuous (i.e.
non-shock) locations:

@r
@t

þ @ r uð Þ
@r

þ m& 1ð Þ r u
r

¼ 0; ð4Þ

@u

@t
þ u

@u

@r
þ 1

g
c2

r
@r
@r

þ 2 c
@c

@r

! "
¼ 0; ð5Þ

@c

@t
þ u

@c

@r
þ g& 1ð Þ c @u

@r
þ m& 1ð Þ u

r

! "
¼ 0; ð6Þ

where c denotes the local sound speed, defined through
the pressure and density by:

c2 ' gP=r: ð7Þ

Here, we consider only a polytropic gas with the
incomplete equation of state (EOS) given by:

P r; eð Þ ¼ g& 1ð Þre; ð8Þ
where e is the specific internal energy (SIE). In
Equations (4)–(8), g denotes the adiabatic exponent
(15 g5?), and m the space dimension (m¼ 1, 2, or 3
for 1-D planar, cylindrical or spherical symmetry).
Equations (4)–(8) are not valid globally, though shock

jump conditions are available to connect the pre-shock
and post-shock flow fields. In particular, since the
converging shock wave is assumed to be infinitely
strong, the strong limit of the Rankine–Hugoniot jump
conditions may be used to connect the flow just
upstream to that just downstream:

r2a
r0

¼ gþ 1

g& 1
; ð9Þ

u2a ¼
2

g& 1
_R&
s ðtÞ; ð10Þ

P2a ¼
2

g& 1
r0 _R&

s ðtÞ
# $2

; ð11Þ

where the subscript 2a (see Figure 1) denotes the state
just downstream of (behind) the converging shock, and
_R&
s ðtÞ denotes the converging shock speed.
Equations (9)–(11) are valid for all t5 0 (the

convergent mode). After shock focus and subsequent
reflection about the axis or point of symmetry
(analogous to reflection from a rigid wall in 1-D
planar symmetry), these equations cease to be valid.
As the strength of the reflected shock wave for t4 0 is
unknown (due to the fact that the pressure field
upstream (ahead) of the reflected shock wave is
once-disturbed and not necessarily negligible), general
jump conditions must be employed to connect the flow
in the post-reflection space–time regions. After some
manipulation, the standard Rankine–Hugoniot jump
conditions in this case can be written as (Guderley
1942):

r3 ¼ r2b
gþ 1

g& 1þ 2 c2b= u2b & _Rþ
s ðtÞ

% &# $2 ; ð12Þ

u3 ¼ _Rþ
s ðtÞ þ

1

gþ 1
u2b & _Rþ

s ðtÞ
# $

( g& 1þ 2
c2b

u2b & _Rþ
s ðtÞ

 !2
8
<

:

9
=

;; ð13Þ

P3 ¼ P2b þ
2

gþ 1
r2b u2b & _Rþ

s ðtÞ
# $2

( 1& c2b

u2b & _Rþ
s ðtÞ

 !2
8
<

:

9
=

;; ð14Þ

where the subscripts 2b and 3 (see Figure 1) denote,
respectively, the states just upstream and downstream
of the reflected shock, and _Rþ

s ðtÞ denotes the reflected

Figure 1. Notional representation of converging shock
trajectory R&

s ðtÞ, reflected shock trajectory Rþ
s ðtÞ, and

space–time regions 0, 2a, 2b, and 3.
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shock speed. Additional constraints apply at r¼ 0 for
t4 0:

jr3ð0; tÞj < 1; ð15Þ

u3ð0; tÞ ¼ 0; ð16Þ

jP3ð0; tÞj < 1: ð17Þ

In conjunction with the conditions that the flow
field be single-valued for all t (including t¼ 0 but
excepting shock wave positions) and bounded as
r!? for t 6¼ 0, Equations (1)–(17) are sufficient to
fully determine the flow field surrounding both the
converging and reflected shock waves for all t.

3. Construction of the Guderley solution

Equations (4)–(6) have been found (Axford and Holm
1978, 1981, Ovsiannikov 1982, Axford 2000) to admit
the group of point transformations with the generator:

Û ¼ ða2 þ a3Þ r
@

@r
þ ða1 þ a2tÞ

@

@t
þ a3 u

@

@u
þ a4 P

@

@P

þ ða4 & 2a3Þ r
@

@r
; ð18Þ

where the parameters ai (i¼ 1, 2, 3, 4) are arbitrary
constants.

Equations (4)–(6) can be reduced to ordinary
differential equations by introducing the invariant
functions of the group as the new independent and
dependent variables. These functions are determined
by solving:

ÛCðr; t; u; r;PÞjC¼0 ¼ 0; ð19Þ

where C is an arbitrary function of its arguments.
Equation (19) is a linear, first order partial differential
equation whose solution is found by the method of
characteristics. The characteristic equations of Equa-
tion (19) are:

dr

ða2 þ a3Þ r
¼ dt

ða1 þ a2tÞ
¼ du

a3u
¼ dP

a4P
¼ dr

ða4 & 2a3Þ r
:

ð20Þ

Invariance of the initial conditions, boundary
conditions, etc. (as given in Equations (1)–(3), (9)–
(11), (12)–(14) and (15)–(17)) requires the following
constraints on the group parameters ai, i¼ 1, 2, 3, 4:

a4 & 2 a3 ¼ 0; ð21Þ

a1 ¼ 0; ð22Þ

a2 ¼ 1; ð23Þ

a2 þ a3 ¼ a; ð24Þ

where a, the ‘similarity exponent,’ is a dimensionless
parameter to be determined in the course of the
analysis. Here, Equation (21) expresses the assumption
of a uniform ambient medium, Equation (22) reflects
that the start time is arbitrary, and Equation (23)
indicates that the time variable is not being scaled.
With a2¼ 1, Equation (24) specifies a scaling of the
radial coordinate with the similarity exponent a.

With Equations (21)–(24), (20) becomes

dr

a r
¼ dt

t
¼ du

ða& 1Þ u
¼ dP

2 ða& 1ÞP
¼ dr

0
; ð25Þ

where the zero denominator in the last term reflects
the assumption of a uniform ambient medium, as
expressed in Equation (21). Solutions of these char-
acteristic equations are:

sgnðtÞ r

k jtja
¼ constant; ð26Þ

u

r1&ð1=aÞ ¼ constant; ð27Þ

P

r2&ð2=aÞ ¼ constant; ð28Þ

r ¼ constant; ð29Þ

where k is an arbitrary dimensional constant that
will be set to unity in the numerical calculations.
Equations (26)–(29) are the invariant coordinates of
the group generator given by Equation (18). If we
define:

x ' sgnðtÞ r

k jtja
; ð30Þ

vðxÞ ' u

r1&ð1=aÞ ; ð31Þ

pðxÞ ' P

r2&ð2=aÞ ; ð32Þ

dðxÞ ' r; ð33Þ

then Equations (4)–(6) may be reformulated as ODEs
with the new dependent variables v, p and d as
functions of the new independent variable x. Alter-
natively, Equations (31)–(33) may be nondimensiona-
lised through the transformations:
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VðxÞ ' v x k; ð34Þ

CðxÞ ' g p d ðxkÞ2; ð35Þ

DðxÞ ' d

r0
: ð36Þ

With Equations (34)–(36) and k¼ 1, Equations
(30)–(33) reduce to:

x ' sgnðtÞ r

jtja
; ð37Þ

uðr; tÞ ' r

t
VðxÞ; ð38Þ

c2ðr; tÞ ' r2

t2
CðxÞ; ð39Þ

rðr; tÞ ' r0 DðxÞ: ð40Þ

We utilise this non-unique choice of variables and
follow the particularly clear development of Chisnell
(1998). Lazarus (1981) takes a different approach,
using as his fundamental nondimensional independent
variable a quantity proportional to x71/a. This choice
of variables has implications in the computational
evaluation of the solution, as we discuss in Sections
3.1, 3.2 and 4. A more rigorous and detailed derivation
of Equations (37)–(40), including an explanation of the
meaning of the group generator given in Equation (18),
is provided by Axford and Holm (1978, 1981) and
Axford (2000).

Analogs of Equations (4)–(6) may be transformed
to a system of ordinary differential equations (ODEs)
in the dimensionless variables x, D(x), V(x), and C(x):

1

C

dC

dV
¼ 2Df1þ f½ð1& aÞ=½g ða&VÞ*gg þ ðg& 1ÞQðVÞ

DfmV& ½2 ð1& aÞ=g*g þ ða&VÞQðVÞ
;

ð41Þ

1

D

dD

dV
¼ QðVÞ & D ½2 ð1& aÞ*=½g ða& VÞ*f g

a& Vð ÞQðVÞ þ D mV& ½2 ð1& aÞ=g*f g
;

ð42Þ

1

x
dx
dV

¼ &D
a& Vð ÞQðVÞ þ D mV& ½2 ð1& aÞ=g*f g

;

ð43Þ

where

D ' &Cþ V& að Þ2; ð44Þ

QðVÞ ' mV V& að Þ þ 2 ð1& aÞ
g

a& Vð Þ & V V& 1ð Þ:

ð45Þ

One can similarly transform Equations (9)–(11),
(12)–(14), (15)–(17), and the conditions that the flow
field be single-valued for all t and bounded as r!?
for t 6¼ 0, as these relations are invariant under the
same group of point transformations as Equations (4)–
(6). Transformation of these expressions results in the
following relations. At the incoming shock location:

Dðx ¼ &1Þ ¼ gþ 1

g& 1
; ð46Þ

Vðx ¼ &1Þ ¼ 2 a
gþ 1

; ð47Þ

Cðx ¼ &1Þ ¼ 2 g& 1ð Þ a2

gþ 1ð Þ2
: ð48Þ

As t! 07:

Dðx ! &1Þ ¼ constant; ð49Þ

Vðx ! &1Þ ¼ 0; ð50Þ

Cðx ! &1Þ ¼ 0: ð51Þ

At the reflected shock (where x:xR):

D3ðxRÞ ¼ D2bðxRÞ
gþ 1

g& 1þ 2 C2bðxRÞ=ðV2bðxRÞ & aÞ2
h i ;

ð52Þ

V3ðxRÞ ¼ aþ 1

gþ 1
V2bðxRÞ & a½ *

( g& 1þ 2 C2bðxRÞ=ðV2bðxRÞ & aÞ2
h in o

;

ð53Þ

C3ðxRÞ ¼
1

gþ 1
g& 1þ 2 C2bðxRÞ=ðV2bðxRÞ & aÞ2

h in o

(

(

C2bðxRÞ þ
2g

gþ 1
V2bðxRÞ & a½ *2

( 1& C2bðxRÞ
ðV2bðxRÞ & aÞ2

" #( ))

: ð54Þ

As r! 0 for t4 0:

jDðx ¼ 0Þj < 1; ð55Þ
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Vðx ¼ 0Þ ¼ constant; ð56Þ

Cðx ¼ 0Þ !1 : ð57Þ

Through the focus:

D2aðx ! &1Þ ¼ D2bðx ! 1Þ; ð58Þ

lim
t!0þ

r

t
V2aðxðr; tÞÞ & V2bðxðr; tÞÞ½ * ¼ 0; ð59Þ

lim
t!0þ

r2

t2 C2aðxðr; tÞÞ & C2bðxðr; tÞÞ½ * ¼ 0: ð60Þ

Together, Equations (41)–(43) and Equations (46)–
(60) provide a framework for the Guderley problem in
terms of ODEs and additional constraints. Different
forms of these governing equations have been pre-
viously derived by various authors (Lazarus and
Richtmyer 1977, Lazarus 1981, Chisnell 1998).

3.1. The converging shock

The calculation of the similarity exponent and evalua-
tion of the numerical solution of Equations (41)–(43)
are carried out simultaneously, first using successive
estimates for a and the initial and boundary conditions
given by Equations (46)–(48) and Equations (49)–(51).
With an initial estimate for a, numerical integration of
Equations (41)–(43) is typically started at the incoming
shock represented by Equations (46)–(48) and carried
through to the state represented by Equations (49)–
(51). Between these states, however, the governing
equations become singular when D¼ 0. As shown by
Chisnell (1998), to remove the physically unrealistic
singular behaviour, it becomes necessary to impose the
constraint:

QðV+Þ ¼mV+ V+ & að Þþ 2 ð1& aÞ
g

a&V+ð Þ &V+ V+ & 1ð Þ

¼ 0 when D¼ 0; ð61Þ

where V* represents the V-coordinate of the D¼ 0
singularity. Accordingly, the constraint given by
Equation (61) provides the means by which to remove
this singularity and numerically determine a precise
value for the similarity exponent. Concomitantly, the
apparent singularity in Equations (41)–(43) becomes
integrable, and the numerical solution of these
equations may be carried through to the state given
by Equations (49)–(51).

In this work, this procedure was implemented using
the equations based on the nondimensionalisation of
Lazarus (1981).2 We use the Netlib routines ODE to
solve the system of differential equations and the

one-dimensional rootfinder ZEROIN for determining
the similarity exponent (Forsythe et al. 1977, Netlib
2010).

In the literature (Lazarus and Richtmyer 1977,
Lazarus 1981, Hafner 1998, Hirschler and Gretler
2001), there has been inconsistent reproduction of
similarity exponent values beyond eight or nine
decimal places, even for ‘standard’ values of the
adiabatic exponent. For g5 1.4, accurate calculation
of a becomes difficult, as discussed by Lazarus (1981).
The results given in Table 1 are consistent with other
published results.

3.2. The reflected shock

The converging shock wave solution mode is valid
until focus (t¼ 0). At that time, the shock wave reflects
about the point or axis of symmetry and proceeds to
diverge outwards into the once-perturbed fluid with
an unknown trajectory given by:

Rþ
s ðtÞ ¼ B tb; ð62Þ

where the parameters B and b are initially unknown,
though it is easily shown that b¼ a. The parameter B,
however, requires more effort to calculate.

As the structure of the equations governing the
flow for t4 0 has not changed (they are in fact given
by Equations (41)–(43)), numerical evaluation of the
solution may, with a suitable change of variables (see
Lazarus (1981)), be continued beyond the state
represented by Equations (49)–(51) by means of two
integrations. The first integration represents recovery
of flow data beginning at r!? for all t4 0, and can
be continued ‘inward’ until the reflected shock wave is
reached. Being coupled to the unknown value of B, the
phase-space point corresponding to the reflected shock
wave is unknown. If this location were known, then the
general-strength Rankine–Hugoniot jump conditions
would be applied there, and the integration of
Equations (41)–(43) could be continued to a suitable

Table 1. Selected values of the similarity exponent a.

Cylindrical geometry
(m¼ 2) Spherical geometry (m¼ 3)

g
Present
work

Lazarus
(1981)
1/lstd

Present
work

Lazarus
(1981)
1/lstd

1.4 0.835323192 0.8353231919 0.717174501 0.7171745015
5/3 0.815624901 0.8156249014 0.688376823 0.6883768229
2 0.800112351 0.8001123512 0.667046070 0.6670460703
3 0.775666619 0.7756666194 0.636410594 0.6364105940
6 0.751561684 0.7515616841 0.610339148 0.6103391480
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endpoint, namely, until Equations (55)–(57) are
satisfied. This final state represents the position r¼ 0
for t4 0.

To determine the phase space location of the
reflected shock wave, Lazarus (1981) devised a so-
called ‘jump locus’ methodology. A locus of ‘jump
points’ is formed by applying the general Rankine–
Hugoniot jump conditions to every numerical solution
point beyond the state represented by Equations (49)–
(51), which corresponds to the origin in the (V,C)-
plane. The numerical integration and resulting jump
locus are continued to an arbitrary end point in the
(V,C)-plane beyond the phase-space position corre-
sponding to the reflected shock wave. The end point is
determined by trial and error, subject to the success of
the second numerical integration.

This second numerical integration follows the
construction of the jump locus. It is subject to another
appropriate change of variables and is initialised from
Equations (55)–(57). This integration is continued until
a single intersection with the jump locus is obtained.
Through this coupling, one identifies a unique phase-
space point (on the jump locus) at which the reflected
shock wave exists. Through suitable transformations
of these results B is determined, and the entire
diverging-phase solution can be constructed. Data
from the first numerical integration beyond the
location corresponding to the correct jump point
are thereby rendered irrelevant; the same is true of
the remainder of the jump locus. As for the converging
shock calculation, in this work our computational
implementation of the reflected shock solution follows
the Lazarus methodology.

Lazarus (1981), defining his B as the reflected shock
space–time location, published values of that para-
meter (found by taking B in Equation (62) to the
negative a power) in Tables 6.4–6.5 of that reference
(subject to the erratum (Lazarus 1982)). As mentioned
earlier, for g5 1.4, accurate calculation of B7a

becomes difficult, as discussed by Lazarus (1981).
Even so, the results given in Table 2 are consistent with
other published results.

4. Semi-analytic evaluation of the Guderley solution

The overview appearing in Sections 2 and 3 closely
follows the traditional developments of Stanyukovich
(1970), Meyer-ter-Vehn and Schalk (1982), Chisnell
(1998), Zel’dovich and Raizer (2002), Sachdev (2004),
and the overwhelming majority of other researchers.
As shown in Section 2, however, the self-similar
variable system under which the Guderley problem
can be analysed is not unique. Evidence exists that
some self-similar variable choices are more useful than
others for certain applications. For example, the phase

space analysis included in the mathematical analysis of
the Guderley problem appears to be most conveniently
conducted under the system of variable transforma-
tions employed by the aforementioned authors, as
summarised in Sections 2 and 3.

A less common – but still viable – self-similar
variable system appears in the work of Lazarus (1981).
Even as the traditional formulation of the Guderley
problem is useful from the standpoint of mathematical
analysis, the Lazarus formulation has proven to be
computationaly advantageous.

Instead of x and C, this alternative formulation is
based on the similarity variables:

x ' t=rl; ð63Þ

c r; tð Þ ' r

t
~C xð Þ; ð64Þ

where, effectively, a:1/l, and V and D are defined as
in Equations (38) and (40), respectively. The phase-
space position of the converging shock wave is at
x¼71 (where t5 0 again denotes the converging
regime), and analogs of Equations (41)–(43) with x as
the independent variable are integrated.

Even though the alternative set of ODEs is still
reducible to one governing equation for ~CðVÞ and two
supplemental quadratures, we find it advantageous to
integrate the system in its x-dependent form. Fore-
most, this strategy is preferable computationally
because it obviates the necessity of x!7? through
focus: instead, x passes smoothly through the origin
from negative to positive values. Following this
passage through focus, the integration continues to
the reflected shock phase space location x¼B7a,
where analogs of Equations (52)–(54) are applied.
The integration then proceeds to x!?, which
corresponds to r! 0 for t4 0. This state, which
represents a singular point of the governing ODEs,
will be discussed later.

Table 2. Selected values of B7a, the reflected shock space–
time location.

g

Cylindrical geometry
(m¼ 2)

Spherical geometry
(m¼ 3)

Present
work

Lazarus
(1981,
1982)

Present
work

Lazarus
(1981,
1982)

1.4 2.815610935 2.815608 2.688492680 2.688492
5/3 1.694792696 1.694792 1.547894929 1.547896
2 1.199630409 1.199631 1.077253818 1.077255
3 0.763159927 0.763160 0.693969704 0.693970
6 0.540791267 0.5407906 0.531821969 0.5318222
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4.1. Singular analysis

Lazarus (1981) showed that the aforementioned
analogs of Equations (41)–(43) contain the variable x
in their denominators, and a number of singular
points. While Lazarus identified two of the three
relevant singular points, no discussion concerning
possible computational problems near them was
provided. Following brief descriptions of the singular
points, we consider several approaches to avoiding
computational difficulties in their vicinities.

The first singular point, denoted ðV+; ~C+Þ and
described in Section 3.1, occurs before focus and
involves both the numerators and denominators of
each differential equation approaching zero. Near this
point, the differential equation for ~CðVÞ has the
limiting behaviour:

d ~C

dV
¼

~C& ~C
+

V& V+ ; ð65Þ

with a solution given by:

c1 ~C& ~C
+' (

¼ c2 V& V+ð Þ; ð66Þ

where c1 and c2 are non-zero constants. While the
correct values of these constants are determined by
analogs of Equations (46)–(48) and the requirement
that Q¼ 0 (see Equation (61)), Equation (66) shows
that, locally, any straight line through the point
V¼V*, ~C ¼ ~C+ is a solution.

The second singular point occurs at x¼ 0, since
each of the governing equations contains a factor of x
in the denominator. The third singular point occurs as
x!?, at which, from Equation (56), V approaches a
constant value. It can be shown that this singularity is
a saddle point, but numerical round-off error precludes
the semi-analytic solution from staying on the separ-
atrix. As a result, V! +? in computations, so, in
practice, the integration is terminated when jVj
becomes ‘sufficiently large.’ Following this termina-
tion, Equation (63) and analogs of Equations (38)–(40)
are inverted for the physical flow variables.

There are two approaches to computing the
Guderley solution in the vicinity of the singular points.
In the first approach, asymptotic expansions of the
governing differential equations can be used in the
neighbourhood of each singular point.3 This strategy
requires an algorithm for switching between the
governing differential equations and asymptotic
expansions.

The second approach involves direct integration of
the governing ODEs through the singularities and uses
no expansions. This case requires a means of assessing
loss-of-accuracy in passage through the singularities,

which reveals a second advantage to integrating the
governing ODEs in their x-dependent form. Specifi-
cally, the equation for the dimensionless density D(x)
defines the total energy (up to a multiplicative
constant) as:

EðxÞ '

1

2
DðxÞV2ðxÞ þ DðxÞC2ðxÞ= gðg& 1Þð Þ

x2
: ð67Þ

This energy integral is invariant for all x until the
solution trajectory passes through the reflected shock.
Consequently, this quantity provides a measure of the
solution accuracy near the first two singular points.
Thus, the ‘energy check’ is defined as dE(x):
E(x)7E(x¼71).

We have computed several example solutions of
this type using the FORTRAN one-dimensional root-
solver algorithm ZEROIN for the determination of a,
and the FORTRAN ODE algorithm for the solution
of the governing ODEs (Forsythe et al. 1977, Netlib
2010). In these computations, we typically specify the
(local) relative error tolerances in these algorithms as
10715 (IEEE double precision). By comparing solution
data generated with the ODE algorithm for successive
relative error tolerances of 107j, j¼ 6, . . . , 16, the
solutions are accurate to approximately 14 digits as
the integration begins, and the energy check remains
within an order of magnitude of the same figure.

As the numerical integration passes through the
first singular point, the energy check is roughly
unchanged, which indicates that little accuracy is lost
when integrating through the first singular point. In
passing through the singular point associated with
focus, the energy check decreases to roughly 10711,
suggesting that three to four digits of accuracy are lost
in the numerical integration through the second
singular point.

These trends appear to hold for all cases of m and g
appearing in Tables 1 and 2. Since the loss of accuracy
in dE(x) is limited to the final three to four digits (out
of fourteen), the strategy of integrating through the
relevant singular points is sufficiently accurate; as it is
simpler that the use of asymptotic expansions, it is a
preferable alternative.

4.2. An implementation strategy in compressible
flow solvers

The Guderley solution’s infinite extent (i.e. the solution
extends to r!? for all times) presents a challenge
with respect to its use for code verification. We discuss
a specific approach to circumvent this challenge in
Section 5, but briefly digress here to discuss an
alternative strategy.
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In this alternate approach, the infinite-extent
Guderley solution is used up to a fixed, user-prescribed
‘outer boundary’ far from both the converging and
reflected shock waves. At this position, one prescribes
a time-dependent boundary condition that is consistent
with the Guderley flow occurring within. This bound-
ary condition is simply the time-dependent Guderley
solution evaluated at the position of the outer
boundary.

In an Eulerian flow solver, the outer boundary
location is fixed in space. The flow variable time
histories/boundary conditions are obtained from the
semi-analytic Guderley solution discussed earlier: the
result of the ODE integration is a table of D, V and ~C
values as functions of x, between x¼71 and x!?.
Given the choice of r corresponding to the outer
boundary, and using analogs of the similarity variable
definitions Equations (37)–(40), this table is converted
to time histories of the physical flow variables at the
outer boundary.

A similar prescription for a Lagrangian flow solver
is more complicated because the outer boundary,
defined by r:R(t), is not fixed in space. From
Equation (38), however,

dRðtÞ
dt

¼ u RðtÞ; tð Þ ¼ RðtÞVðxÞ
t

: ð68Þ

Furthermore, using Equation (63), the phase-space
position of the outer boundary xB is a function of time
only:

xB ¼ t

RlðtÞ
; ð69Þ

a relation that is invertible for t¼ t(xB). While the
function R(t) is not directly computable, we can
construct an ODE that governs the function R(xB)
using the solution of Equation (69) for t¼ t(xB). In the
following analysis, the subscript B will be omitted for
notational simplicity.

Using the chain rule in conjunction with Equation
(68) and multiplying by the quantity dt/dx yields the
equality:

dR

dt

dt

dx
¼ dR

dx
¼ RðxÞVðxÞ

tðxÞ
dtðxÞ
dx

: ð70Þ

Here, dt(x)/dx is found by implicitly differentiating
Equation (69) with respect to x:

dtðxÞ
dx

¼ RlðxÞ
1& lVðxÞ

; ð71Þ

so that, from Equation (70),

dR

dx
¼ RðxÞVðxÞ

x 1& lVðxÞ½ * : ð72Þ

Solution of Equation (72) is complicated by the
inclusion of the dimensionless velocity V(x). As a
result, Equation (72) must be solved simultaneously
with the x-dependent analogs of Equations (41)–(43).
Once this solution is completed, Equation (69) is used
to label the resulting table of R(x) values with
corresponding t-values. The similarity variables D, V
and ~C are transformed to physical variables as before.

The approach described earlier has been success-
fully implemented in a Lagrangian compressible flow
solver (S. Brandon. Personal communication, 15 June
2007). This method can also be used with an Arbitrary
Lagrangian–Eulerian (ALE) solver, if one specifies
that the outermost layer of computational cells be in
the Lagrangian frame.

5. Compressible flow code results

With semi-analytic results for the classical Guderley
problem available, a counterpart numerical simulation
was conducted using the compressible flow solver of
the RAGE code (Gittings et al. 2008). This algorithm
is a variant of the Lagrangeþ remap-style Eulerian
solver; see (Gittings et al. 2008) for further details.
With the semi-analytic solution, we can quantitatively
gauge the quality of the compressible flow algorithm
for both the incoming converging flow as well as the
outgoing reflected shock solution.

Initialising a Guderley-like scenario in a generalised
compressible flow code must be performed carefully.
Theoretically, the converging shock wave that char-
acterises the Guderley problem is created in an
infinitely weak state as r!? and t!7?. The shock
wave then propagates inwards with increasing strength
due to geometric effects. It is impossible to precisely
initialise a compressible flow code with such a
prescription. Ponchaut et al. (2006) and Hornung
et al. (2008) initialise generalised Guderley-like com-
pressible flow calculations as ‘spherical shock tubes,’
i.e. by ‘numerically removing a membrane’ separating
a small pressure/sound speed differential at some
position far from the focal point. The simulation is
then allowed to evolve such that a Guderley solution is
approached asymptotically in the immediate neigh-
bourhood of the focal point.

To be ostensibly more faithful to the original
solution of Guderley (1942), a different approach is
employed in this work. Specifically, the solution to the
Guderley problem is calculated on a specified, finite
domain, 0, r, rmax, at a chosen time when the shock
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wave is ‘near’ the position r¼ 0. This computed
solution is used to evaluate cell-averaged values on
the uniform mesh of the 1D, spherically symmetric
compressible flow code. This choice of initialisation is
applied over a finite spatial domain including the
origin.

In the compressible flow code calculations, a
reflecting boundary condition is specified at the far
boundary at rmax, resulting in the generation of a
spurious, inward-propagating rarefaction wave. Esti-
mates suggest that this rarefaction wave propagates at
approximately the u7 c characteristic speed. This
information is used to identify subsets of the computa-
tional domains, unpolluted by this spurious rarefac-
tion, on which to make quantitative comparisons of
the flow code results with the self-similar Guderley
solution computed from the ODEs.

The semi-analytic solution is computed in spherical
geometry (m¼ 3) for an adiabatic exponent g¼ 3,
reproducing certain results due to Rodrı́guez and
Amable (1978). At t¼71, the initial state is chosen
so that the converging shock is exactly at r¼ 1 (which
forms an exact computational-cell boundary in all
calculations). With these initial conditions, reflection
occurs at the origin at t¼ 0.

The initial incoming-shock configuration is shown
in Figure 2, which depicts the density, velocity, SIE
and pressure as functions of radial position over the
entire computational domain. In all results and figures,

flow quantities are in consistent cgs units, commensu-
rate with the default units used in the computed
solution.

Without loss of generality, the parameter r0 has
been set to unity. The values shown are cell-centred,
cell-averaged quantities on 1200 equally-spaced zones
between r¼ 0 and rmax¼ 3. This figure shows that the
incoming (negative) velocity peaks at the shock,
located at r¼ 1, as do the pressure and SIE. In the
upstream vicinity of the shock, the density gradually
decreases to its immediate post-shock value.4

The configuration of Figure 2 is used as initial
conditions for the compressible flow solver. The semi-
analytic and computed density fields at t¼70.5,
70.1, 0.1 and 0.5, are shown in Figures 3–6,
respectively. These figures also contain plots of the
point-wise error, ~yEj & ~yCj , in each of the computed
solutions; here, ~yj represents the solution averaged over
cell j for either the exact (E) or computed (C) solution.
Corresponding plots of the velocity, SIE, and pressure
fields exhibit similar behaviour and are omitted for the
sake of brevity. We now turn to a discussion of these
results.

5.1. Start-up errors

A prominent feature of Figures 3–6 is the ‘dip’ in the
computed density fields. This dip is seen to exist in the
density solution field for all post-initialisation times.
These dips and corresponding bumps in the SIE (not
depicted) appear to annihilate one another in the
computed pressure field and are not particularly
noticeable in velocity results. Quantitative estimates
suggest that the dips and bumps move in the fixed
Eulerian frame at approximately the material speed.

Phenomena of this type are not unique to the
Guderley problem. Dips and bumps such as those
observed in Figures 3–6 appear even in simple 1D
planar numerical calculations initialised with exact
solutions involving shock waves. This phenomenon is
discussed in detail by Arora and Roe (1997); see also
LeVeque (2002). For the purposes of this investigation,
it is sufficient to recognise that density dips appear in
systems characterised by nonlinear Hugoniot curves,
of which the current case is an example. In such
systems, the density dips are an inherent feature of
finite volume numerical shock-capturing algorithms.
While it is reasonable to assume that details of this
phenomenon vary with different compressible flow-
algorithms, to the authors’ knowledge there is no
evidence in the literature that this phenomenon can be
eliminated in Eulerian finite-volume codes.

The magnitude of the start-up error remains
approximately constant in time. The spatial extent of
the error increases slightly from t¼70.5 to t¼70.1,

Figure 2. Semi-analytic solution of the Guderley problem
for g¼ 3, m¼ 3 at initialisation time t¼71, depicting cell-
averaged quantities for 1200 cells between r¼ 0 and r¼ 3.
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but is then compressed at t¼ 0.5, presumably asso-
ciated with the passage of the reflected shock. As
suggested in Figure 6, however, the presence of the
start-up error does little to affect either the position or
strength of the reflected shock subsequent to its
interaction with this feature.

Figures 5 and 6 suggest that the shock capturing
algorithm numerically approximates well the shock
focusing and subsequent reflection at the origin at

t¼ 0, i.e. the flow features of the semi-analytic solution
subsequent to focus are captured in the computed
solution. For only the coarsest resolution does the
calculated shock position deviate noticeably from the
semi-analytic solution.

For relatively coarse resolutions, Figures 5 and 6
also show evidence of a near-origin error in the density
field, similar to the well-known ‘wall heating’ effect
seen in the Noh (1987) problem. Figures 5 and 6 also

Figure 3. Left: Semi-analytic and computed Guderley density field at t¼7 0.5. Right: Corresponding point-wise errors. In
these plots, the semi-analytic solution is a black line, and the corresponding computed values are coloured lines according to the
legend.

Figure 4. Left: Semi-analytic and computed Guderley density field at t¼7 0.1. Right: Corresponding point-wise errors.

International Journal of Computational Fluid Dynamics 89

D
ow

nl
oa

de
d 

by
 [t

he
 L

A
N

L 
Re

se
ar

ch
 L

ib
ra

ry
], 

[S
co

tt 
Ra

m
se

y]
 a

t 0
7:

31
 2

8 
Fe

br
ua

ry
 2

01
2 



show that this effect becomes less prominent as the
spatial resolution is refined. We expect that the details
surrounding this near origin phenomenon are closely
related to those thoroughly investigated by Noh
(1987), Gehmyer, et al. (1997) and Rider (2000) with
relevance to the Noh problem.

5.2. Effects of initialisation with a post-focus state

The presence of the post-shock errors near the origin
led us to question how the compressible flow algorithm

would behave if it were initialised with a post-focus
state. Using an initialisation with a state subsequent to
shock focusing time, we find the computed behaviour
to be more precise than with the converging flow
initialisation. Specifically, we evaluate the semi-analy-
tic solution at a time (t¼ 0.018594543 for m¼ 3 and
g¼ 3) when the shock is located at r¼ 0.1, and use
those values to initialise the compressible flow code.
Figure 7 depicts the density, velocity, SIE and pressure
as functions of radial position over a subset of the
computational domain. These values are cell-centred,

Figure 5. Left: Semi-analytic and computed Guderley density field at t¼ 0.1. Right: Corresponding point-wise errors.

Figure 6. Left: Semi-analytic and computed Guderley density field at t¼ 0.5. Right: Corresponding point-wise errors.
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cell-averaged quantities on 1200 equally-spaced zones
between r¼ 0 and r¼ 3. This figure shows the strong
peaks in pressure, velocity and density behind the
outgoing shock as it encounters the incoming flow.

Comparison between the computed results at
t¼ 0.5 in Figures 6 and 8 corresponding to the different
initialisations reveals two significant differences. The

first difference is the near-origin behaviour. Clearly,
a choice of post-reflection initialisation drastically
reduces the near-origin error – a fact explained by
the computed solution not being subject to the
consequences of singular behaviour at t¼ 0.

The second difference is the significant reduction
(but not elimination) of the density start-up error in
Figure 8: a small, localised flow error is apparent in
this figure between r¼ 0.1 and r¼ 0.15. We speculate
that this feature has the same cause as the start-up
error evident in Figures 4–6. A possible explanation as
to why this phenomenon has smaller amplitude and
spatial extent is given by the different flow geometry of
the two different initial conditions: the initialisation at
t¼71 corresponds to converging flow, while an
initialisation with a semi-analytic solution at any
t4 0 (including that shown in Figure 7) corresponds
to diverging flow. We hypothesise that the divergent
flow reduces the start-up errors.

5.3. Verification analysis

Code verification analysis is an approach for gathering
quantitative evidence that software for the solution
of discretized equations generates results consistent
with the corresponding continuum equations, e.g. by
examining the error order-of-accuracy of the numerical
results. Verification analysis (reviewed, e.g. by Ober-
kampf et al. (2004) and Roy (2005)) is a vitally
important aspect of both algorithm and software
development. The Guderley problem presents an ideal
configuration with which to perform code verification

Figure 7. Semi-analytic solution of the Guderley problem
at initialisation time t¼ 0.018594543, depicting cell-averaged
quantities for 1200 cells between r¼ 0 and r¼ 3.

Figure 8. Left: Semi-analytic and computed Guderley density field at t¼ 0.5, computed from the initial conditions in Right:
Corresponding point-wise errors.
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analysis for cylindrically or spherically symmetric,
converging-then-diverging compressible flow of an
ideal gas. Using both the semi-analytic (‘exact’) and
numerical (‘computed’) Guderley solutions, we evalu-
ate the spatial convergence properties of the RAGE
compressible flow algorithm.

We take as axiomatic the standard error ansatz,

kyE & yCk ¼ A ðDrÞs; ð73Þ

where the superscripts E and C refer to the exact and
computed solutions, jj-jj represents an error norm
evaluated over a specified domain, Dr is a characteristic
mesh dimension (e.g. the cell size on a uniform grid), A
is a prefactor, and s is the convergence rate (e.g. s¼ 1
for a first-order method). As is standard for analysis of
compressible flows, we consider the L1 norm only (see,
e.g. the monograph of Bouchut (2004)). We approx-
imate the left side of Equation (73) as:

yE & ya
)) )) . 1

V
XNr

j¼1

~yEj & ~yCj nj
***

***dV i; ð74Þ

where ~yj represents the solution averaged over cell j
for either the exact (E) or computed (C) solution, dV j

is the volume of the spherical shell element centred at
rj, Nr is the number of cells between the origin and
r¼ 2, and V is the volume of the sphere of radius 2.

The ansatz in Equation (73) assumes that the
convergence is monotonic and the method is consis-
tent, i.e. that there is no O(1) error. Using a series
of calculations at different mesh resolutions, it is
straightforward to infer best-fit values for both A and
s, which we accomplish with a standard nonlinear
least-squares technique, using software described by
Hemez et al. (2006). In all calculations, the domain
over which the errors were evaluated was 05 r5 2,

Table 3. Summary of L1-norm convergence data.

Premultipliers A

t r u P e

70.5 0.1886 0.1003 0.0510 0.0146
70.1 0.2636 0.0364 0.0593 0.0178
þ0.1 0.3078 0.0630 0.2102 0.0278
þ0.5 0.2584 0.0547 0.1024 0.0275
þ0.5* 0.1780 0.0460 0.1243 0.0091

Note: *Initialised at t¼ þ 0.018594543 ; others initialised at t¼71.

Table 4. Summary of L1-norm convergence data.

Convergence rates s

t r u P e

70.5 0.8652 1.046 1.028 0.9906
70.1 0.9061 0.9720 1.002 0.9518
þ0.1 0.9125 0.9794 0.9358 0.9324
þ0.5 0.8501 0.9362 0.8694 0.9401
þ0.5* 0.9605 1.011 0.9695 0.9444

Note: *Initialised at t¼ þ 0.018594543; others initialised at t¼71.

Figure 9. L1 errors on 0, r, 2 for flow quantities calculated for the Guderley problem at time t¼ 0.5. Left: Problem initiated
with incoming shock wave. Right: Problem initiated with outgoing shock wave. The dashed black line in each plot is a reference
line for first-order convergence.
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thus neutralising the effects of spurious boundary-
driven rarefaction waves, as discussed in Section 5.1.

Results of this analysis are catalogued for various
times in Tables 3 and 4. In addition, example plots
corresponding to the two data sets given at t¼ 0.5
(converging and diverging initialisation) are provided
in Figure 9. Results for convergent initialisation are
provided in the first four rows of the tables and the left
plot in this figure; the last row and right plot show
results for divergent initialisation.

These results show that the L1-norm convergence is
approximately linear for times before focus, with the
exception of the density field. For times following
focus, the L1-norm convergence is universally but only

slightly sublinear. In all fields except density, the
L1-norm convergence rate also decreases as focus is
approached. In addition, for times after focus, the
L1-norm convergence rates decrease for all fields
except SIE. The pressure and SIE convergence rates
decrease through focus. These trends are further
illuminated in Figure 10, which contains plots of the
error vs. cell size for these physical variables, at four
selected simulation times: two before focus (t¼70.5,
70.1) and two after (t¼ 0.1, 0.5). While all errors
decrease with increasing mesh resolution (i.e. smaller
cell size), only for the density are these monotonic in
time; the other quantities exhibit non-monotonic error
behaviour. This phenomenon is due to numerical loss-

Figure 10. L1 errors on 0, r, 2 for flow quantities calculated for the Guderley problem at times t¼70.5, –0.1, 0.1, 0.5, for
initialisation at t¼71.0. Top left: Density errors. Top right: Velocity errors. Bottom left: Pressure errors. Bottom right: SIE
errors. The dashed black line in each plot is a reference line for first-order convergence.
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of-precision in both the exact and computed solutions
near the t¼ 0 focus time, as discussed at length in
Section 4.

Comparison of the error plots in Figure 9 confirms
what is seen for the density in Figures 6 and 8, namely,
the absolute error is smaller for the reflected shock
initialisation; moreover, the convergence rate in this
case is higher. We observe similar trends for each flow
quantity except the SIE.

The behaviour observed in Tables 3 and 4, and in
Figure 9, illuminates several prominent trends that
influence various observed convergence rates:

(1) Decreases in convergence rates during the time-
evolution of the convergent solution mode.

(2) Decreases in convergence rates during the time-
evolution of the diverging solution mode.

(3) Decreases in convergence rates across focusing
time.

(4) The inapplicability of trends 1 and 3 to the
density field.

(5) A marked improvement in convergence rates
for initialisation at a post-focus time.

Trends 1, 2 and 3 have a common explanation. At
focus time, the exact Guderley solution for the physical
velocity, SIE and pressure fields increases without
bound at the shock. This phenomenon is not compu-
tationally realisable due to inherent numerical preci-
sion limitations, so errors accrue in both the semi-
analytic solution and compressible flow code results
near focus time. Trends 1 and 3 do not apply to the
density field convergence rates, and, in fact, these rates
exhibit opposite behaviour. A phenomenon that is
responsible for this counterintuitive behaviour is the
interaction between a prominent start-up error and the
fact that the density field solution does not increase
without bound in the vicinity of t¼ 0. Similar reason-
ing explains behaviour in the pressure field that does
not agree with trends 1–4, as this variable is connected
to the density and SIE through the polytropic EOS.
Trend 5 notes an improvement in all L1-norm
convergence rates for a positive choice of initialisation
time, in all cases reaching essentially linear levels. This
effect is clearly due to improved near-origin behaviour
and start-up error reduction in this case.

6. Conclusion

We have provided an overview of the theoretical
framework necessary to construct a semi-analytic solu-
tion to Guderley’s imploding shock problem. This over-
view contained results based upon the systematic theory
of continuous point transformations, as opposed tomore
common ansatz or dimensional analysis arguments.

Following the theoretical developments, we provided a
description of computational procedures used to gen-
erate a semi-analytic (exact) solution. This discussion
included a detailed description of the numerical proce-
dures employed to ensure solution accuracy when
integrating through the singular points in the solution.

We used the semi-analytic solution to the Guderley
problem to initialise a compressible flow code on a
finite domain and conduct what appears to be the first
rigorous code verification analysis of an Eulerian com-
pressible flow solver on this problem. Despite the well-
known start-up errors that the computed solutions
exhibit, these results show near-linear spatial conver-
gence in the L1-norm for the converging solution mode;
when this solution is continued through the reflection at
the origin, entirely sublinear spatial convergence in the
L1-norm for the subsequent diverging solution mode.
When initialisedwith a post-focus flow state, the errors in
the computed solutions are notably smaller and the
convergence results are marginally better.

The Guderley problem provides an attractive and
challenging alternative to two other widely-used com-
pressible flow test problems: the Noh problem (Noh
1987, Axford 2000) and the Sedov (1959) problem. The
Guderley problem’s advantages lie in the fact that it is
capable of describing coupled converging and diverging
flow. It will be of interest to use the Guderley problem to
evaluate the properties of other compressible flow algo-
rithms, as well as to investigate 2D and 3D geometries.
Despite being introduced almost 70 years ago, the
Guderley problem continues to challenge the theoretical
and computational fluid physics communities, providing
an excellent opportunity for code verification analyses.
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Notes
1. Dimensional analysis finds only scale-invariant variables

and solutions, while application of Lie group techniques
systematically identifies all invariant functions and
solutions.

2. In Section 4, we present the reasons for utilising the
Lazarus methodology in the numerical calculations
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together with computational details useful for practical
implementations.

3. Some of the developments appearing in Appendix 1 make
use of this methodology, but for a different purpose.

4. Cell averages are determined from numerical integra-
tions using conserved quantities. See Appendix 2 for a
discussion.

5. These approximations are to be contrasted with the
purely curve-fit approximation for a as a function of g
given by Hafner (1982) for the spherical (m¼ 3) case:

a ¼ ½ðg& 1Þ=ð2 aÞ* þ 1& a1ð Þ&nf g&1=n þ a1; ðA1Þ

where a¼ 3.266 1074, n¼ 6, and a?¼ 0.375.
6. Timmes et al. (2009) provide a detailed discussion of this

issue for another compressible flow problem.
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Appendix 1. Analytic similarity exponent estimates
The nonlinear eigenvalue problem whose solution determines
a has been solved approximately by a number of authors
including Stanyukovich (1970) and Chisnell (1998). There
exist a variety of physical and mathematical arguments
that provide accurate estimates of the parameter a. We
consider three approximations of a based on fundamental
assumptions about the solution of the governing equations.5

a ¼ ½ðg& 1Þ=ð2 aÞ* þ 1& a1ð Þ&nf g&1=n þ a1; ðA1Þ

where a¼ 3.266 1074, n¼ 6, and a?¼ 0.375.
These estimates ultimately prove useful as first iterates or

bracketing values on the true value of a (see Figure A1), and
are easily incorporated into numerical routines that converge
to the true value of the similarity exponent. It will be shown
that for different ranges of g and m, the relative accuracies of
the approximations vary.

A.1.1. The pressure maximum requirement

Stanyukovich (1970) noted that for certain values of the
adiabatic exponent, the pressure distribution behind
the converging shock wave contains a single maximum.

Figure A1. Exact values (Lazarus 1981) of the similarity
exponent a plotted as a function of the polytropic index g for
cylindrical (m¼ 2) and spherical (m¼ 3) geometries.
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The existence of a pressure maximum in the flow behind a
converging shock wave for arbitrary g4 1 was dismissed by
Zel’dovich and Raizer (2002), but a work by Mishkin and
Fujimoto (M&F) claimed otherwise (Mishkin and Fujimoto
1978a,b). Through this requirement, M&F derived an
analytic expression for a claimed to be exact:

a ¼ gþ 2þ 2
ffiffiffiffiffiffi
2g

p

m gþ 2þ 2
ffiffiffiffiffi
2g

p : ðA2Þ

The claim that Equation (A2) represents an exact
solution for the similarity exponent was later refuted in
papers by Lazarus (1980) (with a rejoinder by Mishkin
(1980)) and Yousaf (1986); see also the paper by Wang
(1982). This so-called ‘Landau-Stanyukovich rule’ has also
been recently extended by Gurovich and Fel (2009) in order
to construct upper and lower bounds on the true value of the
similarity exponent.

A.1.2. The CCW method
The Chester–Chisnell–Whitham (CCW) method is based
upon the result of Chester (1954) for the motion of a shock
wave in a channel with a small change in area. Chisnell (1957)
first integrated Chester’s result for ‘freely propagating’
symmetric shock waves, and Whitham (1958) produced an
alternative derivation of Chisnell’s result. For the case of
strong shock waves, the ultimate result is an analytic formula
relating the similarity exponent to the adiabatic exponent
and space dimension.

It was apparently first noted by Sedov (1959) that in the
neighbourhood of (V,C)¼ (0,0), the solution of Equation
(41) has the following limiting behaviour:

lim
V!0þ

CðVÞ ¼ A2 V
2; ðA3Þ

where A2 is a constant to be determined. Since Equation (A3)
automatically satisfies the boundary condition imposed upon
the solution curve C(V) given by Equations (50)and (51),
only the initial conditions Equations (47) and (48) remain to
be utilised. In particular, imposing the latter on Equation
(A3) allows for determination of the constant A2, and
Equation (A3) becomes:

CðVÞ ¼ 1

2
g g& 1ð ÞV2: ðA4Þ

This equation represents an approximate analytic
expression for the solution curve C(V) of Equation (41).
Together with the condition D¼ 0 and one solution of
Equations (61), (A4) provides:

a ¼ ðgþ 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
g& 1

p
þ g

ffiffiffiffiffiffiffi
2 g

p

ðm gþ 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
g& 1

p
þ g

ffiffiffiffiffiffiffi
2 g

p : ðA5Þ

A.1.3. The new method
Inspired by the mathematical development of the CCW
method just presented and a pseudo-limiting form
of Equation (41) first derived by Hirschler and Gretler
(2001) (H&G), a different approximate expression for the
similarity exponent can be derived. Through the use of
H&G’s asymptotic treatment of Equation (41) and the initial
condition given by Equations (47) and (48), an approximate

solution can be shown to hold near the singular point at
D¼ 0:

CðVÞ ¼ a g& 1ð ÞVþ 1

2
1& gð ÞV2: ðA6Þ

When evaluated at the singular point, Equation (A6)
closes a system of three nonlinear algebraic equations with
the condition D¼ 0 and one solution of Equation (61).
Solution of this system for a is given by:

a ¼ g ðgþ 1Þ & ðg& 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 & 1

p

2þ g ðm& 2Þ½ *
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 & 1

p
& g g m& 2ð Þ &m½ *

: ðA7Þ

Equation (A7) provides an alternative to the M&F and
CCW approximations as an analytic approximation to the
similarity exponent.

A.1.4. Discussion of results
Evaluation of Equations (A2), (A5) and (A7) for various
values of g and m appears in Tables A1 and A2. Plots of the
relative difference j17 aappx/aexactj for each approximation
and both m¼ 2 and m¼ 3 appear in Figure A2. Several
trends may be discerned from these data.

(1) The M&F approximation underestimates a for all g
and m.

(2) The CCW approximation overestimates a only for a
small range, 1.15 g5 2 , for m¼ 2 and 3.

(3) The new approximation overestimates a for g4 5/3
for m¼ 2 and 3.

(4) The CCW and new approximations are both more
accurate than the M&F approximation for nearly all
g and m.

(5) The new approximation is more accurate than the
CCW approximation only for large g and m¼ 3.

As discussed in Section 3.1, an exact value for the
similarity exponent is obtained by removing the D¼ 0
singularity crossed by the solution of Equations (41)–(43).
While all Guderley solutions employ this technique, an
additional constraint is necessary in order to construct
analytic approximations to a. We have found that the
global approach of utilising both the initial conditions
Equations (47)–(48) and asymptotic solutions of Equations
(41)–(43) provides analytic approximations that retain a
high level of fidelity to exact semi-analytic solutions (e.g.
the CCW and new approximations). The purely local
M&F approximation, which employs the pressure
maximum requirement (i.e. a solution of Equation (61)
but not Equations (47)–(48)) proves less accurate.
Therefore, we hypothesise that both the local–global
nature and accuracy of the additional constraint largely
determines the accuracy of the resulting analytic
approximation.

Reasons for the accuracy difference between the CCW
and new approximations for various choices of g and m are
not easily resolved. We hypothesise that the relative local
accuracy of the approximate solutions provided by
Equations (A4) and (A6) varies explicitly with g.
Accordingly, he accuracy of analytic a calculations based
upon the implementation of these approximate solutions is
seen to vary in a like manner.
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Appendix 2. Calculation of cell-averaged values
Appropriate initialisation of the compressible flow code
using values based on the semi-analytic Guderley solution is
extremely important for proper comparison of exact and
computed quantities. As the RAGE compressible flow
algorithm is based on finite-volume approximations, the
quantities it calculates are cell-averaged values. To initialise
the code with a non-trivial flow field, one cannot simply use
the point-wise flow fields that solve Equations (41)–(43), as
obtained with the procedure described in Section 3.6

In order to provide input consistent with a finite-volume
approach, one must evaluate cell-averaged flow fields that
are consistent with the exact Guderley solution. Moreover,
these cell-averaged values must be constructed from
conserved quantities corresponding to those used in the
governing conservation laws, namely, mass, momentum and

total energy. For the cell delimited by rmin and rmax, we
compute the volume Vcell, mass Mcell, momentum MOMcell,
and total energy Ecell on a cell-by-cell basis. Using the
notation introduced earlier, these quantities are evaluated as
follows:

Vcell '
Sm

m
rmmax & rmmin

% &
; ðA8Þ

Mcell ' Sm

Z rmax

rmin

dr rm&1 rðrÞ; ðA9Þ

MOMcell ' Sm

Z rmax

rmin

dr rm&1 rðrÞ uðrÞ; ðA10Þ

Table A2. Estimates of the similarity exponent a for
selected values of the adiabatic exponent.

Spherical geometry (m¼ 3)

g

Exact
(Lazarus
1981) M&F (A2) CCW (A5) New (A7)

1.1 0.79596980 0.73386494 0.78966404 0.77548938
1.4 0.71717450 0.70670310 0.71728743 0.70860899
5/3 0.68837682 0.68705455 0.68925126 0.6875
1.8 0.67855370 0.67842021 0.67909796 0.68040211
2.0 0.66704607 0.66666667 0.66666667 0.67202771
3.0 0.63641060 0.62261729 0.62954164 0.64852814
5.0 0.61522398 0.57126728 0.59848539 0.62994081
10 0.60104880 0.51153119 0.57362550 0.61542374
100 0.58950281 0.39446102 0.54968526 0.60159367
? 0.58828929 0.33333333 0.54691816 0.6

Table A1. Estimates of the similarity exponent a for
selected values of the adiabatic exponent.

Cylindrical geometry (m¼ 2)

g

Exact
(Lazarus
1981) M&F (A2) CCW (A5) New (A7)

1.1 0.88524806 0.84650762 0.88247182 0.87355000
1.4 0.83532320 0.82815001 0.83537259 0.82945717
5/3 0.81562490 0.81450188 0.81604351 0.81481482
1.8 0.80859994 0.80840329 0.80888426 0.80980869
2.0 0.80011235 0.8 0.8 0.80384758
3.0 0.77566662 0.76742346 0.77266101 0.78679656
5.0 0.75640105 0.72714208 0.74881559 0.77296156
10 0.74182593 0.67683841 0.72904957 0.76193475
100 0.72853594 0.56575410 0.70941536 0.75124381
? 0.72704805 0.5 0.70710678 0.75

Figure A2. Relative similarity exponent differences calculated as a function of g according to j17 aappx/aexactj using the M&F,
CCW, and new approximations. Left: cylindrical symmetry case (m¼ 2). Right: spherical symmetry case (m¼ 3).
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