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Foundations of Generalized Reversible Computing

Talk Outline W=,

= Motivation
= Sustaining computer efficiency gains will require practical reversible HW
= Modeling all reversible HW requires a more general theoretical foundation
= Fundamental physical foundations
= |nformation/entropy, bijective dynamics, conditional entropy
= Formulating Landauer’s Principle
= Arigorous quantitative derivation from fundamental physics
= Redeveloping reversible computing theory from first principles
= Traditional theory of unconditionally reversible computing
= Fundamental theorem of traditional reversible computing
= General theory of conditionally reversible computing
= Fundamental theorem of generalized reversible computing
= Applications of Generalized Reversible Computing (GRC) theory
= Examples of conditioned reversible operations
= Modeling reversible hardware (e.g., adiabatic circuits)
= Conclusion
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Foundations of Generalized Reversible Computing

Semiconductor Roadmap is Ending! @&

= Thermal noise on minimum-
width segments of FET gate

ITRS2015 ¥ C1? Node Energy vs. Gate Energy —&-ITRS FO3 node energy
electrodes leads to channel 1000000 B e et
fluctuations below ~1-2 eV '

= Increases leakage, impairs device —

1fl
performance 100000 IM
= Thus, ITRS has minimum gate energy ( tdgs C'rCUlt—level Overhead factore)
tors)

asymptoting to ~2 eV 1 keV

Data source: International Technology Roadmap for Semiconductors, 2015 edition

Also, real logic circuits incur
many further overhead factors:
= Transistor width 10-20 X min.
= Parasitic (junction, etc.) transistor
capacitances (~2 X))
= Multiple (~2) transistors fed by
each input to a given logic gate
= Fan-out to a few (~3) logic gates
= Parasitic wire capacitance (~2 X )
Due to all these overheads, the
energy of each bit in real logic
circuits is many times larger
than the min.-width gate energy 14 tandauerLimit for-1 bithost to room:temperature
= 375-600 X (!) larger in ITRS’15

= . Practical bit energy for irreversible 1z
logic asymptotes to ~1 keV! 01

Practical, real-world logic circuit 015 2020 2025 2030

10000 -

1000
(gates of minimum-size tr.
ansjst

tors) 1lal

100 -

Thermal Noise "Danger Zone": ~20-80 kT 1

Energy (in &T, with T=300K)

designs can’t just magically cross ear of Introduction per ITRS 2015
this ~¥500 X architectural gap!
® .. Thermodynamic limits imply Only reversible computing can take us from ~1 keV at the
much larger practical limits! f th M Il th '

= This is good news for our field... end of the CMOS roadmap, all the way down to « kT'!

Foundations of Generalized Reversible Computing

Motivation for this work ()

= To make reversible computing practical will be essential for
sustaining the exponential growth of computer energy-efficiency
over multi-decade timeframes, looking forward...
= |f we are successful at this, it can be reasonably expected to have a
correspondingly enormous impact on future economic growth as well
= Thus, there is a case for major investment, but we need a solid foundation!
= Unfortunately, the traditional (Landauer-Fredkin-Toffoli) theory of
reversible logic circuits is not really adequate as a foundation for
the design of real (physically) reversible hardware,
= because it is insufficiently expressive to describe and explain the

reversibility (at both the logical & physical levels) of the simplest real
reversible hardware devices that we can build

= We will see a number of examples and proofs of this later...
= Thus, we need a new, more general (and more expressive)
theoretical foundation, which is suitable to serve as the basis for
modeling any and all real reversible hardware devices & circuits...
= We begin by developing a simple, deterministic framework for this...
= Later, we can extend it to stochastic and/or quantum variants
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Foundations of Generalized Reversible Computing

Fundamental physical foundations hE.

= |t’s widely known that Landauer’s Principle (that information
loss implies energy dissipation) is the rationale for studying
reversible computing as a basis for energy efficiency gains...
= But, it’s perhaps less widely-understood how Landauer’s Principle
itself can be rigorously proved from more fundamental physics.
= We'll briefly review the following fundamental physical
concepts that are necessary to fully understand the
foundations of the thermodynamics of computation:
= Entropy — What is it, how to understand its definition
= Bijective dynamics — A core property of fundamental physics
= Physical vs. computational states — And entropic implications
= Conditional entropy — A visual illustration of its basic properties

= This will then set us up to rigorously derive a detailed
guantitative form of Landauer’s Principle...

Foundations of Generalized Reversible Computing Basi . + ..
asic review + coining

EntrOpy |n a NUtShe” some useful terminology

= Define the “surprisingness” or surprise s(x) of any event x that
has a 1in m chance of occurringas s = s(x) = s(m) = logm.
= Callthe m = 1 “improbability;” it can be a non-integer.
= s is logarithmic b/c the improbabilities of independent surprises multiply.
= [ndefinite logarithm; dimensioned in arbitrary logarithmic units.
= Some example units: log2 = 1 bit; loge = 1 nat = kg; log10 = 1 bel.

= In terms of event’s probability p = p(x) = p(m) = 1/m, Improbability:
1 m=6x6 = 36
s =log— = —logn. Surprise:
(®) & gp . 200g6)
= Define event’s “heaviness” h = h(x) = h(p) (Hopefulness? Heaviness:
Horribleness?) as its surprise, weighted by its probability: h= % = %10g6

h(p) =s/m=p-s=plogm= —plogp.
= Then for any probability distribution p(x) over any mutually exclusive and
exhaustive set of events X = {xq, ..., x,,}, we have that the expected surprise
S(X) = Ep[s(x)] and the total heaviness H(X) = }.,.cx h(x) associated with
that particular set of possible events are the same, and are given by:

S = D p@) - s() = HI) == ) p() - logp(®).
XEX XEX
= We call this quantity H = S the entropy of the given epistemic situation.
= By convention, we’ll prefer H for “computational” entropy, S for “physical” entropy.
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Foundations of Generalized Reversible Computing
. . . l..—-. Sl
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Foundations of Generalized Reversible Computing

Thermodynamics and Information i,

— -1

= Physical entropy quantifies uncertainty about Ste] = E,llogp™]
the detailed microstate of a physical system. 5= (3 -

= First postulated by Boltzmann (in his H-theorem)

= Integral to modern physics (Von Neumann entropy) Bijective microphysics ->

No “true” entropy change
= Depends on modeler’s state of knowledge (Jaynes) (Theorem 1 inpgape,) 9

= The reversibility (injectivity) of microphysics 5
underlies the Second Law of Thermodynamics. 7, e
= States cannot merge as they evolve... iiétvirsibie mistaphysibs

= Thus, entropy of a closed system cannot decrease! - Entropy would decrease
. . . (Second Law of Thermo.
= Conserved by unitary quantum time-evolution. would be violated)

= Entropy can increase if we have any uncertainty

about the dynamics, or do not track it in detail 3 ©
= At the most fundamental level, physical 5= %) @ se =
1.03 k @ 129k

information cannot be destroyed. 5

= Only reversibly transformed, and/or transferred True dynamics uncertain
between different subsystems... (or not tracked in detail)
-> Entropy increases
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Foundations of Generalized Reversible Computing

From Physics to Computation i =

= Thermodynamics and quantum mechanics
show that any bounded physical system
admits only a finite set ® = {¢1, ..., ¢, } of
measurably distinguishable detailed
physical states (microstates).
= F£.g., ® could be any orthogonal set of basis
vectors for the system’s Hilbert space.
= We can group these microstates, that is,
partition them into subsets c; of micro-
states that we consider as equivalent to
each other for some designated purpose...
= e.g., for purposes of representing some
specific computational information
= Any probability distribution p(¢;) over the
physical state space ® induces a probability *
distribution P over the computational state

———— e ———

space (subsystem) C = {cj} as well... Example of a computational
state space C consisting of 3
P(Cj) = Z p(9). distinct computational states
piccj c1, €, €3, €ach defined as a set
= This implies a computational entropy H(C). of equivalent physical states.

T

Foundations of Generalized Reversible Computing
F o]

Visualizing Entropy of Grouped States L=

= Canrepresent a hierarchy of events in a tree structure...
= Branch thickness = event probability p.
= Branch length = incremental surprise As associated w. event,
= relative to whatever base event it’s branching off from.
= Branch area = event’s incremental heaviness Ah = pAs, i.e.,
= its contribution to total entropy, in addition to its base event’s.
= Grouping events into larger events has these effects:
= Thicknesses (probs.) of branches combine in parent branch

= A corresponding part of the total length (surprise) of each
branch is reassociated to parent (stem) branch.

= Note: The total heaviness H of all branches and stems (total
entropy S) is not changed at all by any grouping/ungrouping!!

3 ¢1 €1 (o
= b2 b2

— T b5 Grouping b5
(o Ungrouping I
" C2 ¢5
S(@) =H(c) +S(dlc)

Total system entropy = computational entropy + non-computational entropy

(&1

C2

¢s
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Grouping of States (slide 1 of 3)

S(¢) = E[s(¢p)] = 1.498

BE

| p(¢h1) = & = 0.083

.s(¢1) = 2484

s(¢s) = 1.099

N
—_

2

<

=

<
2

g p(¢2) = 3=0.25

©

s(¢p2) = 1.386
( |p($s) = = 0111
|s(@3) = 2197

g

S 2
% p(¢s) =5 =0.222

&
e ) s(¢s) = 1.504
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p(¢s) =3 = 0333

Foundations of Generalized Reversible Computing

{1, @2}

1
P(c)) = 3 =0.333 s(cy) = 1.099

pgsler) = ¢ = 0.167

Grouping of States (slide 2 of 3) (i e,
S(¢) = E[s(¢)] = 1.498
r p(¢ile) =5 =025 \|p(¢1) -1 -0083
As(py) = s(¢p1cy) = 1386 |s(¢1) = 2.484

|p(#s) = 3= 0111

-
“a 2 As(¢3) = s(slcz) = 1.792
-é_n P(cy) = 3
éf p(Pslc,) = 2 = 0.333 p(oe) =% = 0222
? ) As(pa) = s(¢slcz) = 1.099 s(¢s) = 1504
& s(c;) = 0.405 ]

s p(gs) = 3= 0333

As(s) = s(ps|cy) = 0.693 |5(95) = 1.099

|s(¢3) = 2.197

p(d) = P(Cj) -p(¢: | cj)
s(¢y) = s(p(¢)
=s(P(c;) - p(: 1))
= —log[P(¢;) - p(¢i | ¢))]
= —log P(c;) — logp(¢ilcy)
=s(g) +s(¢il )

| () = H(©) +5(¢1c) | S(@lc) = E[s(¢|c)] = 0.862
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Grouping of States (slide 3 of 3) =
S(p) = E[s&qb)] = 1.498

H(c) = E[s(c)] = 0.637

N\

- p(p1le) =7 =025 | p(¢1) = & = 0.083
3 Ple) = 3 = 0333 8s(p) = s(sley) = 1.386 |s(@) = 2484
£
!T s(cy) = 1.099 5| p(p,) = % =025
As(¢y) s(¢2) = 1.386
= s(¢2lc1)
=0.288
2 p(¢slc,) = ¢ = 0.167 |p(¢s) =1 =0111
As(s) = s(dsler) = 1.792 |s(s) = 2197
<
-?: ) p(Pslc,) = 2 = 0.333 p(ps) =2=0222
S 85($s) = s(alcy) = 1099 s(#4) = 1504
I s(cy) = 0.405
& 3
sles) =2 =05
p(dslcs) = p(s) = % =0.333
L s(s) = 1.099

As(ps) = s(dslcz) = 0.693

S(¢lc) = E[s(dlc)] = 0.862

| () = H(©) +5(¢c) |

i Total system entropy = computational entropy + non-computational entropy i

Foundations of Generalized Reversible Computing

Proof of Landauer’s Limit (="

= We've seen that the total system entropy S(¢) fora U””;’t‘;leg’;s'féﬁ"efﬁrnosgl"es
given closed system cannot decrease at all... '
= So, what happens if we merge two computational states? §i= © © Sp =S
= Underlying probability distributions remain the same! 1.03k © 3 =103k
= Only the identities of the physical states ¢, and their

groupings into computational states, can be changing

. . . . . Computational Computational
= Merging two computational states implies, removing a subsystem C before  subsystem after
conceptual partition between groups of physical states biterasure  bit erasure

= Same as the “ungrouping” operation we saw earlier [CO C(’)

= The computational contribution H(C) to the total
entropy S(¢) cannot simply vanish from existence...
= Thus, it can only be ejected from the computational state

. n H\(C) = Hg(C
into the non-computational state O_ég ,2< - (F)(k)
= We define non-computational entropy as: = 1bit = 0bit

Snc(@P) = S(p1C) = S(¢p) — H(C).
= So, the change in S,,.(¢) from a merge operation is thus:
AS,. (¢) = AS((MC) = —AH(C). (Theorem 2 in paper) &

= To extent that “non-computational” = “uncontrolled,” ——
= the extra non-computational entropy must ultimately end up Snel = Snck =
in some thermal environment at some temperature T 059k 128k
= We must thus emit at least heat AQ = TAS to that environment. AS. = —AH
IfAS =1b =klIn2,then AQ = kT In2. nc —
=1bit=0.69k

~. Landauer Limit: E4;s = kT In 2 per bit lost. m
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Foundations of Generalized Reversible Computing

Redeveloping Reversible Computing Theory W&
= We can characterize our task, in the development of the most
fundamental aspects of Reversible Computing Theory, as follows:
= We are given, as our starting point, this correct quantitative expression of
Landauer’s Principle, which follows rigorously from fundamental physics:
ASnc(¢) = _AH(C)I

= j.e., for any computational operation, the change in the non-computational entropy
of the physical state is exactly the negative of the change in the entropy of the
computational state (entropy ejected from the computation).

— Note this is referring the minimum non-computational entropy change necessitated by
thermodynamics—there may be additional entropy increase from other causes.

= Qur task, then, is to infer, from this starting point, what exactly are the
constraints on the logical-level structure of a computation that are necessary
and sufficient conditions for this entropy ejected by a computation to attain or
approach 0 (from above), AS,.(¢) -7 0.
= This will then constrain the design of our physical mechanisms for computation.

= We can say that the following is the underlying essence of what we
really mean (or should mean) when we talk about logical reversibility:
= This phrase is, most generally, intended to express the necessary and sufficient

conditions, at the logical level, under which the change in computational
entropy approaches 0 (from below), AH(C) -~ 0.

= However, Landauer’s original definition of the phrase “logical reversibility” did not
actually accomplish this goal in the most general possible sense.

— The conditions he gave were sufficient, but, as we’ll see not necessary.

Foundations of Generalized Reversible Computing

Logical Reversibility, per Landauer @&
= Here, Landauer defines ... RESTORE TO ONE is an

. . Ceps example of a logical truth function which we shall call
Ioglcal (Ir)reve rSIbIIItV for irreversible. We shall call a device logically irreversible if

an N-bit device the output of a device does not uniguely define the inputs.
L ... Now assume that the computer is logically reversi-
' Assum.es the device I.S ble. Then the machine cycle maps the 2% possible initia]
operating on the entire space states of the machine onto the same space of 2 states,

of 2N combinatorially possible rather than just a subspace thereof. .

initial states (or “inputs”)
= But, the probabilities of the initial states are also important!
= DeBenedictis & Frank previously pointed this out, at the IEEE International
Conference on Rebooting Computing 2016 (http://bit.ly/2hYWLdV)
= Crucial: If some initial states have probability 0, then not all of the
2N combinatorially-possible initial states are statistically possible

= |n such operating contexts, a device’s operation can transform the full
combinatorially describable space of 2" initial computational states onto a
smaller set of final states, while retaining AS, . = 0 (reversibility)!
= Landauer’s “logical reversibility” tragically obscured this critically important fact!

7/10/2017



Foundations of Generalized Reversible Computing

Logically reversible computations using ) =
“logically irreversible” devices Reversible COPY (assuming 5-0)
Ex. Initial state Final state
= The operation shown is “logically I:tgltzl e Ou O zt'gtae'
irreversible” under Landauer’s pros, 2 B A B o
original, literal definition 0.6 0.6
= Maps the 2V=4 initial computational
states to only 2 final states!
= . Merges some states! 04
= But in this specific operating context,
some initial probabilities are zero. 0.4

= Under such a distribution, note that the
input is uniquely determined by the output, given the probabilities!
= There are <2V possible (i.e., nonzero-probability!) initial states of the device
= This subset is mapped to a (different) set of states with the same size
= This operation, done in this context, is reversible, because its AS,,. = 0!
= Doing it does not eject any computational entropy into the environment!

Foundations of Generalized Reversible Computing

. Sae
Why this matters... T
irreversible logic gate
= Getting the definition of logical e
reversibility wrong is not without o st i 4 i s
serious consequences!! sy e
= Example: An article was published i iR it e e Hie

in Nature Communications last year - b s s
which claimed to empirically show that
even logically irreversible computation
doesn’t require dissipation (!)
= Of course, the actual computation that they performed was, in
fact, logically reversible, according to the correct definition...
= |t was an example of what | call a conditioned reversible OR operation,
whose precondition for reversibility happened to be satisfied.
= But, we can hardly blame researchers for getting confused
about this, when the definition of “logical reversibility” that we
ourselves have used since Landauer is in fact the wrong one!!
= |Let’s get this right, and avoid contributing to the widespread confusion...

withagy i

..
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Devices, Operations, Computations hE.
= To set up the new theory, we’ll find it helpful to
distinguish several different concepts:

= Device — Can perform one (or more) operations.
= A given device has some associated local state information
— Includes states of /0 terminals, internal states of device
= Operation — a (computational) operation is a map O
from initial states to final states (locally)
= The terms “input” and “output” are too vague — avoid!
= We can also consider partial maps (undefined=don’t-care)
= Generally speaking, the map O could also be stochastic...
— Probabilistic transition rule r;; = Pr[cF = Cpj | ¢ = ¢l
» However, that case is not our main focus at present
= Computation — a computational operation performed
within a specific operating context
= Context specifies/constrains the initial state probabilities
— These are essential for a meaningful thermodynamic analysis!

Foundations of Generalized Reversible Computing
. . )
Types of Computational Operations @i,
Define operations as (possibly partial) probabilistic transition relations
Nondeterministic Deterministic
i@iﬁi. Af'fit_e.%t_:i State set § State set §
o | @A =T 0 = ®
o
= ® T ® ®
P ey iy g
State st § State set § State set _5_ State set :.
=N - 10 & 0
5§ 2 N\
= »m Ve Bt T
55 < 0 o—— 0
S
S ¥
s ' e L < eemnmnnnas "
Initial state X Final state ¥ Initial state X' Final state ¥

7/10/2017

10



7/10/2017

Foundations of Generalized Reversible Computing

Operating Contexts & Entropy Ejection @&

= Operating contexts - A (statistical) operating context for a
computational operation O is simply a probability distribution P;
over the distinguishable initial computational states of O.

= A statistical situation in which the operation may be performed.
= |t carries an associated (computational) entropy H; = H(Py).

= After performing the operation O in an operating 8]
context P,, we will generally obtain some new Pe(cgj) = Z Py(cy) - 1ij
(“final”) probability distribution P, i=1

= with an associated final computational entropy Hp = H(Pg).

= Entropy-ejecting operations — A computational operation O is
called (potentially) entropy-ejecting if and only if there is some
operating context P; such that, when the operation O is performed
in that context, the entropy ejected from computational to non-
computational form is positive,
AS,. = —AH = H; — Hg > 0.
= By convention, we will only call an operation O non-entropy-ejecting if
(and only if) it is not even potentially entropy-ejecting.

Foundations of Generalized Reversible Computing

Fundamental Theorem of =
Traditional Reversible Computing

= Theorem: (Theorem 3 in paper) For any deterministic computational
operation O, we have that O is non-entropy-ejecting (according to the
prior definition) if and only if O is (unconditionally) reversible (i.e.,
injective on its entire domain).
= Proof can be carried out by considering what is the effect on computational
entropy when two computational states w. nonzero probs. are merged.
= However... What happens if a state with zero probability is merged with another?
— This thought sets us up for GRC.
= There are of course many examples of deterministic, unconditionally-
reversible operations; these are already very well-known in our field...

= However, when it comes to Generalized Reversible Computing Theory, these
types of operations, by themselves, are not the end of the story!

——
——
D &b PSS
NOT 'e 9‘
(in-place) oNoT coNOT CSWAP

(Toffoli) (Fredkin)
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Foundations of Generalized Reversible Computing

Conditionally Reversible Operations @&
= Focus here still on deterministic operations... Nondeterministic

= Could extend later to nondeterministic (randomizing) ops

= Definition: A (deterministic) computational operation O
is called conditionally (logically) reversible if and only if
there is any non-empty subset A € dom(0) of initial
states (called an assumed set) that O maps one-to-one Final state
onto an equal-sized set of final states. s random

= We can say, of any such 4, that it is a sufficient precondition for ~ Deterministic
the (logical) reversibility of O, or that it is admissible, for short. o his operalion

= We also refer to 0, (the concept of performing O in a context but...
where A is satisfied) as a conditioned reversible operation.

= Theorem: All operations that are deterministically
defined over some non-empty domain are conditionally
reversible. (Slightly stronger version of Theorem 4 in paper.)

It's

= Proof: Consider any singleton set A that consists of any one of the conditionally
initial states for which O is deterministically defined. m reversible,
* Theorem: If O is deterministic, and has n reachable final conderthe

states, then there’s at least one admissible set A © dom(0)  thenitial state
such that |A| =n. is (say) X

Foundations of Generalized Reversible Computing

") Sl
Defining computations, and what entropy- ) =
ejection and logical reversibility mean for them

= Computations - A (deterministic) computation C performable by a
device D is defined by a pair (0, P;) of a deterministic operation O
that D can do, and an operating context P; for that operation.

= This pair represents, performing the operation O within the context P;.
= (O must be defined over at least all the nonzero-probability initial states

= Entropy-ejecting computations — A computation C = (0, P;) is
(specifically) entropy-ejecting if and only if, when O is performed
within the specific operating context P, the entropy ejected from
computational to non-computational form is positive, AS,,. > 0.

= A computation (as opposed to an operation) shall be called non-entropy-
ejecting as long as it is not specifically entropy-ejecting.

= Logically reversible computations — (NEW, CORRECT DEFINITION)
A deterministic computation C = (0, P;) shall be called (specifically)
logically reversible if and only if the set A of all initial states that are
assigned nonzero probability within the operating context P (a.k.a.,
the active set) is a sufficient precondition for the reversibility of O.

7/10/2017
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Foundations of Generalized Reversible Computing

Fundamental Theorem of =
Generalized Reversible Computing

= Theorem: (Theorem 5 in paper) For any specific deterministic
computation C = (0, P;), we have that C is (specifically) non-
entropy-ejecting if and only if C is (specifically!) logically reversible.
= Note that here, we are using our new, more general, contextualized
definition of logical reversibility from the previous slide, not the
traditional, more restrictive, context-independent definition!
= The proof of the theorem is still similarly trivial, however.

= Theorem: (Theorem 6 in paper) Let O be any operation that is
conditionally reversible under some assumed set 4, and let the
total probability assigned to A by P, approach 1; then the entropy
AS,, ejected by the computation C = (0, P;) approaches 0.

= Thus, merely approaching 0 probability of violating some particular
assumed one of the sufficient preconditions for reversibility is a sufficient
logical-level condition for asymptotically approaching zero entropy
ejection (i.e., enabling an approach to thermodynamic reversibility).

Foundations of Generalized Reversible Computing

Proof Sketch of Asymptotic Theorem i =,

= Theorem: Let O be any operation that is conditionally reversible under

some assumed set A € dom(0), and consider any progression Pjq, P, ...

of operating contexts in which the total probability assigned to A by P;

approaches 1 as i — oo; then the entropy AS),. ejected by the computation

C = (0, Py;) approaches 0 in that progression, as i — oo.

= By assumption, the sum of the probabilities of states not in A (that is, in the
complementary set B = A = dom(0) — A) falls to 0:
Yicep Pri(c) » 0asi — oo,
= Lemma: For any state c € B with any probability ¢ = P;(c) > 0 that O merges with
some state in A that has a larger probability p = nq (wheren > 1), the
contribution As,,. of this state merger to the total entropy AS,,. ejected from the
computation approaches the following expression as the probability ratio n
increases (i.e., as the probability g falls, relative to p), to first order in n:
Aspe = %(1 + Inn)kg

And, this value itself approaches 0, almost in
proportionto g = p/n asit falls.

= Similarly, for states ¢ € B merging with other
states in B, their contributions As,,. to entropy
ejected are upper-bounded by their heaviness
h = qlogq~!, which approaches 0as g — 0.

= Since all the As,, fall to 0, so does their sum AS,,.

7/10/2017
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Foundations of Generalized Reversible Computing

Now, we can validly say this: =

= Assertion: For any deterministic computation
C = (0, P;), that computation can be carried out in
an asymptotically thermodynamically reversible way
(within the context of some appropriately-designed
family of implementable physical mechanisms) if
and only if C is specifically logically reversible

= ..where, note that this assertion invokes our new,
corrected definition of logical reversibility.

= To prove the “if” part of this assertion (and make it a
theorem) requires more technology development, but

= The “only if” part already follows from Landauer’s Principle.
= NOTE: The classic definition of logical reversibility is
the wrong one, because it does not actually satisfy
(the “only if” part of) the above assertion!!

Foundations of Generalized Reversible Computing

Notations and Examples .

= For conditioned reversible operations; general form:
OpName(x,y,z | P(x,y,2))
= QOperation named OpName, operating on (typically binary) state
variables x, y, z, with a precondition for reversibility of P(x, y, z),
= [e., the assumed set of possible initial statesis 4 = {(x,y,2) |P(x,y,2)}.

'
— X X X X
OpName % rSET | | __X rCLR| |
y % |lx=0 lx=1
P(x,y,2)
—7 z— {1 o}
Generic symbol for 3-variable operation Reversible set-to-one Reversible clear-to-zero
o d . — X x'—
U o
WX zcopy x| - "X runcopy, X| * zF xUnF,
ly=v ! ly=x ; "yl ¥ o —Y 12 F(:J}'—“
= = " zZ=v : = F(x,
LR y - "y y o Z' . il ¥y Z’— "
(Using Reversible
. »  default  — =1 3 . do/undo any " =
vl . value v) B _'| v . function F,
oy '_, wrt default |2
Reversible copy x to y Reversible uncopy y from x ’ value of v .

7/10/2017

14



Foundations of Generalized Reversible Computing

Conditionally-Reversible Operations are Useful! =3
Universality does not require unconditional reversibility

Conditionally-Reversible Boolean AND Operation Conditionally-Reversible Boolean OR Operation

CLE) - CL
- R

04 [11],\{[11]W 0.4
OO SED -

Statebefore A N| DO State after Statebefore QO RO State after
Example  —Operation operation bample  —oberation __operation .. ping
I o o ) H
infial sate  pal  SoRt ae ae  Fnese | sae O e S fnalstate
probahilities (g algite) (BitQ) (itsj(gis) (Birq)  probabilities | probabilities (meames) (BrQ) (Bienj(Eis) (ELQ) probabilities

D G0 | O ED
oo (L) o | o \m
| O 6 g 08 ©
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implementations!

= E.g.: Even asingle MOSFET (operated adiabatically) can do
a certain (conditioned) reversible COPY operation...
= QOperation sequence is as follows:
0. Driving node D is initially statically held at 0, input A also O.
1. Input A is externally supplied (D&B connected iff A is high)
2. Externally transition driver D from 0 to (weak) logic high 1~
3. Voltage level on node B follows D iff A is strong logic high (1)
— Bis then afterwards logically equal to A (with a weak swing)
= Note: Given a (strong) assumed precondition of B,
= je.,if allinitial states with B = 1 have prob. 0,
= this indeed performs a reversible COPY operation, rCOPY(4,B | B).
= Note: The output in this case is not full-swing,
= In this diagram, primes (') denote reduced-voltage logic high signals

— If we need full-swing outputs, we can use a transmission gate (parallel
nFET/pFET pair) with complementary controls

= A notation precisely describing this operation’s semantics is:

= [AB]if B = 0 then B == A (else, leave state unchanged)

— The expression AB in brackets gives the precondition for reversibility for
the entire operation (the operation is both logically reversible and
asymptotically thermodynamically reversible unless A = B = 1).

— The remainder of the statement describes exactly how the state will be
transformed in all cases (even if the precondition is not met).

= Note: Traditional reversible computing theory based on
unconditionally reversible operations is insufficient to
model the logical/physical reversibility of this operation!

Conditionally-reversible operations can have very simple =

Reversible COPY
rCOPY(A,B | B)

Initial state Einal state
In- Out- In- Out-
put put put put

oo™oo

_/0—1 0o A

(Here, D and B have a
reduced swing, but a T-gate
can easily fix this)

7/10/2017
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Two-Level Adiabatic Logic (2LAL)

Invented at the University of Florida, circa 2000

= Uses CMOS transmission gates for full-swing switching
= Logic signals implicitly dual-rail (complementary PN pairs)
= Logic NOT can be done by simply swapping (relabeling) rails
= Series/parallel T-gate combinations can do Boolean logic...

= The parallel gate pair at right can be used to (conditionally) ®
reversibly compute the output Q as A V B (logic OR) BNpli

= By DeMorgan’s law, by complementing both inputs and output of

¥

i

@2
DN

@1
ANP

this structure, we can also get: Q = AV B = A A B (logic AND). (and similarly for Q,)
P
= By cascading such gates, we can compute any binary function.

= QOperation sequence:
1. Precondition: Output signal Q is initially at logic 0 /_)R
2. Driving signal D is also initially logic 0
3. Attime 1l (@1), inputs A4, B transition to new levels
= Connecting D to Q if and only if A or B is logic 1
4. Attime 2 (@2), driver D transitions from 0 to 1 BNP
= () followsitto 1 if and only if A or B is logic 1
= Now Q is the logical OR of inputs 4,B DN
= Additional reversible steps that we can do afterwards: '

= Restore A, B to 0 (latches output Q in place at its current level) QN _

= 2LAL was the first adiabatic logic family capable of doing both logic and \7-)
latching in the same structure!

= Or, simply perform the above operation sequence in reverse @2

2
Oy

Foundations of Generalized Reversible Computing

Unconditionally-Reversible Operations (i s,

are only a special case...
More critiques of Landauer ‘61...

= |t was Landauer who first introduced
what’s now called a Toffoli gate
operation, or controlled-controlled-
NOT (ccNOT), an unconditionally

Consider, for example, a particular three-
input, three-output device, i.¢., a small special purpose
computer with three bit positions. Let p, g, and r be the
variables before the machine cycle. The particular truth
function under consideration is the one which replaces
rby p-qgif r—0, and replaces r by 5~ g if r= 1. The vari-
ables p and ¢ are left unchanged during the machine

Iogically reversible operation: cycle. We can consider r as giving us a choice of pro-
gram, and p, g as the variables on which the selected

re=r @ pq. program operates. This is a logically reversible device,
= landauer describes (correctly) that AND its output always defines its input uniquely. Nevertheless

can be embedded into this operation it is capable of performing an operation such as Anp
(Given initial ¥ = 0) ’ which is not, in itself, reversible.

= However, his statement here that the * The approach Landauer takes here, of XOR’ing
AND operation “is not, in itself, the result into the output bit, is indeed one that

reversible” is somewhat misleading!

= That would only be true if:
= The input bits were consumed...
— But, in modern technologies such as

CMOS, gates never actually consume
their inputs!

= Or, if the output bit was destructively
overwritten with the result...

— But, doing that is not necessary either!

is logically reversible in all operating contexts.
= But, it is rather complex to implement...
= The simpler, conditionally-reversible setting of the

output (w.r.t. an assumed default value) also works

fine, in suitably restricted operating contexts!

In my opinion, as a community, we should avoid

making statements such as “AND and OR are
irreversible,” since this can be misleading...
= Unless we include all of the appropriate caveats.

7/10/2017
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All truly, fully adiabatic circuits =
are conditionally reversible!

= “Dry switching” rules for designing truly adiabatic circuits:
= Never close a switch when there’s a voltage #0 between its terminals
= E.g.,don’t turn on a transistor when Vg # 0.
= Never open a switch when there’s a current passing through it.

= E.g.,don’t turn off a transistor when I, # 0.
— Only exception to this rule: If there’s an alternate path for the current.

= Never pass current through diodes (which have a voltage drop)
= Violating any of these rules leads to significant dissipation!

= Theorem: The operation of a switching circuit carries out a
(conditionally) logically reversible computation, in any operation
context where the above rules are always satisfied.

= |t’s impossible to erase information in any truly, fully adiabatic logic
operation. = Logically-reversible computing is key to adiabatic design

= But, the right definition of “logically reversible” is our generalized one!
— The same structures are not reversible/adiabatic if the rules are violated

Foundations of Generalized Reversible Computing

Nondeterministic GRC Theory

= Let’s briefly consider now the case of nondeterministic (here
meaning, stochastic) computational operations...
= These tend to increase the entropy in the computational state, that is,
we have a positive change in computational entropy, AH > 0,

= Thus, they tend to decrease the non-computational entropy, so that we
can have a negative change in non-computational entropy, AS,. < 0...

— Operations can be entropy-absorbing, as opposed to entropy-ejecting!

e

» C.f. paramagnetic cooling as a real physical example of this effect

= Even if a stochastic computation is logically “irreversible” (in
the sense of, not injective over its active set), it could still be
non-entropy-ejecting, or even entropy-absorbing...

= As long as the increase in computational entropy due to any
nondeterminism at least “breaks even,” with respect to counteracting
any decrease in computational entropy due to its irreversibility
= Such cases still need to be analyzed and characterized in more detail

7/10/2017
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Some ideas for future work... hE.

1. Give more examples of conditioned reversible operations;
= Find other simple, natural primitives that are easy to implement;

2. |lllustrate detailed physical implementations of devices for
performing such operations;

3. Further develop the theory for the nondeterministic case;
= Explore potential applications, e.g., in randomized algorithms

4. Develop additional descriptive frameworks at higher levels,
building upon the GRC foundation, e.g.:
= Formal/algebraic representation theory for GRC constructs
= Notations distinguishing preconditions for correctness vs. reversibility
= GRC-based hardware description languages
= GRC-based circuit architectures for useful functions
= GRC-based programming languages
= GRC-based software algorithms for useful functions

Foundations of Generalized Reversible Computing

Conclusion e

= By examining precisely how and why the validity of Landauer’s Principle follows
rigorously from fundamental physics,
= we can clearly infer that there exists a much broader range of computations that can
avoid ejecting entropy from the computational to the non-computational state than is
traditionally recognized within reversible computing theory.

= This leads to a corresponding new definition of logical reversibility that applies to appropriately-
conditioned computational operations, as well as to specific computations operating within any
statistical contexts that meet those conditions.

= |tis the resulting theory of Generalized Reversible Computing (GRC), and
not the traditional theory of reversible computing alone, that is the most
appropriate foundation for the design of real reversible hardware, because:
= |t well models the (generally only conditionally-reversible!) nature of the reversible
hardware devices that we actually know how to build;
= Such as, for example, adiabatic circuits constructed out of MOSFETSs;
= |t broadens the design space for constructing reversible architectures and algorithms,
= And allows us to compose them out of simpler primitives than we have been using so far;
= Understanding GRC theory also helps resolve some longstanding, widespread
confusions about the (correct, but widely misunderstood) connection between
logical and physical reversibility, and between information and entropy.
= We hope that this improved understanding will facilitate the emergence of reversible
computing as the dominant foundation for 21%t-century computing...

= Since this will be absolutely required in order for the efficiency and economic impact of
computing to continue increasing by many more orders of magnitude
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