Procedures for Calculation Verification
William J. Rider, James R. Kamm, and V. Gregory Weirs
Sandia National Laboratories, Albuquerque NM 87185

January 6, 2011

Overview

Calculation or solution verification is a process by which by which the discretization
or numerical error is estimated in simulations of problems of interest. Calculation
verification employs techniques of both error estimation and uncertainty
quantification (UQ). There are defined procedures by which numerical error
estimates can be converted to numerical uncertainty estimates. Each of these
techniques will be discussed in this document. We take the two terms calculation
verification and solution verification to be synonymous. Code verification is a related,
but distinct process where the correctness of a software implementation of a
numerical algorithm is evaluated, typically by comparison against an exact solution.

Numerical methods that are used to obtain approximate numerical solutions of
continuum models unavoidably lead to errors in the computed results. These errors
are associated with the numerical method alone and have nothing to do with any
assumptions related to the form of the continuum models (e.g., model-form errors).
The challenge of calculation verification is to help provide estimates of such
numerical errors. These errors are of four general types: (1) round-off errors,

(2) sampling errors, (3) iterative (linear and nonlinear) solver errors, and (4)
discretization errors.

Round-off error is an inevitable consequence of finite precision representation of
numbers on computers; with high-precision arithmetic, round-off errors typically
have smaller effect on computed results than the other primary error sources.
Sampling errors occur, e.g., for methods that are inherently stochastic (e.g., Monte
Carlo methods) or in sampling a system response quantity of interest. Iterative
solver errors are associated with the solution of any linear or nonlinear systems of
equations encountered during the course of the computational solution update
procedure. In practice, iterative errors may be difficult to reduce to the point where
they can be neglected. Discretization errors are a direct consequence of the
numerical scheme used to obtain a discrete approximation of continuous equations
(e.g., finite difference, finite element, or finite volume methods) and the solution
approach used on those discrete equations. For time-dependent problems, both the
spatial and temporal discretizations enter into the evaluation of these errors. Many
researchers contend that discretization error is often the dominant source of
numerical error in scientific computing simulations. This is consistent with much of
the authors’ experience, although nonlinear solver error can dominate strongly
coupled (stiff) problems.

The important concepts to consider regarding iterative solver error are covered by
Eca and Hoeckstra [E¢a09] and Oberkampf and Roy [Obe10]; we only briefly
summarize the issues here. The use of direct solvers for linear systems of equations
has become impractical for reasons of efficiency, so that iterative solvers are the
usual approach. The iterative solution of linear systems of equations is necessarily
inexact and generates a source of error to be estimated. Usually, the iteration will
terminate based on criteria not related to the actual error in the solution. This is
common if the iterative solver is developed as part of a general-purpose software
package. In this case, the estimation of error associated with the iterative solver is
essential. Furthermore, the default termination criteria may be unsatisfactory for
the application-specific context. In any case the uncertainty contribution must be
assessed with care. The iterative solution of nonlinear systems, which typically
involves both linear and nonlinear stopping criteria, has the same issues.

Among the most important characteristics of discretization schemes is the order-of-
accuracy (also called the convergence rate), which is given by the exponent in the
power law relating the numerical truncation error to the value of a parameter
associated with the discretization, usually given by the size of the computational cell
or time step. The factor multiplying this term gives a measure of the overall error of
a given scheme; thus, two different schemes that converge at the same rate may
have different (absolute) discretization errors. The standard method by which to
estimate this accuracy is systematic mesh refinement (or variation), although there
are other, less general approaches [Roy10a]. The results of this approach are
combined with error measurement to produce the observed rate-of-convergence,
which is compared with the ideal or theoretical rate-of-convergence of the
underlying algorithm. In calculation verification, unlike code verification, the use of
an analytical or exact solution to a problem is not available as an unambiguous
fiducial solution. Instead, the comparisons are made between solutions using
different grid resolutions.

To aid analysts in conducting solution verification analyses, the following workflow
for calculation verification is proposed.

1. Starting with an algorithm implementation (i.e., code) that has passed the
appropriate level of software quality assurance and code verification, choose
the software executable to be examined.

2. Provide an analysis of the numerical method as implemented including
accuracy and stability properties. (This information should be available from
the code verification analysis.)

3. Produce the code input to model the problem(s) of interest.

4. Select the sequence of mesh discretizations to be examined for each problem,
and the input necessary to accomplish these calculations.

5. Run the code and provide the means of producing appropriate metrics to
evaluate the difference between the computed solutions based on numerical

parameters within the control of the code user. This can also include the
numerical method chosen (order of approximation or scheme).

6. Use the comparison to determine the sequence of estimated errors
corresponding to the various discretizations and tolerances.

7. The error sequence allows the determination of the rate-of-convergence for
the method, which is compared to the theoretical rate. For iterative solver
errors, the error is a function of the stopping criteria and the discretization.

8. Using these results, render an assessment of the accuracy (level of error
estimated) for the simulation for a given set of numerical settings.

9. Examine the degree of coverage of features in an implementation by the
verification testing.

This document contains detailed descriptions of many aspects of calculation
verification, as well as a discussion of the general workflow outlined above. The
views contained herein are not meant to be a complete prescription by which to
conduct solution verification. Instead, they are intended to guide the conscientious
analyst in conducting studies that will contain defensible estimates of the numerical
errors inherent in computed solutions for complex, engineering simulations.

What Is Verification And Its Relation To Other Similar Activities?

Numerical simulations are increasingly used to increase understanding, to “solve”
problems, to design devices, vehicles and buildings, to “predict” responses of
complicated engineering systems, and to inform high-consequence decision makers.
Different assessment techniques are employed to address the different ways
numerical simulations can fail to provide accurate information. Ultimately, the
combined application of all the techniques provides enhanced confidence that the
accuracy of the numerical simulation process is adequate for a particular scenario.

The purpose of scientific simulation software differs from that of most commercial
software. Verification is needed for scientific simulation codes because this
software is designed to produce approximate solutions to mathematical problems
for which (i) the exact solution is not known and (ii) knowledge of the error is
potentially as valuable as knowledge of the solution, per se. Due to these
distinguishing and critical aspects of scientific simulation codes, software quality
practices from the broader industry (e.g., regression testing) are necessary but not
sufficient for high-consequence scientific simulation codes.

Verification analysis of scientific simulation codes is an example of the assessment
of a complex system for which the systematic gathering of appropriate evidence is
required. While tests may demonstrate that software is manifestly incorrect, there
is no clear-cut procedure with which to “prove” unambiguously that software
behavior is, indeed, correct. Thus, the process by which relevant verification
evidence is generated and interpreted requires knowledge of the entire simulation
and analysis chain. Such knowledge includes understanding of:

e The system being simulated (e.g., the relevant physics, physics models, and
these models’ representations in mathematical equations);

e The nature of the simulation (including the algorithms used to obtain
approximate solutions to the mathematical equations, these algorithms’
limitations, the associated numerical analysis, and the software
implementation of those algorithms); and

e The process by which the code results are analyzed in the verification
process (including, e.g., theory, implementation, and interpretation of
convergence analysis).

This body of knowledge is both large and multi-faceted; consequently, the
determination of appropriate of verification problems requires guidance from and
consensus among experts in each of these fields.

Decision makers and code analysts should bear in mind that simulation software
represents intricate numerical algorithms coupled with a complicated
hardware/system-software platform. Stated another way, code users and their
customers should recognize that simulation software is not a “physics engine” that
generates instantiations of physical reality. Hence, documented, quantitative
verification analysis is a necessary component for developing code confidence and
credibility.

At its core, verification of scientific simulation software both quantifies numerical
errors and defines a rigorous basis for believing that quantification. Providing an
error estimate for complex problems falls under the purview of solution (or
calculation) verification, while providing the rigorous basis for such estimates is
achieved with code verification. The overall activity of verification is the
combination of both code and solution verification.

More precisely, the different kinds of verification can be defined as follows:

e Calculation or solution verification: using the demonstrated convergence
properties of the code to estimate numerical errors in solving the model for a
problem of interest, involving the evaluation of results of the code alone. The
credibility of calculation verification is predicated on producing error
estimates from a code that have passed appropriate and relevant code
verification analysis.

e Code verification: comparing the results of a coded algorithm (i.e.,
instantiated in software) with an analytical or exact (i.e., “closed form”)
solution or highly accurate solution obtained by some other means!, for the
purpose of assessing the code.

1 For example, for certain problems governed by specific partial differential equations
(PDEs), the equation can be reduced to an ordinary differential equation (ODE), the solution
of which can often be obtained very accurately, sometimes exactly. A highly accurate

4

Both code and calculation verification focus on numerical errors. Calculation
verification is practiced by code users to estimate the numerical error in their
simulations in order to provide a justifiable, best-estimate solution. These estimates
are not guaranteed to be rigorous: they, too, are approximations. A key point is that
the activity of estimating numerical errors is part of the necessary due diligence for
conducting predictive simulations. In contrast, code verification is an activity
executed by code developers, mathematicians, and numerical analysts. It compares
the behavior of the actual, observed error from numerical simulations to the
expected error behavior as derived from rigorous mathematical proofs and
estimates.

A common confusion with regard to verification is associated with software quality
assurance (SQA), which is a vital, but essentially unrelated activity that comprises
an important discipline in its own right. Verification typically flourishes in a culture
focused on high quality, but good verification practices are neither necessary nor
sufficient for good SQA practices—and vice-versa. Each area of expertise should be
independently developed and supported, although the practice of each is mutually
supportive.

e Software verification: checking for a correct functioning of the software
system on a particular platform. This is often used to determine whether the
software has properly implemented the defined requirements of the
algorithms instantiated in the code.

Such software testing is a critical element of software development. The testing that
is closest to code development centers on software engineering techniques, such as
unit testing and regression testing, both of which address the correct functioning of
software. These types of testing use generic success metrics that apply to almost all
classes of software. In contrast, code and solution verification are assessment
techniques for software that provides approximate solutions, with metrics
specialized to the particular type of algorithm.

There is sometimes confusion of code verification testing with regression testing;
however, these are different testing procedures with completely different goals.
Regression testing is a software engineering technique that assesses the robustness
of software to frequent changes. Regression tests reduce to a (typically large)
collection of relatively simple problems that are executed at a regular (typically
frequent) time interval. Regression testing seeks principally to reduce the amount
of software rework that is created by the introduction of mistakes in software
modifications. This reduction is achieved by comparing today’s code with
yesterday’s code via execution of the regression test suite. Thus, regression testing
evaluates software stability, not mathematical correctness.

numerical solution of an ODE could be used as the de facto “exact” solution for purposes of
code verification analysis of a PDE solver for that problem.

This mathematical correctness is the purview of code and calculation verification.
Rephrasing our earlier definitions, calculation verification estimates numerical
errors for a problem of interest based on an assumed relationship between
numerical error and resolution (as measured by the discretization parameter); code
verification tests whether this assumption is satisfied for a known algorithm on a
problem with a known solution.

The outcome of code verification analyses should provide defensible evidence of
mathematical consistency—or inconsistency—between the mathematical
statements of the physics models and their discrete analogues as implemented with
numerical algorithms in the simulation codes. The necessity of calculation
verification must be emphasized. In the absence of confirmatory verification
evidence, “good agreement” of calculations with experimental data could be
accidental, i.e., “the right answer for the wrong reasons.”

Another activity that is confused with calculation verification is mesh sensitivity.
Mesh sensitivity is the process of comparing the solutions computed on two or more
grids for the express purpose of determining whether the solution is qualitatively
dependent on mesh resolution. The degree of dependence is usually assessed only
in a qualitative fashion, although the calculations, if done properly, can serve as the
basis for calculation verification. Without the quantitative verification component
of this activity, non-convergent calculations may remain unidentified.

Unlike verification, validation tests whether a model is a sufficiently accurate
representation of the physical processes in a particular problem. For detailed
discussions on the relation of verification and validation, we refer the reader to the
many published reviews on verification and validation; see, e.g., [AIA98, ASMO06,
HanO01, Joh06, Kam08, Knu03, Nel10, Obe02, Obe04, Obe07, Obe10, Ore94, Rid10,
Rid11, Roa98, Roa09, Roy05, Roy10b, Sar98, Sar01, Sch06, Sor07, Ste01, Ste06,
Tru03, Tru06] and the references therein. In scientific simulations the model refers
to the governing equations, which include initial conditions, boundary conditions,
constitutive relations, etc. To simulate essentially any nontrivial physical
configuration, these equations must be solved computationally, which depends on
numerical algorithms, corresponding software implementations, and appropriate
use of that software, including suitable assignment of model parameters. Therefore,
validation entails comparisons of approximate solutions of the governing equations
(which are an imperfect representation of the relevant physical processes) to
experimental data (which also contain inaccuracies). Quantitative comparison of
experiment (having, e.g., physical and diagnostic uncertainties) with simulations
(having concomitant modeling, algorithmic, and solution errors) remains a
challenging and strongly problem-dependent undertaking. It is regular
experimental practice to provide error bars showing the degree of uncertainty in
physical data, and solution verification can help provide estimates of the numerical
error in the corresponding simulations.

Every simulation requires a number of inputs to specify the problem to be solved,
including the choice among various numerical methods and how they are applied, as
well as the assignment of values for parameters in specific component models (e.g.,
specifying material response). These values may not be known exactly or may
represent some average or even ad hoc value that depends on the particular
situation. The process of identifying and quantifying the effects of the uncertainty of
these simulation inputs on the results of the simulation falls under the rubric of
uncertainty quantification. The most common way of estimating these effects is to
run a (typically large) number of simulations, in which the values of the inputs are
taken from user-specified distributions, to determine the corresponding
distribution of the results of interest. Unlike code verification, solution verification,
or validation, uncertainty quantification deals with the variation of simulation
results relative to how the problem is specified, rather than how well that problem
is solved.

Code verification is the foundation upon which the other assessment techniques
rest. The premise of solution verification is that the code converges at a known rate
as the resolution is increased; code verification establishes that this is, in fact, the
case. To compare experimental results to code results, both the experimental and
numerical errors must be meaningfully quantified, so they can be properly
accounted for in the comparison. Validation relies on solution verification to
provide estimates of the numerical error, a procedure that, in turn, relies on code
verification. The process of uncertainty quantification accepts the model, in this
case the code that produces numerical simulations, as an input. Inferences drawn
about the system that the model represents are inherently limited by the accuracy
of the model. Code verification ensures the model is correctly implemented and
underlies solution verification and validation that quantify the accuracy of the
model. Code verification is foundational in that without it, the conclusions of the
other assessment techniques are suspect, but the converse is not true.

On Defining A Verification Test Problem

To conduct a verification analysis, one must have (i) a clear statement of the
problem with sufficient information to run a computer simulation, (ii) an
explanation of how the code result and solution (i.e., the benchmark) are to be
evaluated, and (iii) a description of the acceptance criteria, including how the
calculation errors are to be estimated, for a specific simulation code’s results on a
particular problem. These concepts are adapted from the notion of a “strong sense
verification benchmark,” proffered by Oberkampf and Trucano [Obe07], and are
intended to enhance the value of verification analyses by reducing the ambiguity of
problem statements, evaluation techniques, and their interpretation.

Here, the problem statement should include not only a mathematical description of
the problem but also a discussion of the processes modeled (what does this problem
test?), the initial and boundary conditions, additional numerical information (what
convergence criteria are used?), the principal code features tested, and the nature of

7

the test. This latter element is addressed in [Obe07], with a set of different
categories of benchmarks; Kamm et al. [KamO08] provide examples of such problem
statements. Given the complexity of many problems of interest, however, such
problem descriptions may still not be definitive, i.e., there may remain unspecified
choices in problem set-up that the code analyst must make. Nevertheless, such a
description provides a starting point for setting up the problem as well as a
touchstone against which one can compare descriptions of the “identical”
verification problem, run by different analysts with different simulation codes on
different platforms at different times.2 In the written description and analysis of
verification problems, it is imperative that researchers describe as thoroughly as
possible the complete specification and set-up of the problem (up to including the
code input deck in the written report).

An explanation of the evaluation process by which results are to be evaluated is
imperative for both completeness and repeatability. This evaluation process
includes, e.g., in code verification what the “exact” solution is and how it is
evaluated. Such an explanation may also include how system response quantities
(the convergence of which is to be calculated) are evaluated from computed solution
variables.

Also required are a description of which errors are to be estimated and an
explanation of precisely how those errors are estimated. So that the analysis can be
meaningful, acceptance criteria on the error behavior for the quantities of interest
on the particular problem are also required, in the spirit of what might be found,
say, in a requirements document. In the absence of specific criteria, a codified
process for acceptance is necessary

Who Does Calculation Verification? Code Users

Complex simulations cannot be proven to be mathematically correct, or even
convergent to the “true” solution. Consequently, the accumulation of quantitative
evidence remains the exclusive basis for assessing the mathematical correctness
and its relation to physical correctness. The practical view is that this evidence is
accumulated over time. This accumulation occurs throughout the on-going
processes of code use and the considered analysis of the computational results.
Along with the results, the input to the code used to specify the calculation must be
carefully examined for correctness. This process is similar to the manner in which
software is examined. Code verification is the purview of code developers and
algorithm designers, whose responsibilities should include descriptions of
verification problems both in documentation and in actual code input. For those

2 Analyses containing the possible variations mentioned here differ markedly from “code
comparison” exercises, problematic aspects of which are pointed out by Trucano et

al. [Tru03]. Verification acceptance criteria should be sufficiently forgiving, however, to
allow small variations associated with imperfect specification of verification problems.

using a code to conduct analysis, their responsibility is to act mindfully regarding
the quality of the code, and the relevance of the testing to their problems of interest.
At best, they should act as advocates for quality control measures such as rigorous
and—to the degree possible—extensive verification because it supports confidence
building in the calculations for which the code is ultimately to be used.

Who Does Code Verification? Code Developers, Mathematicians, And Algorithm
Engineers.

Just as complex simulations cannot be proven mathematically correct, likewise
complex simulation software cannot be proven to be mathematically correct.
Consequently, the accumulation of quantitative evidence remains the exclusive basis
for inferring the mathematical correctness; as in calculation verification, this
evidence is accumulated over time through the on-going processes of code
development and code usage. Thus, the results of code verification analyses are
affected by the manner in which software is generated and the proper
specification/execution of the verification problems. While the former is the
purview of code developers and algorithm designers, responsibility for the latter
falls upon those who describe the verification problem both in documentation and
in actual code input.

Verification evidence emerging from code development is generated by software
engineering processes applied during that development, and by the specific testing
practices employed by the development team. Code usage evidence is a more
nuanced and diverse body of information that emerges from a heterogeneous group
of users. Testing executed under the umbrella of code development is not restricted
to the verification approaches discussed here. Unlike other testing procedures
applied by code developers (including, e.g., unit tests and the restricted cases
applied in regression testing), verification test problems strive also to be relevant to
code users.

Verification test suites can be implemented, managed, and applied by code
developers in the same manner as regression test suites. The major differences are:
(i) the development and execution of verification test suites typically requires more
resources (people, computers, time); (ii) the time interval of execution of a
verification test suite may be different than for regression testing; and (iii) the
direct methods for comparing today’s regression test suite results versus
yesterday’s baseline should be augmented by greater human involvement in judging
the quality of the verification tests where possible. On the other hand, subjective
judgment is ultimately intrinsically associated with the quality of software at some
fundamental level. For example, a verification study rarely produces results that
exactly produce the theoretical convergence rate; in fact, the observed rates can
vary greatly. The judgment of whether the result is close enough to expectations
remains largely a decision for a subject-matter expert matter. Improvement of this
state of affairs is an ongoing research area. This increased human element required
to assess the execution of verification tests emphasizes that an important value of

verification tests is their use in engaging the user community around a code.
Verification Techniques

The workhorse technique for estimating discretization error is systematic mesh
refinement (or de-refinement, i.e., coarsening), while the method for estimating
iterative error involves systematic changes in stopping criteria for the iteration. A
fundamental expectation for a numerical method is the systematic reduction in
solution error as, say, the characteristic length scale associated with the mesh is
reduced. By the same token, iterative errors are assumed to be smaller as the
stopping criterion is decreased in numerical value. For mesh refinement, in the
asymptotic limit where the mesh length scale approaches zero, a correct
implementation of a consistent method should approach a rate of convergence equal
to that defined by numerical analysis (often obtained with the aid of the Taylor
series expansion). In practice, this expectation is not always met, i.e., calculations
might not be in the asymptotic range. This circumstance does not obviate the need
for some estimate of the numerical error, however imprecise that estimate may be; in
fact the necessity may be increased under these conditions.

To conduct analysis using this approach, a sequence of grids with different intrinsic
mesh scales is used to compute solutions and their associated errors. The
combination of errors and mesh scales can then be used to evaluate the observed
rate of convergence for the method in the code. In order to estimate the
convergence rate, a minimum of two grids is necessary (giving two error estimates,
one for each grid). The convergence tolerance for iterative solvers can be
investigated by simple changes in the value of the stopping criteria. Assessing
iterative convergence is complicated by the fact that the level of error is also related
to the mesh through a bounding relation in which the error in the solution is
proportional to the condition number of the iteration matrix. Most investigations of
iterative solver error only consider the impact of the stopping criteria alone.

Another tool used in verification is error estimation. These methods are commonly
derived for the finite element method (FEM) for solving elliptic partial differential
equations. The best-known method is the Zienkiewicz-Zhu error estimator [Zie92].
One can use the error estimate constructively to drive adaptive mesh refinement, or
to produce an estimate of the error on a given mesh. While the error estimate is
produced, this approach does not necessarily produce the sort of evidence basis for
calculation convergence, however, because the rate of convergence is not produced
in the process. Moreover these tools are more strongly predicated upon the
solution being well behaved. Without solution smoothness in the asymptotic range,
these tools are highly questionable for precise error estimation. We focus on
techniques that can be applied without regard to whether the computations are in
the asymptotic range, because it is seldom encountered in practice.

10

Choice Of Metrics

Several metrics can be used to conduct code or calculation verification. For a
mathematically rigorous result, one seeks to evaluate the quantitative difference
between two sets of numbers, where each set corresponds to some aspect of the
solution computed in a self-consistent manner. For example, integration over the
same physically defined region provides a well-defined metric with which to gauge
such a difference. Generally speaking, one should employ the metric that follows
naturally from the function space in which numerical analysis proofs of convergence
are conducted. One often cannot apply this approach in practical circumstances.

For simple scalars (say, the value of some scalar property, e.g., temperature, at a
particular location at a specified time), the absolute value of the difference between
two values is the obvious choice. This notion generalizes naturally to higher
dimensional cases involving the difference between (discrete) function values from
the computational mesh. As examples, these values could be, e.g., a time series of
temperature at a particular location (the relevant computational mesh being in
time) or, say, the pressure field over a specified, fixed three-dimensional volume at a
specified time (the relevant computational mesh being in space). In such cases, one
often uses the familiar “p-norm” of functional and numerical analysis. The p-norm of
the function g is given by

Iel, =([/ ax) (1)

For example, for finite volume methods applied to discontinuous functions, the use
of the 1-norm is recommended, while, say, properties of inherently smooth
functions are most appropriately measured in the energy or 2-norm. It is can be
enlightening to evaluate several norms, e.g., 1-, 2-, and co-norms, where, following
from the equation above,

lel. = max|g(x)| (2)

xelab]

In the following, we use the double-bar notation “||” without a subscript to denote
any appropriate norm. Ideally, the practical results should be connected to
rigorous mathematical analysis, but this is often intractable.

In practice, the metrics tested for code and solution verification are generally
different. For code verification, numerical analysis of the algorithm defines the
metric and the expected convergence rate, and the assumptions under which
convergence is expected. For most spatial and temporal discretizations, the metric is
an appropriate norm of the error of the solution; that is, the error of a field variable
integrated over the computational domain. The numerical analysis specifies how the
error is defined. Depending on the properties of the numerical method and the

11

solution, the theoretical convergence rate may be expected to apply for point values
of the solution as well.

For calculation verification, the analyst or code user chooses metrics that are
important to the decision maker; these metrics are sometimes called Figures of
Merit (FOMs), Quantities of Interest (QOIs), or System Response Quantities (SRQs).
These metrics provide the “answer” to the question the analyst is trying to address;
determining their values is the reason for running the set of simulations. These
metrics may be full field solutions, but more often are values or functionals of the
solution at a particular location or time. The convergence of such metrics will
depend directly on the mathematical relationship between the FOM and the
numerical field solution provided by the simulation. In practice, the quality of FOM
error estimates often suffers because the rigorous connection between the
numerical field solution and each FOM can be difficult to establish. For example,
while very popular as FOMs, point values of the solution are often much more
sensitive than integrated quantities and, when reliable error estimates can be
obtained for them, the estimated errors are comparatively greater.

Generally, convergence can be proven only under extremely limited circumstances.
For example, a discontinuous solution of a hyperbolic system of equations can be
proven to converge in the L1 norm of the solution [Maj77]. Other functional
relations will not have a precisely defined convergence rate or character. More
broadly speaking, the convergence depends upon the smoothness of the solution:
the smoother the solution (i.e., having higher derivatives that are well-defined), then
the better the chances for convergence in higher norms. The max norm (L) is
generally the most difficult norm in which to obtain (or expect) convergence. The
max norm is the largest error in the solution and it is defined at a single location.
FOMs involving only a single point in the solution often mimic the behavior of the Lo
norm, thus carrying the same expectations for convergence.

Observed Convergence Behavior

Given a well-defined metric and a series of at least three calculations on successively
refined meshes, there are five generic outcomes of a convergence analysis. These
possibilities are depicted notionally in Fig. 1. The diagrams in that figure show that
the inferred behavior can be: (1) monotonic or oscillatory, and (2) convergent or
divergent. The fifth possible behavior, shown in the center, is neither monotonic
nor oscillatory, neither convergent nor divergent: instead, this limiting case exhibits
a bounded behavior, suggested by the dotted line. Of these possibilities, the
monotonically convergent case is the “ideal” case that one desires to occur for a
consistent, stable numerical scheme on a problem. The other cases comprise the set
of possible non-ideal behaviors, which are sometimes observed in practice.

12

log(Ax)

- 4 .
5 & :
o0 ® i
q:; - Q- __ L
=
o
@)
s log(Ax)
k=
(D]
Z
gt @
- A |
= S T —__-_-@-
(D]
5
2
[
log(Ax)
Monotone

Neutral

L
|
...... § R ——
. |
® 1
|
®
>
log(Ax)
.
Q
L
|
______ | R ——
. i
: e
®
-
log(Ax)
Oscillatory

Figure 1. Schematic representations of possible behavior for computed
solutions under mesh refinement. The individual plots are notional graphs of
computed solution, g, versus the log of the mesh spacing of the calculation, Ax;
the dashed lines are intended only to guide the eye. The vertical axis in the
overall figure goes from divergent to convergent, and the horizontal axis from
monotone to oscillatory. The ideal case of monotone convergence under mesh
refinement is in the upper left of this figure, and the limiting case of neutral

behavior is in the center.

Ideal Asymptotic Convergence Analysis

In this section, we examine the case of ideal asymptotic convergence analysis. The
axiomatic premise of asymptotic convergence analysis is that the computed
difference between the reference and computed solutions can be expanded in a
series based on some measure of the discretization of the underlying equations.
Taking the spatial mesh as the obvious example, the ansatz for the errorina 1-D

simulation is taken to be

l¢" ¢

=A,+ A (Ax) +0((Ax)a)

(3)

13

In this relation, g’ is the reference solution, which for calculation verification is
computed on a refined mesh, g° is the computed solution, Ax is some measure of the
mesh-cell size, A, is the zero-th order error, A, is the first order error, and the

notation "0((Ax)a)" denotes terms that approach zero faster than (A% as Ax—0*.
For consistent numerical solutions, Ao should be identically zero; we assume this to
be the case in the following discussion. For a consistent solution, the exponent o of
Ax is the convergence rate: a =1 implies first-order convergence, & =2 implies
second order convergence, etc.

Assume that the calculation has been run on a “coarse” mesh (subscript ¢), and a

very course mesh (subscript vc) characterized by Ax, (Ax,.), which we hereafter also
denote as Ax. The error ansatz implies:

A+ A (Ax) (4)

¢ — ¢

Let us further assume that we have computational results on a “fine” mesh Ax;
(subscript f), where 0 < Ax; < Ax, with Ax./ Ax; = o > 1. In this case, the error ansatz
implies:

= 07“A (Ax)" +... (5)

¢ &

Manipulation of these two equations leads to the following explicit expressions for
the quantities aand A;:

]/10g0 (6)

/(Ax)" (7)

o=[log[lg’ - ¢ -togle" ~ ¢

A= Hgf -g

These two equalities are the workhorse relations that provide a direct approach to
convergence analysis as a means to evaluating the order of accuracy for code
verification.

For QOIs or FOMs the above development can be utilized without resorting to error
norms. The quantity, G, is defined without the use of a norm with the following
related error model,

G=G"+A/(Ax) +... (8)

with the remainder of the development proceeding as above provided the approach
toward G, the mesh converged solution, is monotonic. In the case where a solution
is not monotonically approached, the above error model can still be utilized as long
as the error in absolute terms is diminishing monotonically. This recommendation
is in some clear opposition to the existing literature although error norms

14

themselves are typically positive definite quantities. The more general cases are
described next.

Non-Ideal Asymptotic Convergence Analysis

The term “non-ideal” refers to situations for which the error does not monotonically
decrease with increasing mesh refinement in the simulation: the computed
solutions may diverge under mesh refinement, in either a monotonic or non-
monotonic fashion, or the computed values may have no overarching characteristics
beyond simply being bounded. Some researchers contend that one cannot make
further statements about calculations that do not exhibit the ideal asymptotically
convergent behavior described in the previous section. Insofar as such non-ideal
behavior is often seen in practical engineering simulations, however, this section
contains a discussion of the analysis of such non-ideal cases.

Several authors have offered schemes by which the behavior of computed solutions
on three or more grids can be categorized. These approaches seek to automatically
classify the convergence behavior into one of the categories shown in Fig. 1. The
salient parameters in these analyses are the theoretical convergence rate of the
underlying numerical scheme, ¢, and the observed convergence rate, based on
Richardson Extrapolation (see, e.g., [Obe10]), corresponding to the actual
simulation results, ¢4;. A study of this approach is given by Xing and Stern [Xin10],
who build upon earlier work of Eca and Hoeckstra [Eca06]. The following
discussion is based on these publications; for further background, see the earlier
works of Logan and Nitta [Log05] and Stern et al. [Ste01]

For the estimation of convergence properties of scalar quantities, Eca and Hoeckstra

[Eca06] approach the problem of estimating the observed convergence rate as a
least-squares solution to the governing error ansatz equation,

6" -G

=A (Ax)" +... (9)

Let p denote the convergence rate corresponding to the least-squares solution for
this equation based on the signed differences of results computed with adjacent grid
spacings, i.e., where both positive and negative values are allowed on the left-hand
side of Eq. (9). Similarly, let & represent the convergence rate corresponding to the
absolute differences of results computed with adjacent grid spacings, i.e., where
absolute values of the left-hand side of Eq. (9) are used. Then, the behavior of the
set of computations is determined from the following algorithm:

If a>0 then monotonic convergence
Else if a<0 then monotonic divergence
Else if o <0 then oscillatory divergence
Else oscillatory convergence

15

A second way to characterize the nature of the convergence is to examine the ratio
of signed error in the solution from one mesh refinement level to the next,

R=(G"-G")/(G -G")=A7/A™, (10)

If R<1 then monotonic convergence
Else if R>1 then monotonic divergence
Else if R <-1then oscillatory divergence
Else (-1 <R<0)oscillatory convergence

Estimation Of Associated Numerical Uncertainty

Once the nature of the solution has been properly categorized, the numerical
uncertainty can then be estimated as part of the overall uncertainty estimate.3 The
Grid Convergence Index (GCI) of Roach (see [Roa98, Roa09]) is perhaps the original
attempt to codify the numerical uncertainty associated with inferred convergence
parameters. Roache [Roa98] claims that there is evidence for the numerical
uncertainty based on the GCI method (with a safety factor of 1.25) to achieve a 95%
confidence level. This approach was extended to the Correction Factor (CF) method
of Stern et al. [Ste01]. Xing and Stern [Xin10], however, take issue with both of
these approaches, stating, “...there is no statistical evidence for what confidence
level the GCI and CF methods an actually achieve” and, more specifically, that their
analyses “...suggest that the use of the GCI1 method is closer to a 68% than a 95%
confidence level.” As we describe below, Xing and Stern come to a different
conclusion regarding an approach that does meet the 95% confidence level
empirically.

Eca and Hoeckstra [E¢a06] propose heuristics by which to estimate the numerical
uncertainty associated with fundamental behavior of a set of computed results.
These suggestions appear to be based on the assumption that the underlying
numerical scheme has a theoretical convergence rate of two; however, for many
multiphysics (and some single-physics) problems, the theoretical convergence rate
is unity, for which the specific prescription of [Eca06] should be modified. It is
worth noting here that the convergence rate is both a function of the scheme
employed and the nature of the solution sought itself. For example, a second-order
method applied to a problem with a discontinuous solution cannot product a
second-order convergent result. Hence the expected theoretical convergence rate is
to be considered a function of both the method used and the solution sought.

Xing and Stern [Xin10] take a different approach. To evaluate the numerical
uncertainty associated with these solution verification estimates, Xing and Stern
performed a statistical analysis of 25 sets of computational data, covering a range of

3 The proceedings of the 1st, 2nd, and 3rd Workshops on CFD Uncertainty Analysis [Eca08]
provide an interesting reference on many aspects of uncertainty analysis for CFD.

16

fluid, thermal, and structural simulations, to arrive at various parameters for their
estimations of simulation uncertainty. The parameters obtained by Xing and Stern
provide computational uncertainty estimates that demonstrably satisfy the 95%
confidence level for the data sets upon which that analysis is based. They suggest
that the formula below provides a safety factor with empirical, statistical support.
We suggest following this approach whenever the grid sequence provides a
convergent sequence.

(245-0.85P)8,].if0< P <1
(164P—14.8)|8,].if P>1

U, = Fss,|= (11)

where P = ore/own defines whether the solution is asymptotic in observed nature.
The numerical error magnitude comes from the Richardson extrapolation toward
the monotonically mesh converged solutions as

G’ -G*
=T (2

or the related error estimate for monotonically decreasing error as

G’ -G
511:0:— (13)
o’ -1

In the case where the solution is not convergent, the numerical uncertainty should
nonetheless be estimated, however rough those estimates may be. It is the authors’
experience that users of codes will generally move forward with calculations and—
without guidance to the contrary—may offer no numerical uncertainty estimates
whatsoever. We maintain that this practice is potentially more dangerous than
providing a weakly justified estimate. We offer the important caveat that this bound
is not rigorously justified; instead, it is perhaps appropriately viewed as a heuristic
estimate that can be produced given limited information. The simplest approach is
to examine the range of solutions produced and multiply this quantity by a generous
safety factor,

U,., =3(maxG —minG) (14)
The safety factor, set to 3 in (14), might assume different values in different
computational science applications. This heuristic approach is similar to that
advocated by Eca and Hoekstra [Eca06].

An alternative approach would involve postulating that the numerical error has a
portion that vanishes under mesh refinement and a portion that is constant,

17

G’ -G|=1U,,, + A Ax (15)

the uncertainty is then the constant portion, which for a divergent calculation will
be larger than any of the values computed.

The errors associated with iterative (linear and nonlinear) solution of systems of
equations can be approached similarly. We note that many investigations have
sought to merely render these errors too small to be significant. While such an
approach can work, it may not be generally possible in practice. A more complete
approach is to quantify these errors in terms of the controllable numerical
parameters, usually the stopping criteria for such iterations.

First, consider the dependence of the error in a solution on the stopping criteria,

I,

— < tol
I (16)

where 7, = Ax, — bis the residual , A is the linear system, b is the right hand side and

Xk is the solution vector after the kth iteration. The error in the solution is then
bounded as

I,

I

with k{A) being the condition number of A defined by the product of the operator
norm of A1 with the operator norm of A, which reduces to ratio of maximum to
minimum eigenvalues in the case of matrices [Kel95]. The condition number of a
matrix defined by the discretization of a PDE is related to the mesh spacing. For

example an elliptic PDE will usually have a matrix representation that scales as
1/(4x)2.

%= x|~ x(4) (17)

Returning to the estimation of error, the simplest numerical parameter to control is
the tolerance of the linear solution. We can use the same approach as for mesh
spacing and propose that the normed error in the solution be

= B, (tol)’ (18)

¢~ &

The remaining procedures discussed above can be applied in this case, although we
do not have sharp expectations about the power law dependence of the solution on
the tolerance. We propose the use of a simple uncertainty estimate of

U, =1255] (19)

18

where

" =g]. oty
9 (101) (20)

The overall uncertainty from numerical approximation uses the RMS of these two
estimates as

Uappmx = V jum + Utzol (21)

Verification Subtleties

Op

There are several subtle but important—and, in some cases, open—issues
associated with the estimation of the quantities mentioned above. While the
following topics may be considered by some to be arcane, they should be borne in
mind by those devising and conducting verification analyses, as well as by code
analysts.

» Nondimensionalization The above discussion of the error ansatz and the
associated convergence parameters contain no assumptions regarding the
dimensions of the associated variables. Consequently, parameters in the resulting
scaling relations (e.g., Egs. 3 and 4) may have inconsistent units. One way to avoid
this issue is to nondimensionalize all quantities prior to conducting such an analysis.
For example, one can choose representative quantities ¢ and X with which to
nondimensionalize the computed quantity g and the representative mesh scale Ax:

g =g/G and Ax"=Ax/X (22)

The nondimensional error ansatz is posited to be

g —gcl=A(AX) +... (23)

where all terms in this equation are now dimensionless. In this case, care must be
taken to nondimensionalize consistently throughout the analysis, and to properly
dimensionalize results, e.g., if one were to use this relation to estimate errors at
another mesh size.

e Dimension For problems in multiple space dimensions (e.g., 2-D Cartesian (x,y)),
the spatial convergence analysis described above can be assumed to carry over
directly, such that, e.g., the ansatz of Eq. 3 follows identically. That is, one typically
does not assume separate convergence rates in separate coordinates. This is a
reasonable assumption in almost all cases; the exception is time-convergence, since

19

the time-integration scheme for a PDE may be of different order than the spatial
integrator. For a more thorough discussion and examples of combined space-time
convergence, see [HemO05, Tim06].

e Frame Spatial convergence analysis is idealized to refer to a fixed mesh, i.e., the
Eulerian frame. Approaches have been taken to extend convergence analysis
simplistically to the Lagrangian frame (e.g., [KamO03]). More sophisticated
approaches, however, are needed. For example, since the fundamental Lagrangian
equations are discretized with respect to mass and not space, an error ansatz
analogous to Eq. 3 with the characteristic mesh discretization parameter Ax
replaced by a characteristic mass discretization parameter Am would be more
faithful to the underlying formulation.

» Non-uniform Meshes The intention behind the expression “Ax” in Eq. 3 is that it is
a meaningful measure of the characteristic length-scale of mesh cells of the
discretized equations. If either adaptive mesh refinement (AMR) or an arbitrary
Lagrangian-Eulerian (ALE) approach is used, however, such a quantity—if one
exists—is likely to change during the course of a calculation. Again, straightforward
approaches for non-uniform and AMR meshes have been examined (e.g., [Li05]), but
these are topics of open research.

e Norm Evaluation The expression for the norm in Eq. 1 is appropriate, e.g., for
Cartesian geometries. This term must be appropriately modified for non-Cartesian
geometries. For example, for 1-D spherically symmetric calculations, the integral of
the norm is properly expressed as

lel, = ([,

1/p

g(x) dx)]/p = (Jj|g(x)|p 4rr’? dr) . (24)

In general, when evaluating the norm one must be mindful of the domain of the
integral as well as any symmetries associated with the problem.

e Norm Evaluation and Interpolation on Different Meshes The expression for the
convergence rate ¢ in the calculation verification (Eq. 6) implies a direct
comparison of computed solutions on three different meshes. The analogous
expression (Eq. 6) for code verification requires an indirect comparison of
computed solutions on two different meshes. To evaluate the differences of two
calculations, a common mesh is required; this begs the question: should one
extrapolate (“restrict”) fine-mesh values to the coarse mesh, or interpolate
(“prolong”) coarse-mesh values onto the fine mesh? Margolin and Shashkov
[Mar08] provide a rationale for the former: “...by moving each of the simulation
results to the coarsest mesh, we average out the smaller scales and eliminate them
as a source of error in studying convergence, thus isolating the discretization error.”
The detailed manner by which one should move solutions between different meshes

20

remains an open research area. Particular attention should be paid to accurately
interpolating solutions near discontinuities.

» Tracers as Figures of Merit A tracer is an imaginary particle that does not
influence the simulations; it is effectively a point in the computational domain at
which the values of the field variables are recorded over time and is used as a
diagnostic. Most often tracers are Lagrangian (i.e., they move with the material) or
Eulerian (i.e., they are associated with a fixed spatial location.) As FOMs, tracers
present several challenges: they record point values, and, as mentioned earlier,
point values may not converge at the same rate as the error integrated over the
computational domain; they may be more sensitive than integrated quantities;
interpolating field variables to tracer locations adds interpolation error (a form of
discretization error) to the to the values recorded at the tracer; and, for tracers that
move with respect to the mesh, the location of the tracer is itself subject to
discretization error. For these reasons, FOMs associated with tracers can have
relatively large numerical uncertainties. Research effort to address these
uncertainties is warranted, however, as tracers remain a common type of FOMs.

Example — Direct Numerical Simulation Of Turbulence

In this section we use data from turbulent flow simulations to illustrate a sample
calculation verification analysis focused on estimating the numerical uncertainty
associated with the estimated discretization error. This analysis is conducted using
a series of calculations carried out on a sequence of uniformly refined meshes.

The foundation of this approach is the standard error ansatz utilized in verification
as discussed previously. Here, the quantity 6 denotes the extrapolated difference in
the solution from the fine grid to the desired mesh converged solution assuming the
convergence rate is constant.

We first consider some idealized examples that illustrate possible outcomes for
mesh refinement studies. The figures below provide a schematic representation of
experiment and calculation comparison with increasing levels of mesh refinement
(Figures 2 through 6). These figures are intended to give a notional representation
of current practice and how it can advance toward desired practice. The figures
begin with generally accepted current practice in fluid dynamics and show how,
with modest additional effort, one can achieve improved analysis results including
calculation verification. They do not, however, include a detailed uncertainty
assessment, which is also needed.

21

n

Figure 2. Typical comparison of experiment and calculation. The line denotes
the calculation and the symbols denote the data with error bars.

Figure 2 depicts the fundamental comparison of experiment data (the symbols and
associated vertical error bars) with computational results (the continuous line).
The graphical comparison of these values in this example provides some qualitative
evidence that a single calculation and the experiment are approximately congruent.

22

n

Figure 3. The usual mesh sensitivity representation. The dashed line is a
more coarsely discretized calculation, and the “closeness” of the lines is meant
to reassure the observer of the accuracy of the calculation. This does not
constitute verification of the calculation. This is an example of how mesh
sensitivity is often presented, that is the two calculations appear to be close,
but no convergence is quantitatively assessed.

A useful next step is illustrated in Fig. 3, which adds the results of a comparable but
more coarsely discretized calculation (dashed line) to the basic experiment-
calculation graphic of Fig. 2. The evidence provided by such a plot can provide
qualitative hints (i.e., mesh sensitivity) as to whether the computed results might
approach or diverge from the experimental data under mesh refinement. Also, the
resource requirements of the additional calculation (on a more coarsely discretized
mesh) are reduced relative to the original calculation. Such graphical comparisons
do not, however, constitute any form of verification of the calculation. The
procedures we describe in this document provide the means to produce such a
verification analysis.

23

n

Figure 4. The finest grid used is denoted by the solid line (which is above the
dotted line), and the coarest grid result is given by the dotted line. In the case
depicted, the error in the calculations does not shrink as the grid is refined, an
indication of non-convergent behavior. The danger of mesh sensitivity is
illustrated here with this non-convergent sequence of calculations.

A valuable further step is illustrated in Fig. 4, which adds to Fig. 3 the results of an
even more coarsely discretized calculation (dotted line), with a mesh resolution ratio
equal to that of the results in Fig. 3. In the situation depicted, the difference
between any two pairs of nearby calculations remains approximately constant under
a uniform refinement. Such results imply that the calculations are not converging. It
is an example of possible monotone, divergent behavior.

Independent of the lack of convergence of the calculations under mesh refinement,
the evidence provided in this notional plot provides qualitative evidence suggesting
that the computed results diverge from the experimental data under mesh
refinement. And, again, the resource requirements for this third calculation are
reduced relative to the previous two calculations. This plot alone does not
constitute verification; however, with this third calculation, the necessary
information is now available to evaluate quantitative error and convergence rate
estimates.

24

n

Figure 5. A first order convergent example is shown in schematic form. The
finest grid is the black solid line and the dashed lines correspond to two
coarser resolutions. For a mesh doubling procedure in which a factor of two,
the level of error in the calculation with the refined the mesh spacing also
halves as the grid is refined. For example, a second order result would produce
an error level that is reduced by a factor of four as the grid is refined.

A different possible outcome of a third calculation is shown in Fig. 5. The most
coarsely discretized calculation (dotted line), again with a mesh resolution ratio
equal to that of the results in Fig. 3, now suggests that the difference between any
two pairs of nearby calculations decreases under uniform refinement. That is, the
difference between the dotted and dashed line looks greater than the difference
between the dashed and solid lines. Thus, this plot provides qualitative evidence
that the sequence of computations appear to be converging under mesh refinement.
This is an example of possible monotone, convergent behavior. Again, this plot
alone does not constitute verification, but it contains the necessary information to
evaluate quantitative error and convergence rate estimates.

25

n

Figure 6. A mesh sequence and extrapolated solution is shown. The solution
extrapolated from the finest grid solution is the solid red line. The finest grid is
the black solid line and the dashed lines correspond to two coarser resolutions.

Figure 6 contains includes the graphical results of such a quantitative analysis. The
red line in this diagram represents the extrapolated solution, which is computed
based on the convergence rate estimate obtained from the sequence of three
calculations. This extrapolated solution can be compared against the experimental
data to provide an estimate of the error between experiment and simulation.

We now turn to a quantitative analysis of such a situation. This analysis is based on
the scalar values calculated for turbulent mixing simulations of Donzis [Don07]. In
the following, we apply calculation verification to the simulations defined in Table 1
below. The values in this table relate to characteristics of the different simulations.
Note that, per the value of grid points (N3) reported in the second row, there is a
uniform mesh refinement ratio between computed results. Also, the value in the
fourth row, kmax 7, the product of the maximum wavenumber resolvable on the
mesh (kmax) and the Kolmogorov scale (77), corresponds to the inverse of the mesh
size, 1/4x, so that smaller values of kyax 1 represent coarser mesh resolution.

Table 2 contains results of the calculations and simulations for various ensemble-
averaged moments of the dissipation &€ and enstrophy (2. The values contained in
this table are examples of statistics that one would expect to be well behaved in a
direct numerical simulation (DNS). For the R;=140 case, there are four calculations
at four different mesh resolutions, with each pair of mesh spacings differing by a
factor of two, while for the R,=240 case, there are computed results at three

26

different mesh resolutions. Recall that smaller values of knaxt) correspond to
coarser mesh resolution. We analyze the results in Table 2 using Eqs. (10)-(14).

Table 1. Table 3.1 from [Don07], containing several computed quantities for
turbulent mixing simulations conducted on four different meshes. The row starting
with N’ contains the number of mesh points used in the corresponding calculations.

Table 3.1: DNS parameters: Taylor-microscale Reynolds number Ry = /A /v, mumber of
grid points V3, viscosity v, resolution measured by ka7 and Az /5, number of independent
realizations N, and length of the simulation T' normalized by eddy turnover time Ty = L/u'.

R 140 140 140 140 240 240) 240
N3 o256 5128 1024 2048% | 5128 1024° 2048°
v 00028 0.0028 0.0028 0.0028 [0.0011 0.0011 0.0011
kmazt) 1.4 2.8 5.7 11.1 1.4 2.8 5.4
Ar/np 210 105 052 027 | 208 104 055
N, 11 16 18 11 13 12 14

T/Tg 10.0 72 8.5 6.0 9.4 54 54

27

Table 2. Table 3.2 from [Don07], containing several computed quantities for
turbulent mixing simulations conducted on four different meshes for two cases,
R;x140 (top) and R;>240 (bottom).

Table 3.2: Ensemble averaged moments of dissipation and enstrophy at Ry =~ 140 (top)
and 240 (bottom) with 90% confidence intervals.

Ry =~ 140

Emaz) 14 2.8 5.7 111

((£)%) 253+004 285 +007 277 £0.06 2.82+ 008
{("®) 1414+06 215+16 199+14 207 +21
{(eH 153 + 14 388 £ 58 341 + 48 364 + 81
(') /(2)? 23.9 478 445 45.8
()2 452+009 519+0.18 507+019 5204023
(' 63.0+£31 1000+93 042400 976+ 13.1
()% 2022 £ 179 5315+ 989 4020 + 965 4751 + 1200

QY /(02)2 99.2 197.1 191.3 175.9

Rl =2 240

| 14 2.8 54

{(¢)%) 307005 317007 315+ 006

{(¢)* 2534+ 1.3 201+ 1.8 288 4+ 1.7
()Y 488 + 53 696 + 83 697 + 89
(') /{%)? 51.9 69.3 70.4

((92)2) 581 £0.13 599+018 593+ 0.12
()3 133 £ 8 150 + 14 142490
(S¥)Y) 8364 £ 1017 11222 + 1869 10211 + 1503

QY /(022 247.7 312.8 200.6

28

Data Reduction Using Calculation Verification

The results will be displayed below for some representative quantities taken from
these tables. For the R,=140 case, the first mesh sequencing looks positive, but the
last mesh casts doubt on these inferences, as the convergence rates drop in every
case. Consequently the numerical uncertainty grows larger and, in some cases,
becomes undetermined due to divergence. In the case of these calculations the
nature of the flow including the formation of (quasi-)singular structures would
indicate the expected convergence rate to be first-order irrespective of the
numerical method used.

Before presenting results, some comments are in order. First, all the differences
shown use the absolute value of the difference in the solutions; hence, the numerical
uncertainty is plus or minus the indicated value. If the solutions are monotonically
approaching a value, then the numerical uncertainty would be one sided (for
example <(£’)2>), and the appropriate error bar would be asymmetric. The fourth

«_n

grid is given the subscript of “v” to denote “very fine”. All mesh refinement ratios, r,
are two. The large change in the convergence rate may indicate that the solutions
might not be converged even at the finest mesh used. A situation that would
provide a higher degree of confidence in the solution would show similar
convergence rates for quantities across the full sequence of meshes used.
Divergence indicates that these values may be unreliable from the perspective of
numerical simulation.

The results of our analysis of the R,=140 case are given in Table 3. In this table,

A,,, denotes the difference between the coarse and medium solutions (see Eq. (10)),
o, is the inferred convergence rate using the coarse-medium-fine results (see Eq.
(10)), and U, gives an estimate of the associated numerical uncertainty on the finest
of the corresponding meshes (see Egs. (11-14)). The analogous values subscripted
mf, fv, and mv correspond to calculated results using the medium, fine, and very fine
computational grids.

We evaluate the inferred uncertainty results by comparing the computed values of
numerical uncertainty U (in the last two columns of Tables 3 and last column of
Table 4) with the corresponding statistical (i.e., ensemble) uncertainty values in the
corresponding quantities in Table 2 (i.e., the values immediately after the “+” sign).
Inspection of these values shows that on the coarser sequence of grids, the
numerical errors are larger in magnitude than the statistical uncertainty (with
similar confidence bands 90% for DNS and 95% for the numerical uncertainty
estimators). For example, for the dissipation quantity given by <(¢€’)?> in the R,;=140
case, the numerical uncertainty associated with the discretization error on the
coarse-medium-fine grid results, 0.48, is greater than the corresponding ensemble-
averaged statistical uncertainty, 0.06. To repeat, the estimated numerical
uncertainty associated with the discretization error is greater than—but of the same
order-of-magnitude as—the ensemble-averaged statistical uncertainty.

29

The DNS is computed using a fourth-order Runge-Kutta time integrator and spectral
differencing in space, which might lead to the conclusion that a fourth-order
convergence should be expected. Moreover, using a fourth order expected
convergence rate, the error estimates yield errors not supported by the change in
solution to the very fine grid. This lends greater credence to our expected first-
order convergence rate. On the finer grid sequence, the numerical errors are much
smaller by comparison, now comparable to the statistical errors measured.

Table 3. The results for the R;=140 calculations.

Quantity A, A, A, o a,, U, U,,
{(e7) 0.32 0.08 0.05 200 068 048 0.16
(&) 7.40 1.60 080 221 100 946 1.28
((€)°) 23500 47.00 23.00 232 103 27354 4648
(e)/(e7) 23.90 3.30 130 286 134 1694 6.12
(@r) 0.67 0.12 0.13 248 -0.12 0.68 0.39
(@) 37.00 5.80 340 267 077 31.32 8.65
(@) 3293.00 39500 169.00 3.06 122 190457 668.18
(@)/(@) 97.90 580 1540 408 -141 1902 63.60

*denotes a divergent calculation.

The results of our analysis of the R;=240 case are given in Table 4. In this table, all
the quantities are converging at a higher than expected rate. Given the results at the
lower Reynolds number, we expect the uncertainty estimates to decrease as the
mesh is refined. For most quantities given, the numerical error is larger than the
statistical variability measured. For example, for the enstrophy, <(€2’)?>, in the
R,=240 case, the numerical uncertainty associated with the discretization error on
the coarse-medium-fine grid results, 0.34, is greater than the corresponding
ensemble-averaged statistical uncertainty, 0.12.

30

Table 4. The results for the R;=240 calculations.

Quantity A, A o U,
{e7) 0.10 002 232 012
(&) 3.80 030 3.66 1.16
(") 208.00 100 770 0.54
(e)/(e?) 17.40 110 3.98 3.75
(@) 0.18 0.06 158 034
(@) 17.00 800 1.09 2158
(@) 2858.00 1011.00 150 5416.22
(@)/(@) 6510 2220 155 12240

We note that the discretization error is the only type of error estimated in this
example. The linear system of equations associated with the solving for the
pressure in these calculations is accomplished “exactly” (i.e., the iteration errors are
decreased to the roundoff limit) through a spectral transformation, and the time
integration is explicit for all nonlinear terms. Nonetheless, even when the mesh
resolution is extremely coarse by traditional standards of the turbulent flow
community, the numerical uncertainty associated with discretization error is nearly
equal or larger than the statistical uncertainty associated with turbulence.

Detailed Workflow

Here, we expand on the details of the proposed workflow. There are other
workflow approaches (see, e.g., [Joh06]), and the steps described below are by no
means exhaustive. The proposed steps do, however, standardize a calculation
verification workflow that can be conducted by a code team (developers and
testers) for the purpose of estimating numerical uncertainty. Ideally, the code
verification process should be conducted regularly (as well as on demand) so that
incorrect implementations impacting mathematical correctness are detected as
soon as possible. The general consensus in software development is that the cost of
bugs is minimized if they are detected as close as possible to their introduction.

This procedure assumes that the code team is using a well-defined software quality
assurance (SQA) process, and the code verification is integrated with this activity.
Such SQA includes source code control, regression testing, and documentation,
together with other project management activities. For consistency and
transparency, we recommend performing the code verification in the same manner
and using the same type of tools as other SQA processes.

31

1. Starting with an implementation (i.e., code) that has passed the
appropriate level of SQA and code verification scrutiny, choose the
executable to be examined. Calculation verification can be a resource-
intensive activity involving substantial effort to perform. Calculation
verification should be applied to the same version of the code that analysts
would use for any important application. The notion that verification and
validation should be applied to the same code is important to keep in mind.
This process should be applied to the specific version of the code used
throughout the entire V&V UQ activity.

2. Provide an analysis of the numerical method as implemented including
accuracy and stability properties. The analysis should be conducted using
any one of a variety of standard approaches. Most commonly, the
von Neumann-Fourier method could be employed. For nonlinear systems,
the method of modified equation analysis can be used to define the expected
rate and form of convergence. The form and nature of the solution being
sought can also influence the expected behavior of the numerical solution.
For example, if the solution is discontinuous, the numerical solution will not
achieve the same order of accuracy as for a smooth solution. Finite element
methods can be analyzed via other methods to define the form and nature of
the convergence (including the appropriate norm for comparison).

3. Produce the code input to model the problem(s) for which the code
verification will be performed. Each problem is run using the code’s
standard modeling interface as for any physical problem that would be
modeled. It can be a challenging task to generate code input that correctly
specifies a particular problem#; e.g., special routines to generate particular
initial or boundary conditions that drive the problem may be required, and
these routines must be correctly interfaced to the code. Itis advisable to
consider the complexities and overhead associated with such considerations
prior to undertaking such code verification analyses.

4. Select the sequence of discretizations to be examined so each solution.
Verification necessarily involves convergence testing, which requires that the
problem be solved on multiple discrete representations (i.e., grids or
meshings). This is consistent with notions associated with h-refinement,
although other sorts of discretization modification can be envisioned. The
mathematical aspects of verification are typically most conveniently carried
out if the discretizations are factors of two apart.

5. Run the code and provide of means of producing appropriate metrics to
compare the numerical solutions. The solutions to the problem are
computed on the discretizations. Most commonly and as discussed above,

4 Trucano et al. [Tru06] refer to this concept as the “alignment” between a code and a
specific problem (either verification or validation).

32

these metrics take the form of norms (i.e., p-norms such as the L2 or energy
norm). The selection of metrics is inherently tied to the mathematics of the
problem and its numerical solution. The metrics can be computed over the
entire domain, in subsets of the domain, on surfaces, or at specific points.
The domain over which the metrics are evaluated and the analysis to be
conducted must be free of any spurious solution features (due, e.g., to
numerical waves erroneously reflected from computational boundaries).

6. Use the comparison to determine the sequence of errors in the
discretizations. Using the well-defined metrics for each solution, the error
can be computed for each discrete representation. Ideally, there will be a set
of metrics available, providing a more complete characterization of the
problem and its solution.

7. The error sequence allows the determination of the rate-of-
convergence for the method, which is compared to the theoretical rate.
With a sequence of errors in hand, the demonstrated convergence rate of the
code for the problem is estimated. The theoretical convergence rate of a
numerical method is a key property. Verification relies upon comparing this
rate to the demonstrated rate of convergence. Evidence supporting
verification is provided when the demonstrated convergence rate is
consistent with the theoretical rate of convergence. This can be a difficult
inference to draw, because the theoretical rate of convergence is a limit
reached in an asymptotic sense, which cannot be attained for any finite
discretization. As a consequence, there are unavoidable deviations from the
theoretical rate of convergence, to which judgment must be applied.

8. Using the results, render an assessment of the method’s
implementation correctness. Based on the discrete solutions, errors, and
convergence rate, a decision on the correctness of a model can be rendered.
This judgment is applied to a code across the full suite of verification test
problems.

a. The assessment can be positive, that is, the convergence rate is
consistent with the method’s expected accuracy.

b. The assessment can be negative, that is, the convergence rate is
inconsistent with the method’s expected accuracy.

c. The assessment can be inconclusive, that is, one cannot defensibly
demonstrate clearly uniform consistency or inconsistency with the
method’s expected accuracy. For example, the convergence rate is
nearly the correct rate, but the differences between the expected rate
and the observed rate is uncomfortably large, potentially indicating a
problem.

Figures 7a,b show the entire process in diagrams that conce<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>