Procedures for Calculation Verification
William J. Rider, James R. Kamm, and V. Gregory Weirs
Sandia National Laboratories, Albuquerque NM 87185

January 6, 2011

Overview

Calculation or solution verification is a process by which by which the discretization
or numerical error is estimated in simulations of problems of interest. Calculation
verification employs techniques of both error estimation and uncertainty
quantification (UQ). There are defined procedures by which numerical error
estimates can be converted to numerical uncertainty estimates. Each of these
techniques will be discussed in this document. We take the two terms calculation
verification and solution verification to be synonymous. Code verification is a related,
but distinct process where the correctness of a software implementation of a
numerical algorithm is evaluated, typically by comparison against an exact solution.

Numerical methods that are used to obtain approximate numerical solutions of
continuum models unavoidably lead to errors in the computed results. These errors
are associated with the numerical method alone and have nothing to do with any
assumptions related to the form of the continuum models (e.g., model-form errors).
The challenge of calculation verification is to help provide estimates of such
numerical errors. These errors are of four general types: (1) round-off errors,

(2) sampling errors, (3) iterative (linear and nonlinear) solver errors, and (4)
discretization errors.

Round-off error is an inevitable consequence of finite precision representation of
numbers on computers; with high-precision arithmetic, round-off errors typically
have smaller effect on computed results than the other primary error sources.
Sampling errors occur, e.g., for methods that are inherently stochastic (e.g., Monte
Carlo methods) or in sampling a system response quantity of interest. Iterative
solver errors are associated with the solution of any linear or nonlinear systems of
equations encountered during the course of the computational solution update
procedure. In practice, iterative errors may be difficult to reduce to the point where
they can be neglected. Discretization errors are a direct consequence of the
numerical scheme used to obtain a discrete approximation of continuous equations
(e.g., finite difference, finite element, or finite volume methods) and the solution
approach used on those discrete equations. For time-dependent problems, both the
spatial and temporal discretizations enter into the evaluation of these errors. Many
researchers contend that discretization error is often the dominant source of
numerical error in scientific computing simulations. This is consistent with much of
the authors’ experience, although nonlinear solver error can dominate strongly
coupled (stiff) problems.

The important concepts to consider regarding iterative solver error are covered by
Eca and Hoeckstra [E¢a09] and Oberkampf and Roy [Obe10]; we only briefly
summarize the issues here. The use of direct solvers for linear systems of equations
has become impractical for reasons of efficiency, so that iterative solvers are the
usual approach. The iterative solution of linear systems of equations is necessarily
inexact and generates a source of error to be estimated. Usually, the iteration will
terminate based on criteria not related to the actual error in the solution. This is
common if the iterative solver is developed as part of a general-purpose software
package. In this case, the estimation of error associated with the iterative solver is
essential. Furthermore, the default termination criteria may be unsatisfactory for
the application-specific context. In any case the uncertainty contribution must be
assessed with care. The iterative solution of nonlinear systems, which typically
involves both linear and nonlinear stopping criteria, has the same issues.

Among the most important characteristics of discretization schemes is the order-of-
accuracy (also called the convergence rate), which is given by the exponent in the
power law relating the numerical truncation error to the value of a parameter
associated with the discretization, usually given by the size of the computational cell
or time step. The factor multiplying this term gives a measure of the overall error of
a given scheme; thus, two different schemes that converge at the same rate may
have different (absolute) discretization errors. The standard method by which to
estimate this accuracy is systematic mesh refinement (or variation), although there
are other, less general approaches [Roy10a]. The results of this approach are
combined with error measurement to produce the observed rate-of-convergence,
which is compared with the ideal or theoretical rate-of-convergence of the
underlying algorithm. In calculation verification, unlike code verification, the use of
an analytical or exact solution to a problem is not available as an unambiguous
fiducial solution. Instead, the comparisons are made between solutions using
different grid resolutions.

To aid analysts in conducting solution verification analyses, the following workflow
for calculation verification is proposed.

1. Starting with an algorithm implementation (i.e., code) that has passed the
appropriate level of software quality assurance and code verification, choose
the software executable to be examined.

2. Provide an analysis of the numerical method as implemented including
accuracy and stability properties. (This information should be available from
the code verification analysis.)

3. Produce the code input to model the problem(s) of interest.

4. Select the sequence of mesh discretizations to be examined for each problem,
and the input necessary to accomplish these calculations.

5. Run the code and provide the means of producing appropriate metrics to
evaluate the difference between the computed solutions based on numerical

parameters within the control of the code user. This can also include the
numerical method chosen (order of approximation or scheme).

6. Use the comparison to determine the sequence of estimated errors
corresponding to the various discretizations and tolerances.

7. The error sequence allows the determination of the rate-of-convergence for
the method, which is compared to the theoretical rate. For iterative solver
errors, the error is a function of the stopping criteria and the discretization.

8. Using these results, render an assessment of the accuracy (level of error
estimated) for the simulation for a given set of numerical settings.

9. Examine the degree of coverage of features in an implementation by the
verification testing.

This document contains detailed descriptions of many aspects of calculation
verification, as well as a discussion of the general workflow outlined above. The
views contained herein are not meant to be a complete prescription by which to
conduct solution verification. Instead, they are intended to guide the conscientious
analyst in conducting studies that will contain defensible estimates of the numerical
errors inherent in computed solutions for complex, engineering simulations.

What Is Verification And Its Relation To Other Similar Activities?

Numerical simulations are increasingly used to increase understanding, to “solve”
problems, to design devices, vehicles and buildings, to “predict” responses of
complicated engineering systems, and to inform high-consequence decision makers.
Different assessment techniques are employed to address the different ways
numerical simulations can fail to provide accurate information. Ultimately, the
combined application of all the techniques provides enhanced confidence that the
accuracy of the numerical simulation process is adequate for a particular scenario.

The purpose of scientific simulation software differs from that of most commercial
software. Verification is needed for scientific simulation codes because this
software is designed to produce approximate solutions to mathematical problems
for which (i) the exact solution is not known and (ii) knowledge of the error is
potentially as valuable as knowledge of the solution, per se. Due to these
distinguishing and critical aspects of scientific simulation codes, software quality
practices from the broader industry (e.g., regression testing) are necessary but not
sufficient for high-consequence scientific simulation codes.

Verification analysis of scientific simulation codes is an example of the assessment
of a complex system for which the systematic gathering of appropriate evidence is
required. While tests may demonstrate that software is manifestly incorrect, there
is no clear-cut procedure with which to “prove” unambiguously that software
behavior is, indeed, correct. Thus, the process by which relevant verification
evidence is generated and interpreted requires knowledge of the entire simulation
and analysis chain. Such knowledge includes understanding of:

e The system being simulated (e.g., the relevant physics, physics models, and
these models’ representations in mathematical equations);

e The nature of the simulation (including the algorithms used to obtain
approximate solutions to the mathematical equations, these algorithms’
limitations, the associated numerical analysis, and the software
implementation of those algorithms); and

e The process by which the code results are analyzed in the verification
process (including, e.g., theory, implementation, and interpretation of
convergence analysis).

This body of knowledge is both large and multi-faceted; consequently, the
determination of appropriate of verification problems requires guidance from and
consensus among experts in each of these fields.

Decision makers and code analysts should bear in mind that simulation software
represents intricate numerical algorithms coupled with a complicated
hardware/system-software platform. Stated another way, code users and their
customers should recognize that simulation software is not a “physics engine” that
generates instantiations of physical reality. Hence, documented, quantitative
verification analysis is a necessary component for developing code confidence and
credibility.

At its core, verification of scientific simulation software both quantifies numerical
errors and defines a rigorous basis for believing that quantification. Providing an
error estimate for complex problems falls under the purview of solution (or
calculation) verification, while providing the rigorous basis for such estimates is
achieved with code verification. The overall activity of verification is the
combination of both code and solution verification.

More precisely, the different kinds of verification can be defined as follows:

e Calculation or solution verification: using the demonstrated convergence
properties of the code to estimate numerical errors in solving the model for a
problem of interest, involving the evaluation of results of the code alone. The
credibility of calculation verification is predicated on producing error
estimates from a code that have passed appropriate and relevant code
verification analysis.

e Code verification: comparing the results of a coded algorithm (i.e.,
instantiated in software) with an analytical or exact (i.e., “closed form”)
solution or highly accurate solution obtained by some other means!, for the
purpose of assessing the code.

1 For example, for certain problems governed by specific partial differential equations
(PDEs), the equation can be reduced to an ordinary differential equation (ODE), the solution
of which can often be obtained very accurately, sometimes exactly. A highly accurate

4

Both code and calculation verification focus on numerical errors. Calculation
verification is practiced by code users to estimate the numerical error in their
simulations in order to provide a justifiable, best-estimate solution. These estimates
are not guaranteed to be rigorous: they, too, are approximations. A key point is that
the activity of estimating numerical errors is part of the necessary due diligence for
conducting predictive simulations. In contrast, code verification is an activity
executed by code developers, mathematicians, and numerical analysts. It compares
the behavior of the actual, observed error from numerical simulations to the
expected error behavior as derived from rigorous mathematical proofs and
estimates.

A common confusion with regard to verification is associated with software quality
assurance (SQA), which is a vital, but essentially unrelated activity that comprises
an important discipline in its own right. Verification typically flourishes in a culture
focused on high quality, but good verification practices are neither necessary nor
sufficient for good SQA practices—and vice-versa. Each area of expertise should be
independently developed and supported, although the practice of each is mutually
supportive.

e Software verification: checking for a correct functioning of the software
system on a particular platform. This is often used to determine whether the
software has properly implemented the defined requirements of the
algorithms instantiated in the code.

Such software testing is a critical element of software development. The testing that
is closest to code development centers on software engineering techniques, such as
unit testing and regression testing, both of which address the correct functioning of
software. These types of testing use generic success metrics that apply to almost all
classes of software. In contrast, code and solution verification are assessment
techniques for software that provides approximate solutions, with metrics
specialized to the particular type of algorithm.

There is sometimes confusion of code verification testing with regression testing;
however, these are different testing procedures with completely different goals.
Regression testing is a software engineering technique that assesses the robustness
of software to frequent changes. Regression tests reduce to a (typically large)
collection of relatively simple problems that are executed at a regular (typically
frequent) time interval. Regression testing seeks principally to reduce the amount
of software rework that is created by the introduction of mistakes in software
modifications. This reduction is achieved by comparing today’s code with
yesterday’s code via execution of the regression test suite. Thus, regression testing
evaluates software stability, not mathematical correctness.

numerical solution of an ODE could be used as the de facto “exact” solution for purposes of
code verification analysis of a PDE solver for that problem.

This mathematical correctness is the purview of code and calculation verification.
Rephrasing our earlier definitions, calculation verification estimates numerical
errors for a problem of interest based on an assumed relationship between
numerical error and resolution (as measured by the discretization parameter); code
verification tests whether this assumption is satisfied for a known algorithm on a
problem with a known solution.

The outcome of code verification analyses should provide defensible evidence of
mathematical consistency—or inconsistency—between the mathematical
statements of the physics models and their discrete analogues as implemented with
numerical algorithms in the simulation codes. The necessity of calculation
verification must be emphasized. In the absence of confirmatory verification
evidence, “good agreement” of calculations with experimental data could be
accidental, i.e., “the right answer for the wrong reasons.”

Another activity that is confused with calculation verification is mesh sensitivity.
Mesh sensitivity is the process of comparing the solutions computed on two or more
grids for the express purpose of determining whether the solution is qualitatively
dependent on mesh resolution. The degree of dependence is usually assessed only
in a qualitative fashion, although the calculations, if done properly, can serve as the
basis for calculation verification. Without the quantitative verification component
of this activity, non-convergent calculations may remain unidentified.

Unlike verification, validation tests whether a model is a sufficiently accurate
representation of the physical processes in a particular problem. For detailed
discussions on the relation of verification and validation, we refer the reader to the
many published reviews on verification and validation; see, e.g., [AIA98, ASMO06,
HanO01, Joh06, Kam08, Knu03, Nel10, Obe02, Obe04, Obe07, Obe10, Ore94, Rid10,
Rid11, Roa98, Roa09, Roy05, Roy10b, Sar98, Sar01, Sch06, Sor07, Ste01, Ste06,
Tru03, Tru06] and the references therein. In scientific simulations the model refers
to the governing equations, which include initial conditions, boundary conditions,
constitutive relations, etc. To simulate essentially any nontrivial physical
configuration, these equations must be solved computationally, which depends on
numerical algorithms, corresponding software implementations, and appropriate
use of that software, including suitable assignment of model parameters. Therefore,
validation entails comparisons of approximate solutions of the governing equations
(which are an imperfect representation of the relevant physical processes) to
experimental data (which also contain inaccuracies). Quantitative comparison of
experiment (having, e.g., physical and diagnostic uncertainties) with simulations
(having concomitant modeling, algorithmic, and solution errors) remains a
challenging and strongly problem-dependent undertaking. It is regular
experimental practice to provide error bars showing the degree of uncertainty in
physical data, and solution verification can help provide estimates of the numerical
error in the corresponding simulations.

Every simulation requires a number of inputs to specify the problem to be solved,
including the choice among various numerical methods and how they are applied, as
well as the assignment of values for parameters in specific component models (e.g.,
specifying material response). These values may not be known exactly or may
represent some average or even ad hoc value that depends on the particular
situation. The process of identifying and quantifying the effects of the uncertainty of
these simulation inputs on the results of the simulation falls under the rubric of
uncertainty quantification. The most common way of estimating these effects is to
run a (typically large) number of simulations, in which the values of the inputs are
taken from user-specified distributions, to determine the corresponding
distribution of the results of interest. Unlike code verification, solution verification,
or validation, uncertainty quantification deals with the variation of simulation
results relative to how the problem is specified, rather than how well that problem
is solved.

Code verification is the foundation upon which the other assessment techniques
rest. The premise of solution verification is that the code converges at a known rate
as the resolution is increased; code verification establishes that this is, in fact, the
case. To compare experimental results to code results, both the experimental and
numerical errors must be meaningfully quantified, so they can be properly
accounted for in the comparison. Validation relies on solution verification to
provide estimates of the numerical error, a procedure that, in turn, relies on code
verification. The process of uncertainty quantification accepts the model, in this
case the code that produces numerical simulations, as an input. Inferences drawn
about the system that the model represents are inherently limited by the accuracy
of the model. Code verification ensures the model is correctly implemented and
underlies solution verification and validation that quantify the accuracy of the
model. Code verification is foundational in that without it, the conclusions of the
other assessment techniques are suspect, but the converse is not true.

On Defining A Verification Test Problem

To conduct a verification analysis, one must have (i) a clear statement of the
problem with sufficient information to run a computer simulation, (ii) an
explanation of how the code result and solution (i.e., the benchmark) are to be
evaluated, and (iii) a description of the acceptance criteria, including how the
calculation errors are to be estimated, for a specific simulation code’s results on a
particular problem. These concepts are adapted from the notion of a “strong sense
verification benchmark,” proffered by Oberkampf and Trucano [Obe07], and are
intended to enhance the value of verification analyses by reducing the ambiguity of
problem statements, evaluation techniques, and their interpretation.

Here, the problem statement should include not only a mathematical description of
the problem but also a discussion of the processes modeled (what does this problem
test?), the initial and boundary conditions, additional numerical information (what
convergence criteria are used?), the principal code features tested, and the nature of

7

the test. This latter element is addressed in [Obe07], with a set of different
categories of benchmarks; Kamm et al. [KamO08] provide examples of such problem
statements. Given the complexity of many problems of interest, however, such
problem descriptions may still not be definitive, i.e., there may remain unspecified
choices in problem set-up that the code analyst must make. Nevertheless, such a
description provides a starting point for setting up the problem as well as a
touchstone against which one can compare descriptions of the “identical”
verification problem, run by different analysts with different simulation codes on
different platforms at different times.2 In the written description and analysis of
verification problems, it is imperative that researchers describe as thoroughly as
possible the complete specification and set-up of the problem (up to including the
code input deck in the written report).

An explanation of the evaluation process by which results are to be evaluated is
imperative for both completeness and repeatability. This evaluation process
includes, e.g., in code verification what the “exact” solution is and how it is
evaluated. Such an explanation may also include how system response quantities
(the convergence of which is to be calculated) are evaluated from computed solution
variables.

Also required are a description of which errors are to be estimated and an
explanation of precisely how those errors are estimated. So that the analysis can be
meaningful, acceptance criteria on the error behavior for the quantities of interest
on the particular problem are also required, in the spirit of what might be found,
say, in a requirements document. In the absence of specific criteria, a codified
process for acceptance is necessary

Who Does Calculation Verification? Code Users

Complex simulations cannot be proven to be mathematically correct, or even
convergent to the “true” solution. Consequently, the accumulation of quantitative
evidence remains the exclusive basis for assessing the mathematical correctness
and its relation to physical correctness. The practical view is that this evidence is
accumulated over time. This accumulation occurs throughout the on-going
processes of code use and the considered analysis of the computational results.
Along with the results, the input to the code used to specify the calculation must be
carefully examined for correctness. This process is similar to the manner in which
software is examined. Code verification is the purview of code developers and
algorithm designers, whose responsibilities should include descriptions of
verification problems both in documentation and in actual code input. For those

2 Analyses containing the possible variations mentioned here differ markedly from “code
comparison” exercises, problematic aspects of which are pointed out by Trucano et

al. [Tru03]. Verification acceptance criteria should be sufficiently forgiving, however, to
allow small variations associated with imperfect specification of verification problems.

using a code to conduct analysis, their responsibility is to act mindfully regarding
the quality of the code, and the relevance of the testing to their problems of interest.
At best, they should act as advocates for quality control measures such as rigorous
and—to the degree possible—extensive verification because it supports confidence
building in the calculations for which the code is ultimately to be used.

Who Does Code Verification? Code Developers, Mathematicians, And Algorithm
Engineers.

Just as complex simulations cannot be proven mathematically correct, likewise
complex simulation software cannot be proven to be mathematically correct.
Consequently, the accumulation of quantitative evidence remains the exclusive basis
for inferring the mathematical correctness; as in calculation verification, this
evidence is accumulated over time through the on-going processes of code
development and code usage. Thus, the results of code verification analyses are
affected by the manner in which software is generated and the proper
specification/execution of the verification problems. While the former is the
purview of code developers and algorithm designers, responsibility for the latter
falls upon those who describe the verification problem both in documentation and
in actual code input.

Verification evidence emerging from code development is generated by software
engineering processes applied during that development, and by the specific testing
practices employed by the development team. Code usage evidence is a more
nuanced and diverse body of information that emerges from a heterogeneous group
of users. Testing executed under the umbrella of code development is not restricted
to the verification approaches discussed here. Unlike other testing procedures
applied by code developers (including, e.g., unit tests and the restricted cases
applied in regression testing), verification test problems strive also to be relevant to
code users.

Verification test suites can be implemented, managed, and applied by code
developers in the same manner as regression test suites. The major differences are:
(i) the development and execution of verification test suites typically requires more
resources (people, computers, time); (ii) the time interval of execution of a
verification test suite may be different than for regression testing; and (iii) the
direct methods for comparing today’s regression test suite results versus
yesterday’s baseline should be augmented by greater human involvement in judging
the quality of the verification tests where possible. On the other hand, subjective
judgment is ultimately intrinsically associated with the quality of software at some
fundamental level. For example, a verification study rarely produces results that
exactly produce the theoretical convergence rate; in fact, the observed rates can
vary greatly. The judgment of whether the result is close enough to expectations
remains largely a decision for a subject-matter expert matter. Improvement of this
state of affairs is an ongoing research area. This increased human element required
to assess the execution of verification tests emphasizes that an important value of

verification tests is their use in engaging the user community around a code.
Verification Techniques

The workhorse technique for estimating discretization error is systematic mesh
refinement (or de-refinement, i.e., coarsening), while the method for estimating
iterative error involves systematic changes in stopping criteria for the iteration. A
fundamental expectation for a numerical method is the systematic reduction in
solution error as, say, the characteristic length scale associated with the mesh is
reduced. By the same token, iterative errors are assumed to be smaller as the
stopping criterion is decreased in numerical value. For mesh refinement, in the
asymptotic limit where the mesh length scale approaches zero, a correct
implementation of a consistent method should approach a rate of convergence equal
to that defined by numerical analysis (often obtained with the aid of the Taylor
series expansion). In practice, this expectation is not always met, i.e., calculations
might not be in the asymptotic range. This circumstance does not obviate the need
for some estimate of the numerical error, however imprecise that estimate may be; in
fact the necessity may be increased under these conditions.

To conduct analysis using this approach, a sequence of grids with different intrinsic
mesh scales is used to compute solutions and their associated errors. The
combination of errors and mesh scales can then be used to evaluate the observed
rate of convergence for the method in the code. In order to estimate the
convergence rate, a minimum of two grids is necessary (giving two error estimates,
one for each grid). The convergence tolerance for iterative solvers can be
investigated by simple changes in the value of the stopping criteria. Assessing
iterative convergence is complicated by the fact that the level of error is also related
to the mesh through a bounding relation in which the error in the solution is
proportional to the condition number of the iteration matrix. Most investigations of
iterative solver error only consider the impact of the stopping criteria alone.

Another tool used in verification is error estimation. These methods are commonly
derived for the finite element method (FEM) for solving elliptic partial differential
equations. The best-known method is the Zienkiewicz-Zhu error estimator [Zie92].
One can use the error estimate constructively to drive adaptive mesh refinement, or
to produce an estimate of the error on a given mesh. While the error estimate is
produced, this approach does not necessarily produce the sort of evidence basis for
calculation convergence, however, because the rate of convergence is not produced
in the process. Moreover these tools are more strongly predicated upon the
solution being well behaved. Without solution smoothness in the asymptotic range,
these tools are highly questionable for precise error estimation. We focus on
techniques that can be applied without regard to whether the computations are in
the asymptotic range, because it is seldom encountered in practice.

10

Choice Of Metrics

Several metrics can be used to conduct code or calculation verification. For a
mathematically rigorous result, one seeks to evaluate the quantitative difference
between two sets of numbers, where each set corresponds to some aspect of the
solution computed in a self-consistent manner. For example, integration over the
same physically defined region provides a well-defined metric with which to gauge
such a difference. Generally speaking, one should employ the metric that follows
naturally from the function space in which numerical analysis proofs of convergence
are conducted. One often cannot apply this approach in practical circumstances.

For simple scalars (say, the value of some scalar property, e.g., temperature, at a
particular location at a specified time), the absolute value of the difference between
two values is the obvious choice. This notion generalizes naturally to higher
dimensional cases involving the difference between (discrete) function values from
the computational mesh. As examples, these values could be, e.g., a time series of
temperature at a particular location (the relevant computational mesh being in
time) or, say, the pressure field over a specified, fixed three-dimensional volume at a
specified time (the relevant computational mesh being in space). In such cases, one
often uses the familiar “p-norm” of functional and numerical analysis. The p-norm of
the function g is given by

Iel, =([/ ax) (1)

For example, for finite volume methods applied to discontinuous functions, the use
of the 1-norm is recommended, while, say, properties of inherently smooth
functions are most appropriately measured in the energy or 2-norm. It is can be
enlightening to evaluate several norms, e.g., 1-, 2-, and co-norms, where, following
from the equation above,

lel. = max|g(x)| (2)

xelab]

In the following, we use the double-bar notation “||” without a subscript to denote
any appropriate norm. Ideally, the practical results should be connected to
rigorous mathematical analysis, but this is often intractable.

In practice, the metrics tested for code and solution verification are generally
different. For code verification, numerical analysis of the algorithm defines the
metric and the expected convergence rate, and the assumptions under which
convergence is expected. For most spatial and temporal discretizations, the metric is
an appropriate norm of the error of the solution; that is, the error of a field variable
integrated over the computational domain. The numerical analysis specifies how the
error is defined. Depending on the properties of the numerical method and the

11

solution, the theoretical convergence rate may be expected to apply for point values
of the solution as well.

For calculation verification, the analyst or code user chooses metrics that are
important to the decision maker; these metrics are sometimes called Figures of
Merit (FOMs), Quantities of Interest (QOIs), or System Response Quantities (SRQs).
These metrics provide the “answer” to the question the analyst is trying to address;
determining their values is the reason for running the set of simulations. These
metrics may be ful<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>