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Introduction

• The design of complex systems may involve 
optimization of critical system parameters or 
performance with constraints imposed by design 
requirements or the environment.  

• Also, there may be uncertainties in the design 
due to tolerances in system features or 
knowledge of the environment.  

• Engineers often lack an integrated framework to 
perform the analyses needed for designing such 
systems.



Goal of the Entero Project

To develop a flexible environment for the 
design and analysis of complex systems

in diverse environments 
from a system-oriented, 
module-oriented point of 
view using models with
varying degrees of
fidelity and accessed by means of a 
web-like user interface.



Status of Project

• Architecture designed and being implemented
– Discussed elsewhere

• Thermal analysis prototype tool for safety analysis 
developed
– Multifidelity capability

• detailed 3D and lumped parameter in same simulation

• Earth penetrator toolkit prototype developed
– Includes optimization and uncertainty analysis
– Focus of presentation as illustration of methods
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Focus of Presentation
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Optimization and Uncertainty in the 
Entero EPT Using Dakota
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The Sampll Computer Code

• The simplest analysis code used in the EPT is the 
Sampll (Simplified Analytical Model of 
Penetration with Lateral Loading) computer code 

• Empirically based and widely used
– Modified failure criterion and opened output file 

appropriate to optimization analyses.
• Simple description of penetrator and target

Penetrator Data
Total Weight 591 lb. Failure Criterion 1000 g
Length 6.2 ft
Number Segments 2 Target Data
Diameter 13.3 in Target Layers 1
Length Material soil

Segment 1 2.5 ft S-number 5
Segment 2 3.7 ft

Density 733 lb/ft3 Impact Conditions
Wall Thickness 0.5 in Impact Speed 1400 ft/s
Wall Weight 400 lb. Impact Angle
Type of Nose ogive Attack Angle 0

73o
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Penetrator Data
Total Weight 591 lb. Failure Criterion 1000 g
Length 6.2 ft
Number Segments 2 Target Data
Diameter 13.3 in Target Layers 1
Length Material soil

Segment 1 2.5 ft S-number 5
Segment 2 3.7 ft

Density 733 lb/ft3 Impact Conditions
Wall Thickness 0.5 in Impact Speed 1400 ft/s
Wall Weight 400 lb. Impact Angle
Type of Nose ogive Attack Angle 0

73o

Problem 1: Determine the impact angle at which the penetration depth is a maximum.
Problem 2: Suppose that constraints on the payload of the penetrator restrict the wall thickness
to be less than 0.72 in.  Determine the maximum penetration depth.
Problem 3: Determine variability in penetration depth given the following.  All variables are 
normally distributed.  The means are the penetrator’s wall thickness from Problem 2, its default 
strength properties, and the failure criterion, impact speed, impact and attack angles, and the 
target’s S-number that are listed in table.  The standard deviations are 10% except for attack 
angle, which has a standard deviation of 2o.
Problem 4: Suppose that the penetrator must reach a depth of at least 10 ft to accomplish its 
mission.  Determine the minimum wall thickness needed to accomplish its mission.



Penetrator Data
Total Weight 591 lb. Failure Criterion 1000 g
Length 6.2 ft
Number Segments 2 Target Data
Diameter 13.3 in Target Layers 1
Length Material soil

Segment 1 2.5 ft S-number 5
Segment 2 3.7 ft

Density 733 lb/ft3 Impact Conditions
Wall Thickness 0.5 in Impact Speed 1400 ft/s
Wall Weight 400 lb. Impact Angle
Type of Nose ogive Attack Angle 0
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Problem 1Problem 1

• Determine the impact angle at which the penetration depth is a maximum.
– This simple problem is valuable since the answer is known and obtaining the 

correct answer provides some confidence in the method.  
– Input was appropriate to determine a solution between 0o and 100o using a 

genetic optimization algorithm.  
– Solution obtained is 90o.  

• Penetrator does not fail when impacting the target at this angle and reaches a depth 
of 32.2 ft.
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Penetrator Data
Total Weight 591 lb. Failure Criterion 1000 g
Length 6.2 ft
Number Segments 2 Target Data
Diameter 13.3 in Target Layers 1
Length Material soil

Segment 1 2.5 ft S-number 5
Segment 2 3.7 ft

Density 733 lb/ft3 Impact Conditions
Wall Thickness TBD Impact Speed 1400 ft/s
Wall Weight 400 lb. Impact Angle
Type of Nose ogive Attack Angle 0

73o

Problem 2Problem 2

• Suppose that constraints on the payload of the penetrator restrict the wall 
thickness to be less than 0.72 in.  Determine the maximum penetration depth.
– Input was appropriate to determine a solution for wall thickness between 0.48 in 

and 0.72 in. using a genetic optimization algorithm.  

– Solution obtained is 36.6 ft.
• This solution is obtained for a wall thickness of 0.71 in.
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Problem 3Problem 3
Penetrator Data

Total Weight 591 lb. Failure Criterion 1000 g
Length 6.2 ft
Number Segments 2 Target Data
Diameter 13.3 in Target Layers 1
Length Material soil

Segment 1 2.5 ft S-number 5
Segment 2 3.7 ft

Density 733 lb/ft3 Impact Conditions
Wall Thickness 0.72 in Impact Speed 1400 ft/s
Wall Weight 400 lb. Impact Angle
Type of Nose ogive Attack Angle 0

73o

• Determine variability in penetration depth given the following. Variables are 
normally distributed.  Means are the penetrator’s wall thickness from Problem 
2, default strength properties, and failure criterion, impact speed, impact and 
attack angles, and the target’s S-number that are listed in table.  Standard 
deviations are 10% except for attack angle, whose standard deviation is 2o.
– Input was appropriate to perform an uncertainty calculation using Latin 

hypercube sampling.  
– Mean value for penetration depth is 19.4 ft and the standard deviation is 1.6 ft.  

• For the 100 sample cases, there are 52 failures, indicating that the stated variations 
are unacceptably large for a penetrator design or that the design is 
not robust.
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Problem 4Problem 4

• Suppose that the penetrator must reach a depth of at least 10 ft to 
accomplish its mission.  Determine the minimum wall thickness needed to 
accomplish its mission.
– Input was appropriate to determine a minimum wall thickness subject to the 

constraint that the penetrator reaches a depth of at least 10 ft using a Newton 
optimization algorithm.  

– Solution is 0.539 in.  
• Penetration depth is 32.2 ft.
• Solution is extremely sensitive to wall thickness.



Summary 

• Completed a top-level design of the Entero EPT
– Summarizes vision of the mature toolkit

• Developed a Web-based prototype for critique by 
targeted users

• Developed methodology for integration of penetrator 
analysis codes with Dakota

• Modified Sampll code for integration in the EPT
– Includes damage criterion used by designers

• Illustrated methodology with example problems
• Work is summarized in paper for this conference, 

Optimal Design of Complex Systems Using the 
Entero Code System
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