Experimental Demonstration of a Cheap and Accurate Phase Estimation

Kenneth Rudinger,1,∗ Shelby Kimmel,2† Daniel Lobser,3 and Peter Maunz3
1Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
2Joint Center for Quantum Information and Computer Science (QuICS), University of Maryland, College Park, Maryland 20742, USA
3Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
(Received 4 January 2017; published 11 May 2017)

We demonstrate an experimental implementation of robust phase estimation (RPE) to learn the phase of a single-qubit rotation on a trapped Yb+ ion qubit. We show this phase can be estimated with an uncertainty below 4×10^{-4} rad using as few as 176 total experimental samples, and our estimates exhibit Heisenberg scaling. Unlike standard phase estimation protocols, RPE neither assumes perfect state preparation and measurement, nor requires access to ancillae. We crossvalidate the results of RPE with the more resource-intensive protocol of gate set tomography.

DOI: 10.1103/PhysRevLett.118.190502

Introduction.—As quantum computers grow in size, efficient and accurate methods for calibrating quantum operations are increasingly important [1–4]. Calibration involves estimating the values of experimentally tunable parameters of a quantum operation and, if incorrect, altering the controls to fix the error.

When these tunable parameters are incorrectly set, it causes the system to experience coherent errors. Coherent errors (versus incoherent errors) are more challenging for error correcting codes to correct [5,6], making it harder to reach fault-tolerant thresholds [7–9]. Hence, it is important to correct these types of errors in order to build a scalable quantum computer. While recent techniques using randomized compiling [10] mitigate the effects of coherent errors, removing as many of the coherent errors as possible still gives the best error rates.

Calibration can be challenging without accurate state preparation and measurement (SPAM) estimates [11,12]. Thus, proper calibration of quantum operations will require robust protocols, that is, protocols that can accurately characterize gate parameters without highly accurate initial SPAM estimates.

A new technique for calibrating the phases of gate operations is robust phase estimation (RPE) [13]. RPE can be used to estimate the rotation axes and angles of single-qubit unitaries. Moreover, RPE is easy to implement (the sequences required are essentially Rabi and/or Ramsey experiments), is simple and fast to analyze, and obtains accurate estimates with a surprisingly small amount of data.

RPE has advantages over standard robust characterization procedures when it comes to the task of calibration. RPE can estimate specific parameters of coherent errors, whereas randomized benchmarking, while robust, can only estimate the magnitude of errors [14–18]. While compressed sensing approaches can withstand SPAM errors [19,20], they do not have the Heisenberg scaling RPE achieves. There is a simple analytic bound on the size of SPAM errors that RPE can tolerate (namely, less than $1/\sqrt{8}$ in trace distance), unlike the robust Bayesian approach of Wiebe et al., whose error tolerance is less well understood [21]. Lastly, RPE is extremely efficient compared to robust protocols that provide complete reconstructions of error maps, like randomized benchmarking tomography [22], and gate set tomography (GST) [23].

Like many other phase estimation procedures, RPE achieves Heisenberg scaling [13]; that is, the estimate error scales inversely with the number of times the quantum operation in question is applied. However, unlike many other protocols, it requires no entanglement such as squeezed states or NOON states [24–30], requires no ancillae [25,31,32], and is nonadaptive [33–36].

Finally, compared to many tomography and parameter estimation protocols, the postexperiment analysis of RPE is strikingly simple. There are no Bayesian updates [21,36,37], no optimizations [19,23,38], and no fits to decaying exponentials [16,22]. Instead, postprocessing can be represented with a dozen lines of pseudocode, with the most complex operation being an arctangent [39].

Here, we provide the first published experimental demonstration of RPE and investigate its performance. We use RPE to experimentally extract the phase (rotation angle) of a single-qubit unitary. Because we do not know the true values of the parameter, we benchmark the estimate by comparing to GST, which gives a robust, accurate, and reliable estimate, but which requires much more data [23].

We see experimental evidence of Heisenberg scaling in RPE, and we attain an accuracy of 3.9×10^{-4} rad in our phase estimate using only 176 total samples. Compared to GST, we find that RPE requires orders of magnitude fewer total gates and samples to achieve similar accuracies. However, when experiments involving long sequences are not accessible, we find GST potentially has better performance than RPE. Nonetheless, due to its minimal data requirements, ease of implementation and analysis,
and robust estimates of coherent errors, RPE is a powerful tool for efficient calibration of quantum operations.

Preliminaries.—We consider estimating the parameter \(\alpha \) from the following single-qubit gate (the “X gate”):

\[
\hat{X}_{\pi/2+\alpha} = \exp[-i((\pi/2 + \alpha)/2)\hat{\sigma}_x],
\]

where \(\hat{\sigma}_x \) is the Pauli X operator and \(\alpha \) is the rotation error in the X gate. There is no off-axis component to the X gate, as we choose the X axis of the Bloch sphere to be the rotation axis of the X gate [41]. \(\alpha \) is a parameter that experimentalists can typically control with ease. (While we do not do so here, RPE may also be used to estimate the rotation angle and axis misalignment of a rotation gate about an approximately orthogonal axis [42].)

In reality, implemented quantum gates will not be unitary, but instead will be completely positive trace preserving (CPTP) maps. Nonetheless, these CPTP maps will have rotation angles with errors analogous to \(\alpha \), and in the Supplemental Material [39], we show RPE can extract such angles [39]. For the rest of the Letter, with slight abuse of notation, we will use \(\alpha \) to refer to this more general CPTP map rotation error.

We use RPE and GST to extract \(\alpha \). Figure 1 gives a schematic description of GST and RPE circuits. RPE circuits are essentially Rabi and/or Ramsey sequences; they consist of a state preparation \(\rho \), assumed to be not too far in trace distance from \(|0\rangle \langle 0| \), followed by repeated applications of the X gate, followed by a measurement operator \(M \), which is assumed to be close in trace distance to \(|1\rangle \langle 1| \).

We use “additive error” to denote the maximum bias in the outcome probability of any single RPE experimental sequence. This bias can be due to SPAM errors and incoherent errors in the gates. RPE can tolerate additive error as long as it is less than \(1/\sqrt{8} \).

For GST, each sequence consists of a state preparation \(\rho \), followed by a gate sequence \(F_i \) to simulate an alternate state preparation. Next, a gate sequence \(g_k \) is applied repeatedly. Finally, the measurement \(M \) is preceded by a gate sequence \(F_j \) to simulate an alternative measurement.

We refer to \(F_i \) and \(F_j \) as state and measurement fiducials, respectively, and \(g_k \) as a germ [39].

For both RPE and GST, running increasingly longer sequences produces increasingly accurate estimates. We use \(L \) to parametrize the length of the sequence, as in Fig. 1. We run sequences with \(L \in \{1, 2, 4, 8, \ldots , L_{\text{max}}\} \), where \(L_{\text{max}} \) is chosen based on the desired accuracy. In RPE, we repeat the gate of interest either \(L \) or \(L+1 \) times. In GST, we implement all possible combinations of state fiducials, measurement fiducials, and germs, with the germ repeated \([L/|g_k|] \) times, where \(|g_k| \) is the number of gates in \(g_k \) and \(\lfloor \cdot \rfloor \) denotes the floor function.

We employ the following notation to keep track of experimental resources. \(N \) denotes the number of repetitions (samples taken) of each sequence, and is set to be the same for all sequences in a single RPE or GST experimental run [43]. The total number of unique sequences is a function of the maximum sequence length \(L_{\text{max}} \) and is denoted by \(Q \). For RPE, it is given by

\[
Q(L_{\text{max}}) = 2(1 + \log_2 L_{\text{max}}).
\]

For GST, \(Q(L_{\text{max}}) \) is approximately equal to \(396(1 + \log_2 L_{\text{max}}, \) see Ref. [23] for details. The total number of experimental samples taken is a function of both \(N \) and \(L_{\text{max}} \) and is denoted by \(S \):

\[
S(N,L_{\text{max}}) = NQ(L_{\text{max}}).
\]

(We will sometimes drop the arguments from \(Q \) and \(S \) if clear from the context.)

RPE successively restricts the possible range of the estimated phase using data from sequences with larger and larger \(L \). Inaccuracies result when the procedure restricts to the wrong range. For larger values of \(L_{\text{max}} \), there are more rounds of restricting the range, and thus more opportunities for failure. By increasing \(N \) when \(L_{\text{max}} \) increases, we can limit this probability of failure. Likewise, a large additive error makes it easier to incorrectly restrict the range, but again, taking larger \(N \) can increase the probability of success. The interaction between accuracy, \(N \), \(L_{\text{max}} \), and additive errors is shown in Fig. 2. This graph shows theoretical upper bounds of the root-mean-squared error (RMSE) of RPE for a fixed sample size \(N \) [45]. Figure 2 shows that, given an additive error \(\delta \), there exist good choices for \(N \) and \(L_{\text{max}} \), provided that \(\delta < 1/\sqrt{8} \).

A protocol has Heisenberg scaling when the RMSE of its estimate of a gate parameter scales inversely with the number of applications of a gate. RPE provably has Heisenberg-like scaling [23]. In this Letter, we empirically look for scaling in accuracy and precision that scales as \(1/L_{\text{max}} \). This is a good proxy (up to log factors) for Heisenberg scaling.

In practice, experimentalists care less about Heisenberg scaling than about the resources (e.g., \(N \) and \(L_{\text{max}} \))
required to achieve a desired accuracy. Assuming time is the key resource, if the experimental reset time is long compared to the gate time, S quantifies the experimental cost. On the other hand, if the gate time is long compared to the experimental reset time, then L_{max} is the dominant factor.

Experimental results.—We implement GST and RPE on a single 171Yb$^+$ ion in a linear surface ion trap. The qubit levels are the hyperfine clock states of the $^2S_{1/2}$ ground state: $|0\rangle = |F = 0, m_F = 0\rangle$, $|1\rangle = |F = 1, m_F = 0\rangle$. We initialize the qubit close to the $|0\rangle$ state via Doppler cooling and optical pumping; we measure in the computational basis (approximately) via fluorescence state detection [46]. See Ref. [23] for experimental details. We used the open-source GST software PyGSTI for numerical analysis, extending its capabilities to include RPE functionality [47].

We take $N = 370$ samples of each GST and RPE sequence, and use $L \in \{1, 2, 4, \ldots, 1024\}$. (For details, see “Gate Sequences” in Ref. [39].) For the GST data set, this yields $Q = 2347$ unique sequences and $S = 868390$ total samples, while the RPE data set has $Q = 22$ unique sequences and $S = 8140$ samples.

Looking at Fig. 2, we see $N = 370$ is larger than necessary for RPE with $L_{\text{max}} = 1024$ for additive error less than ~ 0.25. To simulate experiments with small N, we randomly sample (without replacement) from the experimental data set, so that the new, subsampled data set has $N \ll 370$ samples per sequence.

We use several methods to characterize the experimental accuracy of RPE. First, we apply the analytic bounds on the RMSE of Fig. 2. We also compare our subsampled RPE estimates to the GST estimate. Unlike RPE, GST is an unbiased estimator [48], so we expect that as we increase N, the RMSE will decrease as $1/\sqrt{N}$. Using the $N = 370$ data set for GST, we estimate $\alpha = (6.4 \pm 4.9) \times 10^{-5}$; the error bars denote a 95% confidence interval derived using a Hessian-based procedure (see Ref. [23] for details). On the other hand, using all RPE data we estimate $\alpha = 1.0 \times 10^{-6}$, with a RMSE upper bound of $\pi/(2L_{\text{max}}) \approx 1.5 \times 10^{-3}$ (where this bound comes from Fig. 2 with $N = 370$, assuming our additive error is less than 0.25; this assumption is borne out in the next section).

While the RPE estimate is consistent with the GST result, the accuracy is significantly lower, and we thus take α_0, the full data estimate from GST, to be the “true” value of α for the purposes of benchmarking RPE. In particular, throughout this Letter, we calculate the experimental RMSE by comparing the mean estimate from 100 subsampled data sets to α_0.

Heisenberg scaling from RPE.—To look for Heisenberg scaling in RPE estimates, we perform RPE on 100 subsampled data sets for $L_{\text{max}} \in \{1, 2, 4, \ldots, 1024\}$ with $N = \{8, 32\}$. We see Heisenberg-like scaling in the experimental RMSE in Fig. 3. We also plot $\pi/(2L_{\text{max}})$, which is the analytic upper bound if sufficient samples are taken to compensate for additive error. We see that in practice, the analytic bounds can be pessimistic. Moreover, we see that while the experimental RPE accuracy is sensitive to N; increasing N to 32 from 8 does not dramatically improve the RMSE, improving the scaling to $0.200/L_{\text{max}}$ from $0.331/L_{\text{max}}$. Instead, as expected, large increases in accuracy are obtained by moving to larger L_{max}. This Heisenberg-like scaling is especially important for regimes where the time to implement the gate sequence is long relative to the SPAM time.

We believe our experimentally derived bounds are significantly better than our analytic bounds in part because our system is well calibrated. The analytic bounds give a worst-case analysis that accounts for bias caused by adversarial additive error, but RPE is effectively unbiased for our system, up to the accuracy we achieve.
FIG. 4. Scaling of the RMSE of estimates of α as a function of total samples $S(N,L_{\text{max}})$, with $L_{\text{max}} = 1024$. For the analytic curves, we resample with $N \in \{8, 16, \ldots, 256\}$, while for the experimental curves we restrict ourselves to $N \in \{8, 16, 32\}$ (as higher resampling rates would introduce nontrivial correlations between data sets). For each curve, N increases incrementally from left to right. Analytic bounds are derived using the techniques of Fig. 2. Experimental data points take the RMSE of 100 subsampled data sets for both RPE and GST. While the analytic bounds converge to $\pi/2048$, we see standard quantum limit scaling (i.e., error scaling $\propto 1/\sqrt{S}$) of RPE experimental estimates. As discussed in the text, this is because our experimental device has very low additive error, and thus the RPE estimates are essentially unbiased, and can achieve greater accuracy with increasing number of samples. GST estimates also exhibit standard quantum limit scaling.

Comparison to GST.—Because RPE can be biased, increasing N cannot improve the RMSE below $\pi/(2L_{\text{max}})$ in the worst case (see Fig. 2 and Ref. [13]). However, since GST is unbiased, it always benefits from increasing N.

We investigate this effect in Fig. 4. We plot the RMSE for experiments with fixed $L_{\text{max}} = 1024$ and varying $N \in \{8, 16, 32\}$. Analytic bounds for RPE are derived using the same method as in Fig. 2. Experimental bounds for GST and RPE are derived from comparing the estimates of 100 subsampled data sets to a_0.

While the analytic RPE bounds do not improve with increasing N, the subsampled RPE and GST data sets show standard quantum limit scaling. We expect this for GST, because GST is unbiased. In the case of RPE our experimental system happens to have very small additive error, and so is only very slightly biased. In this case, we expect to see improving estimates with increasing N until our accuracy is about the same size as our bias. Figure 4 tells us that for systems with relatively large additive error, where large N is feasible but large L_{max} is not, GST can provide more accurate results.

However, we see in Fig. 4 that GST pays a substantial cost relative to RPE when S is the figure of merit. In Fig. 5, we compare the values of S that RPE and GST each require to achieve a desired accuracy, by analyzing 100 subsampled data sets with fixed $N = 8$ and varying $L_{\text{max}} \in \{1, 2, 4, \ldots, 1024\}$. We see that RPE can achieve similar accuracy to GST while using orders of magnitude fewer total samples. As demonstrated both in Figs. 4 and 5, choosing $N = 8$ and $L_{\text{max}} = 1024$ yields an RPE estimate of α with a RMSE of 3.9×10^{-4}; this costs only $S(8, 1024) = 176$ total experimental samples.

For our system, acquiring the entire RPE and GST data sets took 10.8 min and 12.1 h, respectively, and the total experimental time scales linearly with N. Thus, we note that had our actual data acquisition rate been $N = 8$, it would have taken 14 s to acquire that RPE data set and about 15.5 min to acquire the GST data set. As for analysis time, a single RPE data set can be analyzed in about 0.05 s on a modern laptop. GST analysis takes about 20 s [49]. All data sets and analysis notebooks are available online [50].

Conclusions.—We show that robust phase estimation successfully estimates the phases of single-qubit gates, yielding results that are consistent with the full tomographic reconstruction of gate set tomography, and also exhibits Heisenberg-like scaling in accuracy. In particular, an individual phase may be estimated with a root-mean-squared error of 3.9×10^{-4} with as few as 176 total experimental samples.

Hence, RPE is a strong choice for diagnosing and calibrating single-qubit operations. It would be interesting to investigate whether the techniques of RPE can be applied to assessing other errors in single-qubit gate operations in a fast and accurate manner.

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. S. K. is funded by the U.S. Department of Defense. The authors thank Robin Blume-Kohout, Nathan Wiebe, Adam Meier, and Karl Burkhardt for helpful conversations, and Erik Nielsen for extensive software support. This research was funded, in part, by the Office of the
Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA). All statements of fact, opinion, or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of IARPA, the ODNI, or the U.S. Government.

\[\text{kmrudin@sandia.gov}\]
\[\text{shelbyk@umd.edu}\]

[36] C. Ferrie, C. E. Granade, and D. G. Cory, How to best sample a periodic probability distribution, or on the

[41] This means that the state preparation and measurement may not be aligned with the Z axis, which contributes to additive error.

[42] More precisely, given such a gate, e.g., $\tilde{Y}_{\pi/2+\epsilon}(\theta) = \exp\left[-i\left((\pi/2 + \epsilon)\right)(\cos \theta \hat{\sigma}_y + \sin \theta \hat{\sigma}_x)\right]$, RPE can extract both the rotation angle error parameter ϵ and the axis misalignment parameter θ. The gate sequences used to extract ϵ are similar to those used to extract α, while slightly more complicated gate sequences are used to learn θ, see Ref. [13].

[43] Although this results in slightly nonideal scaling in the accuracy of our estimate [44], this is a realistic scenario for experimental implementation.

[45] We use Eqs. (5.7), (5.8), (5.9), and (5.16) from Ref. [13] to create the graph.

[49] All analyses performed on a 2014 MacBook Pro 2.5 GHz Intel Core i7 machine.