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We demonstrate an experimental implementation of robust phase estimation (RPE) to learn the phase of
a single-qubit rotation on a trapped Ybþ ion qubit. We show this phase can be estimated with an uncertainty
below 4 × 10−4 rad using as few as 176 total experimental samples, and our estimates exhibit Heisenberg
scaling. Unlike standard phase estimation protocols, RPE neither assumes perfect state preparation and
measurement, nor requires access to ancillae. We crossvalidate the results of RPE with the more resource-
intensive protocol of gate set tomography.
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Introduction.—As quantum computers grow in size,
efficient and accurate methods for calibrating quantum
operations are increasingly important [1–4]. Calibration
involves estimating the values of experimentally tunable
parameters of a quantum operation and, if incorrect,
altering the controls to fix the error.
When these tunable parameters are incorrectly set, it

causes the system to experience coherent errors. Coherent
errors (versus incoherent errors) are more challenging for
error correcting codes to correct [5,6], making it harder to
reach fault-tolerant thresholds [7–9]. Hence, it is important
to correct these types of errors in order to build a scalable
quantum computer. While recent techniques using random-
ized compiling [10] mitigate the effects of coherent errors,
removing as many of the coherent errors as possible still
gives the best error rates.
Calibration can be challenging without accurate state

preparation and measurement (SPAM) estimates [11,12].
Thus, proper calibration of quantum operations will require
robust protocols, that is, protocols that can accurately
characterize gate parameters without highly accurate initial
SPAM estimates.
A new technique for calibrating the phases of gate

operations is robust phase estimation (RPE) [13]. RPE
can be used to estimate the rotation axes and angles of
single-qubit unitaries. Moreover, RPE is easy to implement
(the sequences required are essentially Rabi and/or Ramsey
experiments), is simple and fast to analyze, and obtains
accurate estimates with a surprisingly small amount of data.
RPE has advantages over standard robust characteriza-

tion procedures when it comes to the task of calibration.
RPE can estimate specific parameters of coherent errors,
whereas randomized benchmarking, while robust, can only
estimate the magnitude of errors [14–18]. While com-
pressed sensing approaches can withstand SPAM errors
[19,20], they do not have the Heisenberg scaling RPE
achieves. There is a simple analytic bound on the size of

SPAM errors that RPE can tolerate (namely, less than 1=
ffiffiffi

8
p

in trace distance), unlike the robust Bayesian approach of
Wiebe et al., whose error tolerance is less well understood
[21]. Lastly, RPE is extremely efficient compared to robust
protocols that provide complete reconstructions of error
maps, like randomized benchmarking tomography [22],
and gate set tomography (GST) [23].
Like many other phase estimation procedures, RPE

achieves Heisenberg scaling [13]; that is, the estimate error
scales inversely with the number of times the quantum
operation in question is applied. However, unlike many
other protocols, it requires no entanglement such as
squeezed states or NOON states [24–30], requires no
ancillae [25,31,32], and is nonadaptive [33–36].
Finally, compared to many tomography and parameter

estimation protocols, the postexperiment analysis of RPE is
strikingly simple. There are no Bayesian updates [21,36,37],
no optimizations [19,23,38], and no fits to decaying expo-
nentials [16,22]. Instead, postprocessing can be represented
with a dozen lines of pseudocode, with the most complex
operation being an arctangent [39].
Here, we provide the first published experimental

demonstration of RPE and investigate its performance.
We use RPE to experimentally extract the phase (rotation
angle) of a single-qubit unitary. Because we do not know
the true values of the parameter, we benchmark the estimate
by comparing to GST, which gives a robust, accurate, and
reliable estimate, but which requires much more data [23].
We see experimental evidence of Heisenberg scaling in

RPE, and we attain an accuracy of 3.9 × 10−4 rad in our
phase estimate using only 176 total samples. Compared to
GST, we find that RPE requires orders of magnitude fewer
total gates and samples to achieve similar accuracies.
However, when experiments involving long sequences
are not accessible, we find GST potentially has better
performance than RPE. Nonetheless, due to its minimal
data requirements, ease of implementation and analysis,
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and robust estimates of coherent errors, RPE is a powerful
tool for efficient calibration of quantum operations.
Preliminaries.—We consider estimating the parameter α

from the following single-qubit gate (the “X gate”):

X̂π=2þα ¼ exp ½−i(ðπ=2þ αÞ=2)σ̂X�; ð1Þ

where σ̂X is the Pauli X operator and α is the rotation error
in the X gate. There is no off-axis component to the X gate,
as we choose the X axis of the Bloch sphere to be the
rotation axis of the X gate [41]. α is a parameter that
experimentalists can typically control with ease. (While we
do not do so here, RPE may also be used to estimate the
rotation angle and and axis misalignment of a rotation gate
about an approximately orthogonal axis [42].)
In reality, implemented quantum gates will not be

unitary, but instead will be completely positive trace
preserving (CPTP) maps. Nonetheless, these CPTP maps
will have rotation angles with errors analogous to α, and in
the Supplemental Material [39], we show RPE can extract
such angles [39]. For the rest of the Letter, with slight abuse
of notation, we will use α to refer to this more general
CPTP map rotation error.
We use RPE and GST to extract α. Figure 1 gives a

schematic description of GSTand RPE circuits. RPE circuits
are essentially Rabi and/or Ramsey sequences; they consist
of a state preparation ρ, assumed to be not too far in trace
distance from j0ih0j, followed by repeated applications of
the X gate, followed by a measurement operatorM, which is
assumed to be close in trace distance to j1ih1j.
We use “additive error” to denote the maximum bias in

the outcome probability of any single RPE experimental
sequence. This bias can be due to SPAM errors and
incoherent errors in the gates. RPE can tolerate additive
error as long as it is less than 1=

ffiffiffi

8
p

.
For GST, each sequence consists of a state preparation ρ,

followed by a gate sequence Fi to simulate an alternate
state preparation. Next, a gate sequence gk is applied
repeatedly. Finally, the measurement M is preceded by a
gate sequence Fj to simulate an alternative measurement.

We refer to Fi and Fj as state and measurement fiducials,
respectively, and gk as a germ [39].
For both RPE and GST, running increasingly longer

sequences produces increasingly accurate estimates.
We use L to parametrize the length of the sequence, as
in Fig. 1. We run sequences with L ∈ f1; 2; 4; 8;…; Lmaxg,
where Lmax is chosen based on the desired accuracy. In
RPE, we repeat the gate of interest either L or Lþ 1 times.
In GST, we implement all possible combinations of state
fiducials, measurement fiducials, and germs, with the germ
repeated ⌊L=jgkj⌋ times, where jgkj is the number of gates
in gk and ⌊ · ⌋ denotes the floor function.
We employ the following notation to keep track of

experimental resources. N denotes the number of repeti-
tions (samples taken) of each sequence, and is set to be the
same for all sequences in a single RPE or GSTexperimental
run [43]. The total number of unique sequences is a
function of the maximum sequence length Lmax and is
denoted by Q. For RPE, it is given by

QðLmaxÞ ¼ 2ð1þ log2 LmaxÞ: ð2Þ
For GST, QðLmaxÞ is approximately equal to
396ð1þ log2 LmaxÞ, see Ref. [23] for details. The total
number of experimental samples taken is a function of both
N and Lmax and is denoted by S:

SðN;LmaxÞ ¼ NQðLmaxÞ: ð3Þ
(We will sometimes drop the arguments from Q and S if
clear from the context.)
RPE successively restricts the possible range of the

estimated phase using data from sequences with larger and
larger L. Inaccuracies result when the procedure restricts to
the wrong range. For larger values of Lmax, there are more
rounds of restricting the range, and thus more opportunities
for failure. By increasing N when Lmax increases, we can
limit this probability of failure. Likewise, a large additive
error makes it easier to incorrectly restrict the range,
but again, taking larger N can increase the probability of
success. The interaction between accuracy, N, Lmax, and
additive errors is shown in Fig. 2. This graph shows
theoretical upper bounds of the root-mean-squared error
(RMSE) of RPE for a fixed sample size N [45]. Figure 2
shows that, given an additive error δ, there exist good
choices for N and Lmax, provided that δ < 1=

ffiffiffi

8
p

.
A protocol has Heisenberg scaling when the RMSE

of its estimate of a gate parameter scales inversely with
the number of applications of a gate. RPE provably has
Heisenberg scaling [13], and GST numerically exhibits
Heisenberg-like scaling [23]. In this Letter, we empirically
look for scaling in accuracy and precision that scales as
1=Lmax. This is a good proxy (up to log factors) for
Heisenberg scaling.
In practice, experimentalists care less about Heisenberg

scaling than about the resources (e.g., N and Lmax)

(a)

(b)

FIG. 1. (a) RPE and (b) GST experimental sequences. Each
sequence starts with the state ρ and ends with the two-outcome
measurement M. (a) An RPE sequence consists of repeating the
gate in question either L or Lþ 1 times. (b) In GST, a gate
sequence Fi is applied to simulate a state preparation potentially
different from ρ. This is followed by ⌊L=jgkj⌋ applications of a
germ—a short gate sequence gk of length jgkj. Finally, a sequence
Fj is applied to simulate a measurement potentially different
from M.
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required to achieve a desired accuracy. Assuming time is
the key resource, if the experimental reset time is long
compared to the gate time, S quantifies the experimental
cost. On the other hand, if the gate time is long compared
to the experimental reset time, then Lmax is the dominant
factor.
Experimental results.—We implement GST and RPE on

a single 171Ybþ ion in a linear surface ion trap. The qubit
levels are the hyperfine clock states of the 2S1=2 ground
state: j0i ¼ jF ¼ 0; mF ¼ 0i; j1i ¼ jF ¼ 1; mF ¼ 0i. We
initialize the qubit close to the j0i state via Doppler cooling
and optical pumping; we measure in the computational
basis (approximately) via fluorescence state detection [46].
See Ref. [23] for experimental details. We used the open-
source GST software PYGSTI for numerical analysis,
extending its capabilities to include RPE functionality [47].
We take N ¼ 370 samples of each GST and RPE

sequence, and use L ∈ f1; 2; 4;…; 1024g. (For details,
see “Gate Sequences” in Ref. [39].) For the GST data set,
this yields Q ¼ 2347 unique sequences and S ¼ 868390
total samples, while the RPE data set has Q ¼ 22 unique
sequences and S ¼ 8140 samples.
Looking at Fig. 2, we see N ¼ 370 is larger than

necessary for RPE with Lmax ¼ 1024 for additive error
less than ∼0.25. To simulate experiments with small N, we
randomly sample (without replacement) from the exper-
imental data set, so that the new, subsampled data set has
N ≪ 370 samples per sequence.
We use several methods to characterize the experimental

accuracy of RPE. First, we apply the analytic bounds on the
RMSE of Fig. 2. We also compare our subsampled RPE
estimates to the GST estimate. Unlike RPE, GST is an
unbiased estimator [48], so we expect that as we increase
N, the RMSE will decrease as 1=

ffiffiffiffi

N
p

. Using the N ¼ 370

data set for GST, we estimate α ¼ ð6.4� 4.9Þ × 10−5; the
error bars denote a 95% confidence interval derived using a
Hessian-based procedure (see Ref. [23] for details). On the
other hand, using all RPE data we estimate α ¼ 1.0 × 10−4,
with a RMSE upper bound of π=ð2LmaxÞ ≈ 1.5 × 10−3

(where this bound comes from Fig. 2 with N ¼ 370,
assuming our additive error is less than 0.25; this
assumption is borne out in the next section).
While the RPE estimate is consistent with the GST

result, the accuracy is significantly lower, and we thus take
α0, the full data estimate from GST, to be the “true” value of
α for the purposes of benchmarking RPE. In particular,
throughout this Letter, we calculate the experimental
RMSE by comparing the mean estimate from 100 sub-
sampled data sets to α0.
Heisenberg scaling from RPE.—To look for Heisenberg

scaling in RPE estimates, we perform RPE on 100 sub-
sampled data sets for Lmax ∈ f1; 2; 4;…; 1024g with
N ¼ f8; 32g. We see Heisenberg-like scaling in the exper-
imental RMSE in Fig. 3. We also plot π=ð2LmaxÞ, which is
the analytic upper bound if sufficient samples are taken to
compensate for additive error. We see that in practice, the
analytic bounds can be pessimistic. Moreover, we see that
while the experimental RPE accuracy is sensitive to N;
increasing N to 32 from 8 does not dramatically improve
the RMSE, improving the scaling to 0.200=Lmax from
0.331=Lmax. Instead, as expected, large increases in
accuracy are obtained by moving to larger Lmax. This
Heisenberg-like scaling is especially important for regimes
where the time to implement the gate sequence is long
relative to the SPAM time.
We believe our experimentally derived bounds are

significantly better than our analytic bounds in part because
our system is well calibrated. The analytic bounds give a
worst-case analysis that accounts for bias caused by
adversarial additive error, but RPE is effectively unbiased
for our system, up to the accuracy we achieve.
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FIG. 2. Analytic upper bounds on the RMSE of the RPE phase
estimate. Because RPE is potentially biased, the RMSE does not
go to zero in the limit of infiniteN, but instead, approaches a floor
of π=ð2LmaxÞ. A larger additive error δ produces a larger bias, and
thus requires a largerN and larger Lmax to achieve a small RMSE.
For example, N ¼ 16 is not large enough to reach the floor for
Lmax ¼ 1024, but increasing N to 370 we easily saturate the
bound for most values of δ.
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FIG. 3. RMSE versus Lmax for RPE estimates of α from 100
subsampled data sets of size N ¼ 8 and N ¼ 32. While analytic
bounds are at best π=ð2LmaxÞ, we see this can be pessimistic.
When the additive errors, which can bias the RPE estimate, are
sufficiently small, increasing N improves accuracy.
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Comparison to GST.—Because RPE can be biased,
increasing N cannot improve the RMSE below π=ð2LmaxÞ
in the worst case (see Fig. 2 and Ref. [13]). However, since
GST is unbiased, it always benefits from increasing N.
We investigate this effect in Fig. 4. We plot the RMSE

for experiments with fixed Lmax ¼ 1024 and varying
N ∈ f8; 16; 32g. Analytic bounds for RPE are derived
using the same method as in Fig. 2. Experimental bounds
for GSTand RPE are derived from comparing the estimates
of 100 subsampled data sets to α0.
While the analytic RPE bounds do not improve with

increasing N, the subsampled RPE and GST data sets show
standard quantum limit scaling. We expect this for GST,
becauseGSTis unbiased. In the case ofRPEour experimental
systemhappens tohaveverysmalladditiveerror, andso isonly
very slightly biased. In this case, we expect to see improving
estimates with increasing N until our accuracy is about the
same size as our bias. Figure 4 tells us that for systems with
relatively large additive error, where large N is feasible but
large Lmax is not, GST can provide more accurate results.
However, we see in Fig. 4 that GST pays a substantial

cost relative to RPE when S is the figure of merit. In Fig. 5,
we compare the values of S that RPE and GST each
require to achieve a desired accuracy, by analyzing 100
subsampled data sets with fixed N ¼ 8 and varying
Lmax ∈ f1; 2; 4;…; 1024g. We see that RPE can achieve
similar accuracy to GST while using orders of magnitude

fewer total samples. As demonstrated both in Figs. 4 and 5,
choosing N ¼ 8 and Lmax ¼ 1024 yields an RPE estimate
of α with a RMSE of 3.9 × 10−4; this costs only
Sð8; 1024Þ ¼ 176 total experimental samples.
For our system, acquiring the entire RPE and GST data

sets took 10.8 min and 12.1 h, respectively, and the total
experimental time scales linearly with N. Thus, we note
that had our actual data acquisition rate been N ¼ 8, it
would have taken 14 s to acquire that RPE data set and
about 15.5 min to acquire the GST data set. As for analysis
time, a single RPE data set can be analyzed in about 0.05 s
on a modern laptop. GSTanalysis takes about 20 s [49]. All
data sets and analysis notebooks are available online [50].
Conclusions.—We show that robust phase estimation

successfully estimates the phases of single-qubit gates,
yielding results that are consistent with the full tomographic
reconstruction of gate set tomography, and also exhibits
Heisenberg-like scaling in accuracy. In particular, an indi-
vidual phase may be estimated with a root-mean-squared
error of 3.9 × 10−4 with as few as 176 total experimental
samples.
Hence, RPE is a strong choice for diagnosing and

calibrating single-qubit operations. It would be interesting
to investigate whether the techniques of RPE can be applied
to assessing other errors in single-qubit gate operations in a
fast and accurate manner.
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techniques of Fig. 2. Experimental data points take the RMSE
of 100 subsampled data sets for both RPE and GST. While the
analytic bounds converge to π=2048, we see standard quantum
limit scaling (i.e., error scaling ∝ 1=

ffiffiffi

S
p

) of RPE experimental
estimates. As discussed in the text, this is because our exper-
imental device has very low additive error, and thus the RPE
estimates are essentially unbiased, and can achieve greater
accuracy with increasing number of samples. GST estimates
also exhibit standard quantum limit scaling.

RPE 
GST

R
M

S
 E

rr
or

10 3

10 2

10 1

Total samples S(N=8,Lmax)
101 102 103 104

FIG. 5. RMSE for RPE and GST estimates of α as function of
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data sets. As opposed to Fig. 4, here we fix N ¼ 8 and vary Lmax.
Each sequential data point corresponds to setting Lmax ∈
f1; 2; 3;…; 1024g. RPE achieves the same level of accuracy
as GST using far fewer resources.
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