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Transport Problem

%—Fv-pv:o on Qx[0,T]

p(x,0) = po(x)

Given a partition C'(2) into cells ¢;,i =1, ...C

@ cellmass m; = [, p(x,t)dV

@ cellvolume p; = fCi dv

@ cell meandensity p; =m;/u;

@ conservation of mass for Lagrangian volume

— p(x,t)dQ =0
dt ci(t)
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Incremental Remap for Transport

@ Project depature grid to arrival grid: C(Q(t)) — C(Q(t + At))
© Lagrangian transport: m;(t + At) = m;(t),

pi(t + At) = m;(t)/pi(t + At)
© Remap: m(t + At) — 7 and p(t + At) — p, fori=1,..C

__—7 > > .

c(Q(1) C(Q(1+A1) C(Q)=C(Q(1+A1)

P Pl W Ve i

t /‘ /‘t+At ) t+At

my(1)= ({g(x,t)d" my(t+At)=m(t) Remap
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Mass-Density Remap

Given mean density values p; on the old grid cells ¢;, find accurate
approximations for the masses m; on the new cells ¢;:

ﬁu%ﬁz?:/p(w)dv, i=1...,C suchthat
C;

i

@ Total mass is conserved: S m; = 37 m; = M.

@ Mean density approximation on the new cells, p; = ’2—, satisfies the
local bounds

min

Pi Sﬁigp;naxv 7::17"'7C7
@ If p(x) is a global linear function on €, then the remapped masses are
exact:
mizm:xz/ p@)dV, i=1,...,C.

7
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Remap as Optimization Problem

Objective

il c<cu<C

desired physical properties

viewed as constraints on the
state

Ou' = LhyT

stable and accurate solution,
not required to possess all
desired physical properties

|t —u

minimize the distance
between the solution and a
suitable target

Advantages
@ Solution is globally optimal with respect to the target and desired
physical properties
@ Decouples accuracy from enforcement of physical properties

@ Enforcement of desired properties as constraints enables
feature-preserving methods on arbitrary unstructured grids
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Mass-Variable Mass-Target (MVMT)
Formulation

Exact mass update

v o ([ )

m
= m; + ug”, 1=1,.
Approximate mass update operator
m = L"(m, u(p)) :== m + u(p)

Target is defined as
u; = / P (x)dV —/ P (x)dV;i=1,...,C;
Solution e C"; C" - piecewise constant space with respect to cells
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MVMT Formulation

. 1 .
minimize §||u—uT||§2 subject to

(&
aeC"; Y m=0 and @™ <m+a <
i=1

@ Singly linearly constrained quadratic program with simple
bounds

@ Related problem without the mass conservation constraint is
fully separable

@ Solution approach

e Solve related (separable) problem first, cost O(C)
e Satisfy the mass conservation constraint in a few iterations
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MVMT Algorithm
Define Lagrangian functional £ : R x R x R x R¢ — R,
18 c
~ _ ~ T2 ~
E(uv)‘nu'la:u?)—E;(ui_ui) _/\;ul

C ~ ~ min C ~ max ~
Doty pn (@ — P ) = 3T kg (M —my — W)
where @ € R are the primal optimization variables, and
X ER, u1 € RY, and u, € RE are the Lagrange multipliers.

Karush-Kuhn-Tucker (KKT) conditions:
U=l +A+pi—po; i=1,...,

mi X

~ n ~ ~ ma;
mi o —my <ug <my o —my;

C
C
pi >0, pes >0 i=1,...,C
C
0

,ul,i(ﬂi—ﬁzi.—i—mi)zo, toi (U +mg o —m;)=0;, i=1,...,
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MVMT Algorithm

Focus on conditions separable in the index i. For any fixed value of A
a solution is given by

Uy =u] + X p1; = p2,; =0 it m —m, < ul + A < mr — m,
U =m —m; opoi =0, pi = —ul —A if wl + A<M —m,
ﬁ,-:r?b’i“ax—mi; p1,: =0, uz,i:ug——ﬂi—i—)\ if u;!—+)\>771;-“ax—mi,

foralli=1,...,C.

Ignoring 11 and u, and treating @; as a function of X yields

w;(\) = median(m™" — m;, u] + A\, mf—m,), i=1,...,C. J

Adjust X\ in outer iteration to satisfy Ziczl u;(\) =0.

In all our examples, the algorithm requires < 5 outer secant iterations
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Defining the Target

Mean preserving density reconstruction K K Ko
h S5 tss
P (X)e; = pi + 8- (x —bi)
Ko fin K5 g [
fc. de S5 4 tos
gi ~Vp and b, = —"——
Hi K K, Ky
Target mass increment —,
parCcral
u' = / P (x)dV — / P (x)dV A A
e 3 ) Pz
= 3 [ stoow= [ stoow
FEN/(c;) Y €iNey €i g

Integrate over swept areas o using Green’s theorem

2 2
/de/ zdy, /dez/ m—dy, /dez y—d:c,
o do o do 2 o oo 2
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Swept Region Approximation

ul = Z Fl}—

& ! jeN’(Iﬂ)
R
0y | @ Re|os h H *
s pi(x)dV if p*(oij)dii; <O
‘Tt Fy=1{ "
/Uzséq) / P;'L(w)dV if u*(0i)di iz >0
Uij
d;,i; - elements of cell to side incidence matrix,
corresponding to signs in blue circles
K
0
Oss T"‘B LY3
B)
p*(oi5)dii; <0 p*(oi5)diij >0 p*(oi5)diij >0 p*(oij)dii5 <0
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Adaptable Target

Mean preserving density reconstruction

p"(x)|e; = pi + & - (x — by),

Define reconstruction residual

ri=» lpi—pi(bs)|

JEN(es)
ri=0 it pi(by) = p(b;) = p;
Adaptable density reconstruction
a;(§)>1 and «;(0)=1

2 (X)|e; = pi + i(ri)gi - (x — by),

gi = Vp
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fc‘ xdV
i

and b; =

Residual measures deviation of
mean density from global linear
function

Solution remains exact for linears
Performs better than slope-limited
reconstructions for problems
combining "smooth" and "sharp"
features
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Extension of Formulation to Spherical
Coordinates

Lat-Lon Coordinates 6 € [—7/2,7/2], X € [0,2n]
Mean Preserving density reconstruction
P (8)les = pi+ (97) (0= o) + (9) (Acos8 — br).

\ 1 9p 4 9p b J. AcosfdV %
~ 2, brni="—""—— byi="—

9~ osgor T oo i T

Integrate over swept areas o using Green’s theorem

/dV:—/ sin 0, /GdV:—/ (cos 6 + O'sin 0)dA
o Ao o do
/AcosGdV:—/ %(cos@sine—i—@)d)\

o o
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Spherical transport

Initial Data Deformational Flow:
u(X, 0,t) = 2sin®(\) sin(20) cos(nt/T)
v(A, 0,t) = 2sin(2X) cos(0) cos(wt/T)

Zonal Flow:
u(A, 0) = 27 (cos() cos(a) + cos(A) sin(8) sin(«))
v(A, 0) = 27 sin(\) sin(«)

Nair and Lauritzen (2010) JCP

In the following examples: T' =5, o = 0, and radlius of
sphere = 1.
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Spherical transport: Deformation

FCR* MVMT-a

Transport results for the deformational flow test on the sphere at a
final time T = 5 after 2400 time steps on a 0.75° mesh.

* Flux Corrected Remap
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Spherical transport: Deformation
FCR

MVMT-a
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FCR MVMT-a FCR MVMT-a
mesh  steps time(sec) time(sec) ratio Ljerror rate Ljerror rate
3° 600 23.0 24.2 1.1 4.34e-2 — 3.60e-2 —
1.5° 1200 187.7 190.0 1.0 2.85e-2 0.61 227e-2 0.66
0.75° 2400 1644.4 1717.7 1.0 1.67e-2 0.69 1.40e-2 0.68
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Spherical transport: Rotation

Transport results for the solid-body rotation test on the sphere,
for two revolutions, left to right and back (1920 time steps) on a
0.75° mesh.
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Spherical transport: Rotation

FCR

05

0

FCR MVMT-a FCR MVMT-a
mesh  steps time(sec) time(sec) ratio Ljerror rate Ljerror rate
3° 480 17.4 18.2 1.0 3.25e-2 — 2.79e-2 —
1.5° 960 132.5 151.6 1.1 1.9%-2 0.78 1.36e-3
0.75° 1920 1184.5 1379.0 1.2 1.10e-2 0.78 5.41e-3
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Conclusions

@ Optimization-based transport offers a robust and accurate
alternative to standard transport algorithms

@ The MVMT algorithm is as fast as flux-corrected remap (FCR)
and is easily paralellizable

@ Separating accuracy from feature preservation allows extension
to arbitrary cells, e.g. polygons

More details in:

Bocheyv, Ridzal, Scovazzi, Shashkov (2011) "Formulation, analysis and numerical study
of an optimization-based conservative interpolation (remap) of scalar fields for arbitrary
lagrangian-eulerian methods", JCP

Bochev, Ridzal, Shashkov (2012) "Fast optimization-based conservative remap of
scalar fields through aggregate mass transfer", JCP

Bocheyv, Ridzal, Peterson (2012) "Optimization-based remap and transport: a divide
and conquer strategy for feature-preserving discretizations", JCP, submitted
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