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Outline of Topics

1. Mappings, Derivatives of Mappings, Grids

2. Elliptic grid generation (PDE’s)

3. Variational Methods 

4. Equidistribution

5. Liao’s Equidistribution Method

6. Monge-Kantorovich Approach



Part 1.

Grids, Mappings, Derivatives, Invertibility



Computational Field Simulations

Numerical solution of Partial Differential Equations

Typical Problem:  Solve the elliptic PDE

on a domain , with boundary condition 

Numerical solution requires a discretization of the domain.
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Mappings

A mapping is a set of functions which take points from a set U
to points in a set .

To solve PDE’s we require the set                  to consist of 
the set of points            .   Points in U have coordinates 
which form a regular Cartesian grid (easy to discretize on this
grid).

Let       be the coordinates of a point in .   Then the mapping
functions are 
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The Jacobian of a Map

Assume that the map is smooth (sufficiently differentiable).

Jacobian Matrix J:     

elements:  

determinant:  

The map is locally invertible if det(J)>0.

Example (n=2):
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What Map Should We Use and How Do We Find It?

The map should be

- invertible,
- smooth (at least continuous & differentiable),
- have good quality (ideally, orthogonal), and
- well-adapted to the physical solution, permitting accuracy.



Coordinate Line Tangent Vectors

Columns of Jacobian Matrix are Coordinate Line Tangent Vectors

The -coordinate lines of the map                are given by holding 
 fixed.  Thus, the tangent to a -coordinate line is 

The -coordinate lines of the map 
are given by holding  fixed.
Thus, the tangent to a -coordinate 
line is 
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The Inverse Map & Jacobian

The inverse map                       satisifes

Chain Rule:

Matrix Form:

Inverse Jacobian Matrix
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The Metric Tensor
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Part 2.

Solving PDE’s to Create Grids

Elliptic Grid Generation



Elliptic Grid Generation

Winslow, 1967:  

Inversion:

Advantages:
- mapping is smooth, 
- elliptic, second-order, coupled, quasi-linear
- complete flexibility as to the boundary parameterization

Disadvantages:
- Relatively slow to compute the solution grids,
- Non-orthogonal, non-uniform grid lines
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Invertibility Guarantee

Rado’s Theorem (harmonic mappings):  the solution map
to the previous Laplace system is a one-to-one, onto
provided U is convex and the boundary map is a 
homeomorphism.  Thus the generated grids are invertible!

Limitations:
- This guarantee does not hold in three-dimensions

- The guarantee does not hold for the Poisson System

with P, Q arbitrary.
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Weighted Elliptic Grid Generation

Laplace system provides no control over the interior grid

Poisson System (Thompson, 1974)
with P and Q ‘weighting functions.’

Inverted System:

Notes:
- interior grid control via P and Q (imprecise): attraction to lines or points
- widely used
- non-automatic
- no guarantee grids are smooth for arbitrary P,Q
- invertibility guarantee lost
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Invertibility Guarantees for Weighted Elliptic Systems

Spekreijse (1995): construction of P and Q via composite mappings
to guarantee grid is invertible.

Logical Space U        Parameter Space P        Physical Space 

Algebraic Map from U to P:  

Elliptic Map from P to :
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Solution r-Adaptivity

Generation of grids which give the least discretization error
for a fixed number of vertices. 

Adapt to “solution-features” (gradients, curvature, Hessian) 
or to a posteriori error estimates.

Equidistribution approach to adaptivity: 
- place vertices such that the local discretization error is 
the same everywhere in the domain.

Large error requires small cells.

Anderson area equidistribution via Poisson-like generator (inexact)

An exact system is derived by Kania (1999).
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Part 3.

Variational Grid Generation



Variational Principle

Euler-Lagrange Equations:

Example: Brackbill-Saltzman (1982)
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Variational Grid Generation

Main Attraction:   If F is a grid quality metric, then that quality is (potentially) 
optimized.   Gives less ad-hoc schemes with natural incorporation of the 
weights compared to PDE approach. 

Notes:
- Grid is usually generated from Euler-Lagrange equations

but can also be found by direct minimization.
- Approach not fully exploited yet.

Limitations:
- non-convex functionals, user-parameters, mixing of units
- Euler-Lagrange equations usually system of complex, non-linear PDEs
- incompatible boundary data gives ‘least-squares’ fit



Variational Mesh adapted to Shock

Brackbill-Saltzman, 1982



Harmonic Maps

Maps  between manifolds

Energy Density:

Energy Functional: 

A smooth map is harmonic if it is an extremal of E 

Unique Solution Guaranteed if one-to-one map between boundaries
of M and N; also need boundary of manifold N convex, negative curvature.

Special Case (Winslow Variable Diffusion): 
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Part 4.

Equidistribution



1D Variational Example of Equidistribution

Minimize

where x is continuously differentiable and satisfies x(0)=a, x(1)=b

Usually grid is found, not by direct minimization, but by calculating
the Euler-Lagrange equations (extremum is a solution to these).

One then gets the BVP 

Integrating once,    

Length proportional to w.   

In 1D, equidistribution determines grid uniquely because the equation is linear
and there is only one unknown, x.  

The ratio           is thus equi-distributed.  
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Total Error & Equidistribution

Let |E| be the Error that is to be equidistributed in 1D.    

We thus want

The variational principle becomes

Thus the variational principle for equi-distribution is proportional to the 
Total Error.    

Hence, in 1D, equi-distribution minimizes the Total Error.
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2D Equidistribution

Natural generalization:                    (local area proportional to weight)

There are two unknowns and only one equation, so grid is not uniquely determined.

Moreover, there is no rigorous connection between error equidistribution and 
minimization of total error.    If 

Then the Total Error is 

Minimize: 

Euler-Lagrange Equations are not the Equidistribution principle:

Equidistribution relation is a solution to the equations, but not the only one.
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Can also do arc-length equidistribution, 
but this can lead to grids with bad angles
and invertibility problems.



Liao’s Equidistribution Method

Create        mapping on  with specified Jacobian determinant (Liao, 1992).

Given a weight function f satisfying,

Solve the PDE/ODE system:

First equation does not have unique solution. 
Liao makes solution unique via a Poisson system:

Choice is motivated by uniqueness, not by grid quality.

Proves that Jacobian of created mapping is f.
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Monge-Kantorovich method of Equidistribution

New approach to cell-volume equidistribution based on M-K.

Minimization of grid quality measure locally constrained by the
equidistribution relation.  Constrained problem formulated using
Lagrange multiplier, which turns out to be the solution of the M-K
equation. 

Map from physical domain onto itself with 

Displacement formulation:

Show Jacobian of map is f.

  1)det(2  fH

 xx'


