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Outline of Topics

1. Mappings, Derivatives of Mappings, Grids
2. Elliptic grid generation (PDE’s)

3. Variational Methods

4. Equidistribution

5. Liao’s Equidistribution Method

6. Monge-Kantorovich Approach



Part 1.

Grids, Mappings, Derivatives, Invertibility



Computational Field Simulations
Numerical solution of Partial Differential Equations

Typical Problem: Solve the elliptic PDE
VeKVu=f

on a domain Q, with boundary condition U ‘F =D
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Numerical solution requires a discretization of the domain.




Mappings

A mapping is a set of functions which take points from a set U
to points in a set Q.

To solve PDE’s we require the set U < R"  to consist of
the set of points  [0,1]". Points in U have coordinates ¢
which form a regular Cartesian grid (easy to discretize on this

grid).

Let Xi be the coordinates of a point in Q. Then the mapping
functions are X, = X (...,&;,...)

/x Y
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The Jacobian of a Map
Assume that the map is smooth (sufficiently differentiable).

Jacobian Matrix J:

elements:  Jmn =X, /0¢,
determinant: det(J) =g

The map is locally invertible if det(J)>0.

Example (n=2):

, :(8x/a§ 8x/877j det(J) = X.y, X, .
oy/0& oy/on



What Map Should We Use and How Do We Find It?

The map should be

- invertible,

- smooth (at least continuous & differentiable),

- have good quality (ideally, orthogonal), and

- well-adapted to the physical solution, permitting accuracy.



Coordinate Line Tangent Vectors
Columns of Jacobian Matrix are Coordinate Line Tangent Vectors
X, X
J = f ' :[Xﬁ’ #77]
yf yn

The &-coordinate lines of the map X(&,77) are given by holding
n fixed. Thus, the tangent to a &-coordinate line is X

The n-coordinate lines of the map
are given by holding ¢ fixed.

Thus, the tangent to a n-coordinate
lineis X,




The Inverse Map & Jacobian

The inverse map s yhn(xy) satisifes

X(f(x1 Y)J?(X, y)) =X, Y(f(X, y)l 77(X1 y)) =Y
Chain Rule:

X6y X1, =L X6, + X1, =0

] ygé:x T ynnx = O’ yféy + y7777y :1
Matrix Form:

(xé X, (< &, :(1 O]
y§ y77 77x 77y O 1
Inverse Jacobian Matrix

S S R T

17y 77y _yg Xg



The Metric Tensor

G-t :(gﬂ 912]
912 g22

Jij = Xz - X

Sj
Y S 12
Ji1 = X - X = X,
0, =X - X, = X || X, | cos 3
— % ¥ =%
02 = 7 Xn_xﬂ

g =detG = g,,0,, — 95, = X, x X, [*=(det(J))’
Jg =det(J)



Part 2.

Solving PDE’s to Create Grids

Elliptic Grid Generation



Elliptic Grid Generation

Winslow, 1967: ,
ViE=0
2
Vin=0
Inversion:
Qo Xer — zglzxgn T 0uX,, = 0

Advantages:

- mapping is smooth, C~

- elliptic, second-order, coupled, quasi-linear

- complete flexibility as to the boundary parameterization

Disadvantages:
- Relatively slow to compute the solution grids,
- Non-orthogonal, non-uniform grid lines




Invertibility Guarantee

Rado’s Theorem (harmonic mappings): the solution map
to the previous Laplace system is a one-to-one, onto
provided U is convex and the boundary map is a
homeomorphism. Thus the generated grids are invertible!

Limitations: Vi&=0
- This guarantee does not hold in three-dimensions V2 =0
V=0

- The guarantee does not hold for the Poisson System
Vig=P

Vin=Q
with P, Q arbitrary.



Weighted Elliptic Grid Generation
Laplace system provides no control over the interior grid

2
Poisson System (Thompson, 1974) Vig=P
with P and Q ‘weighting functions.”  v2 =Q

Inverted System:Jx,X:- —203,X:, +01,X,, =—g(PX. +QX )

Notes:

- interior grid control via P and Q (imprecise): attraction to lines or points
- widely used

- hon-automatic

- N0 guarantee grids are smooth for arbitrary P,Q

- invertibility guarantee lost

Warsi: v, S —_— = _,
Qoo Xee — 2912)(577 + 011X, = =0, PX; — glle,7



Invertibility Guarantees for Weighted Elliptic Systems

Spekreijse (1995): construction of P and Q via composite mappings
to guarantee grid is invertible. c

n I L y E, E,

e e E3
" S ‘ " X

Logical Space U Parameter Space P Physical Space Q

Algebraic Map from U to P:
5 =5,(5)(1—1) +5,(S)

t=t()d-s)+1t,(n)s

Elliptic Map from P to Q: S, +5,, =0

t,+t, =0
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Solution r-Adaptivity

Generation of grids which give the least discretization error
for a fixed number of vertices.

Adapt to “solution-features” (gradients, curvature, Hessian)
or to a posteriori error estimates.

Equidistribution approach to adaptivity:
- place vertices such that the local discretization error is
the same everywhere in the domain.

Large error requires small cells. ‘E‘AX =C

Anderson area equidistribution via Poisson-like generator (inexact)

_9 W
922 EE glzxgn + 911 nn 922__912 + —0,—

An exact system is derived by Kania (1999).



Part 3.

Variational Grid Generation



Variational Principle
I[J -1]:ij(J 1dQ
Q

Euler-Lagrange Equations:

—

V.F—div,-0F /6] " =0

Example: Brackbill-Saltzman (1982)

F=c, I 4e,W/g +¢,(V,&-V,7)°



Variational Grid Generation

Main Attraction: If Fis a grid quality metric, then that quality is (potentially)
optimized. Gives less ad-hoc schemes with natural incorporation of the
weights compared to PDE approach.

Notes:

- Grid is usually generated from Euler-Lagrange equations
but can also be found by direct minimization.

- Approach not fully exploited yet.

Limitations:

- non-convex functionals, user-parameters, mixing of units

- Euler-Lagrange equations usually system of complex, non-linear PDEs
- Incompatible boundary data gives ‘least-squares’ fit




Variational Mesh adapted to Shock

Brackbill-Saltzman, 1982
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Harmonic Maps

Maps between manifolds e(&)(u):(M,g) — (N, h)

0&” (u) &7 ()
oy ou’

Energy Density: e(&)() = g” (u) hes (£(U))

Energy Functional: E(f) = Ie(f)(u)dM

A smooth map is harmonic if it is an extremal of E

Unique Solution Guaranteed if one-to-one map between boundaries
of M and N; also need boundary of manifold N convex, negative curvature.

2
KV ¢

Special Case (Winslow Variable Diffusion): @ —




Part 4.

Equidistribution



1D Variational Example of Equidistribution
1

52
Minimize  1[X:]= j_fdf
) 2W
where X is continuously differentiable and satisfies x(0)=a, x(1)=b

Usually grid is found, not by direct minimization, but by calculating
the Euler-Lagrange equations (extremum is a solution to these).

One then gets the BVP Xé .y

Integrating once, ng — CW(f)

Length proportional to w.

In 1D, equidistribution determines grid uniquely because the equation is linear
and there is only one unknown, X.

The ratio A IS thus equi-distributed.
W



Total Error & Equidistribution

Let |E| be the Error that is to be equidistributed in 1D.

Xe
W

We thus want = E |

The variational principle becomes
1

= [ de= L[ 1E wae=L[1E |
[[X.]=|— = Xe& — A X
2w 29 27

Thus the variational principle for equi-distribution is proportional to the
Total Error.

Hence, in 1D, equi-distribution minimizes the Total Error.



2D Equidistribution

J9

Natural generalization: —— = C (local area proportional to weight)
W

There are two unknowns and only one equation, so grid is not uniquely determined.

Moreover, there is no rigorous coprnection between error equidistribution and
minimization of total error. If VY = E|

Then the Total Error is

j|E|dxdy

Q

11g
deédn

dédn

O'—,I—‘

Minimize: I[xg,x,?,ygy,yn]zj %
0

Euler-Lagrange Equations are not the Equidistribution principle:

g X g X
- ‘/;V ’7} {‘/;V 5} =0 Can also do arc-length equidistribution,
: ] but this can lead to grids with bad angles
+ \/ayn _ \/gyé . and invertibility problems.
w w
¢ U

Equidistribution relation is a solution to the equations, but not the only one.



Liao’s Equidistribution Method

Create C* mapping on Q with specified Jacobian determinant (Liao, 1992).

Given a weight function f satisfying, T (X,y) >0 fla=1
1
feC(@  [[fda=1

V ev=1-1
Solve the PDE/ODE system: D=t+(1-t)f

X_vip !

dt V=V.¢
First equation does not have unique solution. Ag="F-1

Liao makes solution unique via a Poisson system:

(Vx¢)|agz: 0

Choice is motivated by uniqueness, not by grid quality.

Proves that Jacobian of created mapping is f.



Monge-Kantorovich method of Equidistribution

New approach to cell-volume equidistribution based on M-K.
Minimization of grid quality measure locally constrained by the
equidistribution relation. Constrained problem formulated using

Lagrange multiplier, which turns out to be the solution of the M-K

equation.
V' ®+det(H(®)) = f -1

Map from physical domain onto itself with

Displacement formulation; X'=X+VO®

Show Jacobian of map is f.



