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Energy conservation in Lagrange-remap simulations  
for ideal-MHD shock propagation (U)  

 
J. H. J. Niederhaus, T. A. Gardiner, W. J. Rider, and A. C. Robinson 

Sandia National Laboratories 
 

Two classical verification problems from shock hydrodynamics are adapted for verification in 
the context of ideal magnetohydrodynamics (MHD) by introducing strong transverse magnetic 
fields, and simulated using the finite element Lagrange-remap MHD code ALEGRA for purposes 
of rigorous code verification. The concern in these verification tests is that inconsistencies 
related to energy advection are inherent in Lagrange-remap formulations for MHD, such that 
conservation of kinetic and magnetic energy may not be maintained. Hence, total energy 
conservation may also not be maintained. MHD shock propagation may therefore not be treated 
consistently in Lagrange-remap schemes, as errors in energy conservation are known to result in 
unphysical shock wave speeds and post-shock states. That kinetic energy is not conserved in 
Lagrange-remap schemes is well known, and the correction of DeBar has been shown to 
eliminate the resulting errors. Here, the consequences of the failure to conserve magnetic energy 
are revealed using order verification in the two magnetized shock-hydrodynamics problems. 
Further, a magnetic analog to the DeBar correction is proposed and its accuracy evaluated 
using this verification testbed. Results indicate that only when the total energy is conserved, by 
implementing both the kinetic and magnetic components of the DeBar correction, can 
simulations in Lagrange-remap formulation capture MHD shock propagation accurately. (U) 
 
 Keywords: hydrodynamics, MHD, verification, shock 
 
Introduction 

In many applications for multiphysics modeling and simulation in solid dynamics, 
hydrodynamics, and magnetohydrodynamics (MHD), it is highly desirable to maintain a 
Lagrangian formulation while allowing the medium to move across a fixed Eulerian mesh. This 
is necessary in order to ensure optimal coupling to existing constitutive laws and equations of 
state, while also allowing for the development of strong shear and large distortions in the 
simulated flow fields, which could not be supported in purely Lagrangian schemes. This has 
commonly been accomplished using an operator-split approach in which the motion occurs in 
two stages: a Lagrangian step and an Eulerian advection or “remap” operation. In this Lagrange-
remap mode, time evolves only during the Lagrangian step, and material moves relative to the 
mesh only in the remap step. 

Typically, such Lagrange-remap schemes conserve the total mass, momentum, and internal 
energy in the simulation during the remap step, but kinetic energy, which in this case is a derived 
variable, is often not explicitly conserved, as noted by Benson (1992) (Section 3.6). Benson 
notes that since total energy is then also not conserved, significant errors may arise, particularly 
in the treatment of shock propagation. Although this problem has been addressed for the case of 
pure solid dynamics and hydrodynamics using the correction of DeBar (1974), in MHD, the 
additional component of the total energy associated with magnetic fluxes may also not be 
conserved during remap, leading to further errors. These errors can be deadly in simulations of 
MHD environments where strong shocks or stagnation phenomena are important, including Z-
pinch wire-array implosions, solar wind and magnetosphere dynamics, and stellar accretion. 
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In the present study, the multiphysics finite-element code ALEGRA (see Robinson and 
Garasi, 2004, and Robinson et al., 2008) is used to determine the significance of these errors in 
two classical shock-dominated problems adapted for use in ideal MHD. These problems include 
magnetized versions of the Noh shock problem (Noh, 1987) and the Woodward-Colella 
interacting blast wave problem (Woodward and Colella, 1984). Further, following the approach 
of DeBar (1974), an algorithm is implemented in ALEGRA for maintaining conservation of total 
energy, including both kinetic and magnetic energy. Its effect on solution accuracy and 
convergence for these problems is investigated using standard methods of code verification. 

 
Lagrange-remap formulation for ideal MHD 

Ideal MHD describes the motion of a perfectly conducting, inviscid continuum in the 
presence of magnetic fields; displacement currents, electrical resistivity, thermal conduction, and 
momentum diffusion are all neglected. These approximations yield the following system of 
conservation laws for mass, momentum, energy, and magnetic flux:  
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where ρ is the density, V is the velocity, p is the pressure, B is the magnetic flux density, and ε is 
the internal energy density. This nonlinear hyperbolic system, whose Jacobian matrix has real 
eigenvalues, admits discontinuous solutions, with MHD waves propagating at speeds 
corresponding to the seven eigenvalues, as has been described in detail by Ryu and Jones (1995) 
and Roe and Balsara (1996).  

The multiphysics finite-element code ALEGRA integrates the full system of equations for 
resistive MHD forward in time using an operator-split framework, in which the solution update 
occurs in two stages: a Lagrangian step and an Eulerian advection or “remap” operation. Time 
evolves only in the Lagrangian step, during which material and mesh motion occurs, and other 
physical processes in the simulation may be individually updated as well. Initially, the 
Lagrangian equations of motion, with thermodynamic and magnetic stresses and source terms 
computed from the previous cycle, are integrated in a moving frame, using a time-staggered 
finite-element discretization. These governing equations may be written as 
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where x is the coordinate, T and TM are the thermodynamic and magnetic stresses, respectively, 
b represents body forces, and Se represents energy sources. Physical dissipative mechanisms are 
neglected in this “ideal-MHD” component of the Lagrangian step, though artificial viscosity is 
included as a contributor to the simulated stresses. 

Subsequently, magnetic diffusion is incorporated by solving a transient boundary-value 
problem on the deformed Lagrangian mesh, as described by Robinson and Garasi (2004). Other 
processes including radiation transport and thermal conduction are similarly updated by solving 
linear elliptic systems on the deformed mesh. The stress tensors are then computed and evaluated 
at element centers as a contribution to the stresses from which the nodal forces are assembled in 
the finite element formulation (see Robinson et al., 2008). However, the code may be run in an 
“ideal-MHD” mode, where these dissipative mechanisms are excluded by omitting each of these 
updates. In this mode, the coupling between the material motion and the magnetic field is 
unaffected by magnetic diffusion or Joule heating (which do not appear in Equations 2 and 4), 
and computed solutions should satisfy Equations 1-4. This mode represents the foundational 
component of the MHD treatment in ALEGRA, and is of interest from the perspective of code 
verification because underlying inconsistencies in implementation that are obscured by 
dissipative effects in modeling non-ideal systems are exposed in the ideal-MHD mode. 

Of particular interest here are inconsistencies in energy conservation that arise as a result of 
the remap operation, subsequent to the Lagrangian step just described. In the remap operation, 
which is intended to be conservative, the degrees of freedom are mapped from the deformed 
Lagrangian mesh onto an arbitrary nearby mesh, which, in Eulerian mode, is the original mesh 
prior to the Lagrangian step. Though ALEGRA may be run in the purely Lagrangian 
formulation, many problems in the application space of ALEGRA and similar codes must be 
treated using an Eulerian reference frame, so that large deformations, shear, and vorticity may be 
captured accurately. The Lagrange-remap formulation allows the simulation to proceed in an 
Eulerian frame, while maintaining the capacity to update material states using constitutive 
relations formulated for motion in the Lagrangian frame. 

The remap step in ALEGRA moves mass, momentum, and internal energy on quadrilateral 
and hexahedral elements from the Lagrangian to the Eulerian (or nearby arbitrary) mesh using a 
second-order conservative advection method, as described by Peery and Carroll (2000). The 
advection scheme incorporates, by default, the second-order-accurate, monotonicity-preserving 
method of Van Leer (1979) in computing fluxes, and uses Benson’s half interval shift (HIS) 
algorithm (Benson, 1992b) to remap staggered mesh variables. As user options, a third-order 
method may be used, or a first-order donor method with or without a minmod limiter may be 
used. Multidimensional remap is performed in a sequence of one-dimensional passes, whose 
ordering is permuted on each cycle. The mass is remapped in the volume-based coordinate, and 
all other conserved variables are remapped using the mass-based coordinate, weighted by the 
remapped mass (Robinson et al., 2008). In the case of multimaterial problems, any of a number 
of interface reconstruction algorithms (e. g. SMYRA, SLIC, and PIR – see Peery and Carroll, 
2000; Dolbow et al., 2008; and Mosso et al., 2008) can be used to compute fluxes for each 
material. 

As for the transient magnetic quantities, an extension of the constrained transport algorithm 
of Evans and Hawley (1988) is used to update the magnetic flux density while exactly 
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maintaining its divergence-free nature (div B=0). The magnetic flux is updated by taking 
advantage of the identity 

 
( ) ∫∫

∂=

⋅==⋅∇
VSV

dV daBB 0 , (10) 

 
where V represents the volume element of which S is the bounding surface, and da is the 
incremental outward normal area vector on S. The remap formulation is obtained by differencing 
Equation 10 over the course of the Lagrangian step and solving for the corresponding increment 
in the flux density by computing fluxes across each surface of the volume that is swept out by 
the deformation of the element during the Lagrangian step. This yields a remapped flux density 
that is divergence-free by construction, and provides natural upwinding. However, limiters are 
also applied to the face fluxes in order to maintain monotonicity. 

It should be emphasized that only the nodal momenta, element-centered masses and internal 
energies, and face-centered magnetic fluxes are remapped and incorporated into the updated 
solution. (In the case of materials with strength, stresses must also be remapped.) These are the 
fundamental degrees of freedom that appear in the finite-element formulation. The post-remap 
kinetic energy, magnetic energy, and total energy are then derived quantities. As in a number of 
other Lagrange-remap codes (e.g. CTH – see McGlaun et al., 1990), the code can be run in a 
mode that remaps kinetic energy as well, but only as a diagnostic monitor of energy 
conservation, and/or as a tool for modifying the energy in order to maintain total energy 
conservation, as described below. 

 
Kinetic and magnetic energy conservation in remap 

Such a diagnostic is needed in Lagrange-remap methods because it has been observed that 
the remap operation fails to conserve kinetic energy (see DeBar, 1974; McGlaun, 1990;Benson, 
1992a; Pember and Anderson, 2000; and Youngs, 2007). Since the momentum is linear in the 
velocity, but the kinetic energy is quadratic in velocity, momentum and kinetic energy cannot be 
simultaneously advected in a way that is conservative. Further, because of the staggered 
discretization in the finite element method, which computes velocities at nodes and internal 
energies at element centers, a statement that requires conservation of total energy would not be 
self-consistent. Instead, element-centered internal energy alone is conserved in remap, and 
conservation of kinetic energy is no longer explicitly maintained. The kinetic energy may then 
vary relative to the value that would have resulted if it were remapped independently. Because 
kinetic energy is not conservatively advected in remap, the total energy in the simulation is not 
conserved. The consequences of failed energy conservation are many, but include in particular 
the development of unphysical shock wave speeds and jump conditions, especially in problems 
where large exchanges between kinetic, internal, and/or magnetic energy occur (e.g. stagnating 
flows and shock interactions). 

Several approaches to mitigating this problem have been proposed and implemented in 
various codes, which are summarized by Benson (1992a) in Section 3.6. One of the most widely-
used of these approaches is based on the scheme of DeBar (1974), who proposed explicitly 
computing the magnitude of kinetic energy discrepancy due to remap. Such a calculation can be 
written for the kinetic energy in an element as 
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where m is the element mass, n is an index of nodes associated with the element, and N is the 
total number of nodes associated with the element. The notation Ρ[.] heuristically represents the 
remap operator, such that Ρ [V] denotes the velocity as measured after remap of momentum, and 
V the velocity before remap. In this so-called “DeBar fix” or “DeBar correction,” the kinetic 
energy discrepancy Δk in each element (which may take the form of deficit or surplus) is re-
introduced to the calculation as internal energy in the element, so that the correspondence 
between conservation of momentum and conservation of energy in the element is restored. The 
DeBar correction has been applied successfully in a number of Lagrange-remap codes, including 
CTH (McGlaun et al., 1990), TURMOIL3D (Youngs, 2007), and ALEGRA (Robinson et al., 
2008). However, it is important to note that multiple formulations of the expression given in 
Equation 11 are possible – particularly with regard to the weighting given to each node – and 
uniqueness of the solution is therefore lost. 

For MHD flows, since the magnetic energy is quadratic in B, but the face-centered magnetic 
fluxes are linear in B, a similar discrepancy in the magnetic energy remains, even when the 
standard DeBar correction has been successfully implemented. Hence, total energy is still not 
conserved, and a magnetic extension to the DeBar correction is needed. Such an extension has 
been devised for ALEGRA. In this “magnetic DeBar correction” algorithm, the magnetic energy 
discrepancy arising during remap of the magnetic flux is computed explicitly in each element 
using the shape functions Ff and magnetic fluxes Φf on the faces. The magnetic flux Φ is the 
degree of freedom handled in the finite element method, defined as  

 

∫ ⋅=Φ
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ff daB , (12) 

where f is the face index, and daf is the incremental outward normal area vector on face f. The 
magnetic energy is obtained by discretely integrating the magnetic flux over the face shape 
function, and then discretely integrating these face-integrated fluxes over the element’s 
quadrature points using their weightings wq. The magnetic energy in an element is discretely 
represented in ALEGRA as 
 

( )∑ ∑∫
= = ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ≈⋅=

Q

q

F

f
qffq

V
m wdVE

1

2

12
1

2
1 xFBB

μμ
, (13) 

where μ is the magnetic permeability, dV is the incremental volume element, F is the total 
number of faces associated with an quadrature point, and xq is the coordinate of quadrature point 
q. The magnetic energy discrepancy arising during remap is then computed as 
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where Ρ[.] heuristically represents the remap operator. In the magnetic DeBar corretion, the 
magnetic energy density discrepancy ΔEm, like the kinetic energy density discrepancy, is 
restored to the element as internal energy after the remap step. 

In this way, then, the magnetic energy is also advected conservatively in remap with the 
same accuracy as the magnetic flux density. With the full DeBar correction implemented, 
including both kinetic and magnetic components, all forms of energy are advected conservatively 
in remap, and the total energy should therefore be conserved in the calculation. It is anticipated 
that with total energy conserved by means of the full (kinetic + magnetic) DeBar correction, 
problems that include propagation and/or interaction of strong MHD shock waves will exhibit 
dramatically improved accuracy in shock wave speeds and jump conditions. Further, it is 
hypothesized that an accurate solution for these problems in the Lagrange-remap formulation 
may only be obtained by making use of the full DeBar correction algorithm. In order to test these 
hypotheses, and to determine whether thresholds or limits are needed in the DeBar correction, 
two verification problems from ideal MHD are proposed below. 

Verification methodology  
Two simple verification problem are proposed, based on classical shock-hydrodynamics 

problems found in the literature: the stagnation-flow shock problem of Noh (1978), and the 
interacting blast-wave problem of Woodward and Colella (1984). In both cases, very strong 
discontinuities in thermodynamic variables propagate in a one-dimensional domain, and the 
medium of propagation is an ideal gas. To convert these to MHD-shock problems, a uniform, 
oblique B-field is imposed, and the medium is assumed to have infinite conductivity, so that 
magnetic diffusion will not obscure the exchange of energy between various forms in the system. 
(In this case, the ideal-MHD mode is used in ALEGRA.) The magnitude of the imposed B field 
is chosen such that magnetic energy densities have the same order of magnitude as kinetic and 
internal energy densities. A series of similar ideal shock-MHD verification problems with exact 
solutions can be found in Ryu and Jones (1995), though the strength of the shocks arising in that 
set of problems is generally insufficient for the purposes of the present study. 

Solutions at fixed time are computed for each problem using ALEGRA in various 
configurations, and analyzed using standard methods of code verification. For each case, a 
reference solution is generated, and a posteriori error estimates are made by computing error 
norms with respect to this solution. In the case of the magnetized Noh problem, an exact solution 
is computed using an ideal-MHD Riemann solver based on the method of characteristics (see 
Ryu and Jones, 1995). For the magnetized Woodward-Colella problem, the reference solution is 
an approximate solution obtained using the ideal-MHD Eulerian Godunov code Athena (see 
Gardiner and Stone, 2005 and Stone and Gardiner, 2007). However, as discussed below, care is 
taken to ensure that reference Athena solutions are generated on grids sufficiently fine to keep 
numerical errors at least an order of magnitude smaller than the smallest errors in the ALEGRA 
solutions.  

A posteriori error estimates for the ALEGRA solutions make use of the L1 norm for the 
density profile ρ(x) at fixed time t*. An L1 norm, as opposed to an L2 or L∞ norm, is appropriate 
here because of the shock-dominated nature of these problems (see Lax, 1973 and Tadmore, 
1998). The L1 is the least dependent on solution smoothness, and therefore the most likely to 
provide a meaningful measure of error here. The continuous Lq norm for density on the interval 
a≤ x≤ b would be computed as 

 



NECDC UNCLASSIFIED October 2008 
 

10 
UNCLASSIFIED 

( )[ ]

q

b

a
R

b

a

q
R

q

dx

dx
xL

/1

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

=

∫

∫

ρ

ρρ
ρ , (15) 

 
where ρR denotes the reference solution. Here, we approximate the density error e using the 
discrete L1 norm, denoted by ℓ1, which we compute as  
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where Rρ  is the volume-weighted mean density in the reference solution, N is the number of 
data in the computed solution, Δxn is the nth interval length in the computed solution, and the 
reference value *

,nRρ  is obtained by evaluating ρR at the element-center coordinate xn. (Note that 
for node- or edge-centered variables such as the velocity, the nodal coordinate would be used.) 
For the present study, the reference solutions are regarded as piecewise constant, so that 
interpolation of the reference solution does not influence the error estimates. As an aside, it is 
important to note here that the volume weighting implied in Equation 16 is unnecessary in the 
case of Lagrange-remap simulations, which are effectively Eulerian, with uniform and constant 
volumes. However, volume weighting is imperative for computing error norms in pure 
Lagrangian simulations, particularly where strong shocks are involved. 

The effective convergence rate p is then computed for each fine/coarse simulation pair as 
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where it is assumed that Nfine/Ncoarse=2. (For further discussion of solution comparison using such 
error norms and order-of-accuracy analysis, see Ober and Shadid, 2004.) For these two test 
problems, we expect ALEGRA solutions to exhibit no better than first-order convergence with 
N, due to the presence of singularities in the solution at shocks and contact discontinuities. As 
the mesh is refined, the L1 norm, which is dominated by errors at singularities and proportional 
to the width of the regions where singularities are located, should diminish by a factor equal to 
the refinement ratio. Regardless of the accuracy of the method, this factor can be no greater than 
the first power of the refinement ratio. Further, Banks et al. (2008) have shown that for linearly 
degenerate waves, such as contact discontinuities, a convergence rate of no better than r/(r + 1) 
can be expected for an rth-order discretization. Therefore, to the extent that errors at contact 
discontinuities contribute to the total error, we expect convergence rates significantly less than 
unity. Hence, our verification criteria must be based on the magnitude and distribution of the 
error, as well as the convergence rate, and convergence rates even as low as 1/2 may be 
interpreted as adequate. Negative or very small positive convergence rates, however, remain 
unacceptable. 
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The magnetized Noh problem 

In the first of verification problems, the magnetized Noh problem, two sets of very strong 
constant velocity, constant-state MHD shocks are generated by bringing a very cold conducting 
medium to rest at a stagnation surface in the presence of an oblique magnetic field. The medium 
is an ideal gas with γ=5/3 and cV=1. Two shocks propagate into the medium away from the 
stagnation surface in each direction, corresponding to the forward and backward fast- and slow-
mode nonlinear MHD waves emanating from the initial discontinuity. 

The problem is initialized on [0, 1] with a uniform initial thermodynamic state, but two 
regions of opposed motion, so that the stagnation surface forms at the interface between them at 
x=0.5: 
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where x̂ and ŷ are the unit vectors in the x- and y-directions, and T is the temperature. The 
problem is run to t=0.75. (In the Lagrangian case, the problem is initialized on [-0.75,1.75], such 
that at t=0.75, the medium has been compressed to approximately [0,1].) This is similar to the 
problem simulated by Noh (1978), except that the shock strength is not infinite (the gas has 
nonzero temperature and pressure at time zero), and a uniform, oblique field B=0.5 ( x̂ + ŷ ) is 
imposed. As the system evolves forward in time, shocks propagate outward from x=0.5 into the 
medium and convert a large portion of the kinetic and magnetic energy in the initial state into 
internal energy and transverse motion in the post-shock state. This transfer of energy between 
kinetic, magnetic, and internal energy, all of which have similar magnitudes in the post-shock 
state, is expected to provide a rigorous test of energy conservation in the ideal-MHD algorithm 
implemented in ALEGRA. It is important to note that, in a staggered discretization, where the 
velocities lie at the nodes, a simulation with an even number of uniform elements cannot 
initialize the x=0.5 velocity discontinuity in a problem such as this at an element edge, but at an 
element center, as will be noted below. 
 
Magnetized Noh problem setup.  For ease of computing exact solutions using a Riemann 
solver, the magnetized Noh problem is simulated with shocks emanating in both directions from 
an initial discontinuity in x-velocity x=0.5 (rather than simulating the half-space). The 
propagation of constant-velocity MHD shocks from the initial discontinuity in the magnetized 
Noh problem is shown in Figure 1, where ALEGRA results for this problem at N=512 are 
plotted in (x, t) space. The fast and slow MHD shocks can be identified in Figure 1 as the 
surfaces of discontinuity across which the fluid experiences an increase and decrease in By, 
respectively. 
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Figure 1: ALEGRA results at N=512 for the magnetized Noh problem, plotted in (x,t) space. MHD shocks 
propagate outward from the stagnation surface near x=0.5. Left: density; right: y-component of B field. 

 
The problem is set up in ALEGRA on a uniform three-dimensional N×2×2 mesh, with 

hexahedral elements of aspect ratio 1. The shocks propagate in the ±x-direction, and periodic 
boundary conditions are imposed in the y- and z- directions. Uniform and constant B and V fields 
are imposed at the ends of the domain (constant-x boundary surfaces), corresponding to the 
initial condition. We note that the specification of the correct boundary conditions for the 
transverse velocity on the ends of the domain is crucial to the success of the simulation: vy=vz =0 
for x=0,1. Tensor artificial viscosity, with both linear and quadratic components, is included for 
shock capturing, with a linear coefficient of 0.5 and a quadratic coefficient of 2.0. It should be 
noted, however, that this artificial viscosity formulation is not fully consistent for ideal MHD, as 
dissipation is introduced only proportionally to gradients in the velocity magnitude, not gradients 
in transverse components of the velocity or the B field. For this problem, the Van Leer advection 
algorithm is used in the ALEGRA simulations. 

 
Figure 2: Sample ALEGRA results at N=512 and t=0.75 for the forward half of the domain in  the mag-
netized Noh problem, plotted with the exact solution, showing zones 1 (rightmost), 2, and 3 (leftmost). Left: 
density; right: y-component of B field. The difference between the two solutions is plotted as a lighter trace. 

 
The exact solution for this problem is computed using an ideal-MHD Riemann solver based 

on the method of characteristics (see Ryu and Jones, 1995). The exact solution at t=0.75 consists 
of five uniform states separated by discontinuities. The forward half of the domain is shown in 
Figure 2, including three of the five zones. Zone 1 is the unperturbed gas, with exact-solution 



NECDC UNCLASSIFIED October 2008 
 

13 
UNCLASSIFIED 

density ρ1=1.0. Zone 2 contains gas that has interacted with the fast forward MHD shock: 
ρ2=2.469. Zone 3 is the central zone and contains stagnant gas that has interacted with both the 
fast and slow MHD shocks: ρ3=3.724. 

 
Energy conservation in the magnetized Noh problem.  As our primary interest here is to 
characterize inconsistencies that arise in energy conservation due to remap, and to evaluate the 
effectiveness of the measures taken to eliminate these inconsistencies, a convergence study 
sequence is performed in various remap configurations. (This is code verification; a known exact 
solution is available, and we measure error with respect to it, and the rate of convergence of the 
error.) 

In each convergence study, the magnetized Noh simulation is run to t=0.75 for grid sizes 
N=128, 256, 512, 1024, and 2048. The error e is computed as the discrete L1 norm on the density 
residuals ℓ1[ρ] using Equation 16, after shifting the computed density profile ρ(x) in x by +Δx/2. 
The data are shifted because at t=0, the x-velocity on the node located at x=0.5 is -1, while on the 
node at x=0.5–Δx, it is +1. Therefore, the initial location of the discontinuity is x=0.5–Δx/2. 
Convergence rates are computed using Equation 17. 

Convergence studies for the magnetized Noh problem are performed for each of four 
configurations: (1) pure Lagrange-remap (LR) formulation without any DeBar correction, (2) LR 
formulation with only the kinetic-energy DeBar correction, (3) LR formulation with the full 
(kinetic + magnetic) DeBar correction, and (4) pure Lagrangian formulation. In configuration 
(3), total energy is conserved during remap. In configuration (1), only internal energy is 
conserved, as neither kinetic nor magnetic energy is advected conservatively. In configuration 
(2), total energy is again not conserved, as magnetic energy is not advected conservatively. It 
should be noted that the integrated total energy in the simulation is not constant in LR mode, but 
grows at a constant rate, because of the velocity boundary condition at x=0, 1.  

The effect of these various energy conservation requirements on shock propagation in the 
magnetized Noh problem is shown in Figure 3(a). Profiles of the density at t=0.75 for each 
configuration, for grid size N=512, are shown along with the exact solution. In both of the 
configurations where total energy is not conserved in remap, erroneous shock speeds and post-
shock states arise in the solution. The error is largest in the pure Lagrange-remap case, where no 
DeBar correction is applied (only internal energy is conserved). The speed of the fast MHD 
wave is drastically underestimated, and the density of the fluid after interaction with both the fast 
and slow MHD waves (the fully stagnated fluid) is overestimated by more than 10%. With the 
kinetic-energy DeBar correction, the disparity with respect to the exact solution is diminished, 
but remains significant, due to the failure to advect magnetic energy conservatively. 

The failure to capture MHD shocks accurately when energy conservation is not maintained is 
illustrated even more clearly in the convergence data shown in Figure 3(b), which shows the 
trends of the density error e=ℓ1[ρ] with respect to the grid size N. A straight dashed line indicates 
first-order convergence, which is the expected outcome, since the only degenerate mode in the 
problem is the stationary contact discontinuity at x=0.5. The corresponding convergence-rate 
data, computed using Equation 16, are shown in Table 1. Here we see that although the errors 
show very little difference between the configurations for coarse meshes, the disparity becomes 
dramatic at high resolution. Errors are more than an order of magnitude larger at N=2048 for the 
non-conserving cases than for the conserving cases. Further, the expected first-order 
convergence trend is achieved only in the conserving cases. This is confirmed also by the data in 
Table 1, which indicate that the convergence rates in the LR cases match the pure Lagrangian 
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rates to within a few percent only when both kinetic and magnetic energy are conservatively 
advected in remap by applying the full DeBar correction (the “total energy conserved” case). 

 
Figure 3: Code verification results for the magnetized Noh problem at t=0.75. (a) Density profiles computed 
at N=512 for various remap configurations, compared to the exact solution, showing large errors in shock 
locations and post-shock states for cases where total energy is not conserved. (b) Convergence study results, 
showing first-order convergence of the density error e=ℓ1[ρ] only in cases where total energy is conserved. 

 
Several other observations related to code verification may be made on the data shown in 

Figure 3. First, a dramatic, narrow expansion is clearly visible at the initial contact discontuity in 
all four scenarios, including the Lagrangian case. This “wall heating” is a persistent artifact of 
shock capturing using artificial viscosity, as has been thoroughly documented by Noh (1987). It 
can be diminished in magnitude only by using an odd number of elements in the x-direction, but 
cannot be eliminated without discarding artificial viscosity. It should also be noted that remap 
introduces significant dissipation at the shock fronts, so that in the full-DeBar-corrected case 
(total energy conserved), shocks have a slightly gentler slope than in the Lagrangian case (the 
shock spans more elements), and this results in the slightly larger error magnitudes plotted in 
Figure 3(b). This is observed for this problem regardless of whether the standard Van Leer 
advection algorithm is used, or the third-order method. In simulations at low resolution, this 
dissipation could tend to hide underlying errors due to energy conservation issues. An MHD-
consistent artificial viscosity formulation would help to address this issue. Finally, we also note 
that, from a code verification standpoint, computing errors with respect to an independent exact 
solution was paramount, as trends in the error computed with respect to a highly-resolved 

ALEGRA simulation indicated first-order convergence regardless of the remap configuration or 
grid size. (This may be regarded as convergence to a spurious, non-physical solution.) 

 

Table 1. Density error convergence rates computed using Equation 17 for the magnetized 
Noh problem in various remap configurations. 

Grid sizes 128/256 256/512 512/1024 1024/2048 
     

IE conserved 0.152 -0.067 -0.081 -0.037 
IE, KE conserved 0.319 0.046 -0.069 -0.046 
TE conserved 0.880 0.979 0.965 0.880 
Lagrangian 0.876 0.883 1.021 0.886 
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The magnetized Woodward-Colella problem 
In the second of the two verification problems, the magnetized Woodward-Colella problem, 

two sets of very strong MHD blast waves propagate into the medium from opposite ends of the 
domain. The medium is an ideal gas with γ=1.4 and cV=1. These correspond to a set of fast and 
slow MHD modes in each direction for each discontinuity. 

The problem is initialized on [0, 1] with three uniform states separated by discontinuities at 
x=0.1 and x=0.9: 
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where T is the temperature. The problem is run to t=0.025 on meshes whose x-dimension is an 
integer multiple of 10, in order to preserve the correct initial discontinuity positions. This is 
identical to the problem simulated by Woodward and Colella (1984), except that a uniform, 
oblique field B=15 )ˆˆ( yx + is imposed, and the solution is analyzed at t=0.025 instead of t=0.038. 
Shock interactions here, however, are not as strong, because the shock energy is carried by four 
waves that are generated from the initial two discontinuities, rather than by only two, and 
because at t=0.025, only the fast MHD waves have interacted.  

 
Figure 4: ALEGRA results at N=4096 for the magnetized Woodward-Colella problem, plotted in (x,t) space. 
MHD waves propagate in both directions from initial discontinuities in pressure and temperature at x=0.1 
and 0.9. Left: density; right: y-component of B field. 

 
The propagation and interaction of these waves is shown in Figure 5, where ALEGRA results for 
this problem at N=4096 are plotted in (x,t) space. Unlike the magnetized Noh problem, which is 
essentially a stagnation flow, the magnetized Woodward-Colella problem is pressure-driven, 
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starting from a quiescent state. MHD waves propagate into the stagnant, magnetized medium, 
transforming internal energy into kinetic and magnetic energy. This provides a similar test of 
energy conservation capability as the magnetized Noh problem, but adds the much greater 
complexity of MHD wave interactions, due to both the convergent shocks and the rarefaction 
waves reflected at the boundaries. 
Magnetized Woodward-Colella problem setup.  As in the magnetized Noh problem, the 
magnetized Woodward-Colella problem is set up on a uniform three-dimensional mesh of 
dimensions N×2×2, with hexahedral elements of aspect ratio 1. The blast waves propagate in the 
±x-directions, and periodic boundary conditions are imposed in the y- and z- directions. 
Reflecting boundary conditions are imposed at the ends of the domain (constant-x bounding 
surfaces), consistent with the purely hydrodynamic Woodward-Colella problem. In this case, the 
total energy in the system should remain constant over time. For the present magnetized 
problem, reflecting boundaries are implemented at x=0, 1 by requiring that the products (vxvy) 
and (BxBy) have the same symmetry about a boundary. Then, since Bx has even symmetry by 
definition, and vx must have odd symmetry to support wave reflection, all of the components of 
B must have odd symmetry about the boundary, and all of the components of V must have even 
symmetry. For this problem, these requirements can be maintained by imposing zero-
displacement boundary conditions on all three velocity components at x=0,1, and imposing 
symmetric (projection) boundary conditions for the components of B. (In ALEGRA, the latter is 
maintained implicitly in the finite-element formulation.) Again, we note that the specification of 
correct boundary conditions for the transverse components of the velocity is paramount for the 
success of the simulation, since subtle errors in By and vy may arise otherwise, which lead to the 
loss or gain of energy in the simulation over time. 

Tensor artificial viscosity, with both linear and quadratic components, is included for shock 
capturing, with a linear coefficient of 0.5 and a quadratic coefficient of 2.0. The note in Section 
5.1 regarding MHD inconsistency of the artificial viscosity scheme applies here as well. These 
simulations are also performed using the third-order advection scheme in the remap algorithm 
(rather than the default second-order van Leer algorithm), for reasons that are discussed below. 

A reference solution for this problem is computed using the ideal-MHD Eulerian Godunov 
code Athena (see Gardiner and Stone, 2005 and Stone and Gardiner, 2007). No exact solution is 
available for this problem, and very accurate solutions may be computed at relatively little 
expense using a direct Eulerian scheme for a problem such as this, where the perfect-gas 
equation of state is used. Gardiner and Stone (2005) demonstrate second-order convergence in 
solutions computed using Athena for linear MHD wave propagation, and provide code 
verification results additionally for a number of other ideal-MHD test problems. Solutions 
computed for the magnetized Woodward-Colella problem at t=0.025 and grid size N using 
Athena exhibit near-first-order convergence of the density error norm with respect to the solution 
at grid size 2N, up to N=10,000. For a range of meshes between N=1250 and N=10, 000, a mean 
convergence rate p=0.84±0.04 is observed, and the error at Nf =10,000 is ef =0.0023. Preliminary 
analysis of ALEGRA solutions indicates smallest numerical errors of approximately 7×10−3. 
Richardson extrapolation suggests, then, that error in the Athena solution will be at least one 
order of magnitude smaller than the smallest errors in the ALEGRA simulations for a mesh size  

NR =Nf (ef /7×10−4)1/p ≈ 42,000.  
 
Therefore, we generate a reference solution using Athena on an even larger mesh: N=52,000; 

errors in ALEGRA solutions for the magnetized Woodward-Colella problem are computed with 
respect to this solution. 
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Figure 5: Sample ALEGRA results at N=1280 and t=0.025 for a subregion of the domain in the magnetized 
Woodward-Colella problem, plotted with the reference Athena solution. Left: density; right: 
y-component of B field. Contact discontinuities are indicated by “C” and slow-mode MHD waves by “S.” The 
difference betwen the two solutions is plotted as a lighter trace. 

Profiles of density and the y-component of the B field are shown for a subregion of the 
domain in Figure 6, including the ALEGRA solution for N=1280, and the Athena solution for 
N=52,000. A complex series of nonlinear MHD waves is seen in the solution profiles, dominated 
by two structures, particularly evident in the density profile, that are moving toward each other. 
The outermost edge of each of the structures in the density profile are the original contact 
discontinuities (marked “C”), and the inner edges of the structures are the remnants of the slow-
mode MHD waves (marked “S”). 
Energy conservation in the magnetized Woodward-Colella problem.  As in the case of the 
magnetized Noh problem, a convergence study sequence is performed for this problem using 
each of the four remap configurations. In each convergence study, the magnetized Woodward-
Colella simulation is run to t=0.025 for grid sizes N=160, 320, 640, 1280, 2560, and 5120. We 
note that each grid size must be an integer multiple of 10 in order to ensure that the initial 
discontinuities – in the element-centered variables pressure and density – are each located 
precisely on an element boundary, at x=0.1 and 0.9. The density error e is computed for each of 
these cases, again, as e=ℓ1[ρ] with using Equation 16, and convergence rates are computed using 
Equation 17. 

The four remap configurations outlined above are simulated here as well: (1) LR with no 
DeBar correction, (2) LR with DeBar correction for kinetic energy only, (3) LR with full DeBar 
correction, and (4) pure Lagrangian formulation. The effect of these remap configurations on the 
solution in the magnetized Woodward-Colella problem is shown in Figure 7(a), where, for 
simplicity, only the density profiles on [0.43, 0.53] are plotted. Similarly to the results shown in 
Figure 3(a), the remap configurations that do not advect all three forms of the energy 
conservatively fail to reproduce the correct nonlinear wave speeds and shock jump conditions 
seen in the reference density profile. The uncorrected Lagrange-remap case shows the most 
dramatic error, and although applying the kinetic-energy DeBar correction reduces the error, an 
acceptable level of agreement with the highly resolved Eulerian Godunov solution and with the 
pure Lagrangian result is only achieved when the full DeBar correction is applied. 
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Figure 6: Code verification results for the magnetized Woodward-Colella problem at t=0.025. (a) Density 
profiles computed at N=1280 for various remap configurations, compared to the reference solution, showing 
large errors in shock locations and post-shock states for cases where total energy is not conserved. (b) 
Convergence study results, showing convergence of the density error e=ℓ1[ρ] at a rate of p=0.75 only in 
cases where total energy is conserved. 

 
The convergence behavior of the solutions in these cases is shown in Figure 7(b), which plots 

trends in the density error e=ℓ1[ρ] with respect to the grid size N, with a straight dashed line 
denoting behavior proportional to N−0.75. Based on the analysis of Banks et al. (2008), a 
convergence rate of p=r/(r+1)=0.75 is the expected outcome here because of the presence of 
contact discontinuities that move across the mesh, and the use of the third-order remap algorithm 
(r=3). (Note that first-order convergence is still expected in the Lagrangian simulation, since 
contacts are represented exactly in that case.) The corresponding convergence rates are shown in 
Table 2. The results again show diverging trends based on whether the total energy is conserved, 
and error magnitudes that grow as the energy conservation requirements are successively 
relaxed. Very poor convergence in the non-conserving cases reflects gross shock propagation 
errors evident in Figure 7(a), and we see that with total energy conservation enforced by use of 
the full (kinetic + magnetic) DeBar correction, distinctly improved convergence behavior is 
observed. Only when the full DeBar correction is implemented do convergence rates in the LR 
simulations approach the expected value. 

Based on the data in Figure 7, we observe again that LR solutions generally exhibit a greater 
degree of dissipation than the pure-Lagrangian simulations. This accounts in part for the larger 
error magnitudes and lower convergence rates seen in the LR results in Figure 7 compared to the 
Lagrangian results, even with third-order advection and the full DeBar correction activated. This 

Table 1. Density error convergence rates computed using Equation 17 for the magnetized 
Woodward-Colella problem in various remap configurations. 

Grid sizes 160/320 320/640 640/1280 1280/2560 2560/5120
      

IE conserved 0.194 0.245 0.258 0.071 0.047 
IE, KE conserved 0.403 0.129 0.135 -0.023 0.024 
TE conserved 0.773 0.480 0.700 0.709 0.750 
Lagrangian 0.717 0.855 1.022 0.954 1.031 
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disparity is noticeably greater in the magnetized Woodward-Colella problem than in the 
magnetized Noh problem, due to the much stronger variations in pressure, density, and 
transverse B-field associated with interacting shocks. We speculate that the origin of this 
spurious dissipation lies with the artificial viscosity algorithm, which, as previously mentioned, 
is not MHD-consistent. Also, a wall-heating effect is similarly present in these simulations 
(appearing on the right-most slow-mode wave), as in the magnetized Noh simulations, though its 
effect here is much less significant. 

 
Conclusions 

By incorporating a correction for the magnetic energy similar to that originally proposed by 
DeBar (1974), finite-element MHD simulations in ALEGRA are able to maintain conservation 
of total energy while operating with a Lagrange-remap framework. Code verification results 
based on two classical shock-hydrodynamics test problems adapted for use as MHD-shock test 
problems indicate that near-first-order convergence to exact or highly accurate reference 
solutions is achieved when total-energy conservation is maintained, either by use of a purely 
Lagrangian scheme, or by use of the full DeBar correction in Lagrange-remap calculations. 
Further, the results indicate that acceptable convergence behavior is obtained for these problems 
only when total-energy conservation is maintained. Though the DeBar correction has been 
widely used to maintain total-energy conservation in pure hydrodynamic or solid-dynamic 
Lagrange-remap numerical methods, this study suggests that the magnetic extension should be 
incorporated into MHD Lagrange-remap methods as well. 

These observations are founded on insights provided by order verification, which has proven 
to be a powerful tool for exposing underlying inconsistencies in the methods studied here. Non-
convergence of solutions provides a key indicator for code verification, particularly when error 
magnitudes alone are insufficient as a criterion for differentiating between acceptable and 
unacceptable results. Further, convergence criteria based on errors with respect to an 
independent exact or highly accurate solution provide insights that are hidden when errors with 
respect to a refined mesh are computed. Care must be taken in computing these norms; volume-
weighting of error norms is essential in many cases, and the centering of variables poses certain 
requirements on the meshes that may be used and the frame of reference within which 
independent solutions may be compared. With all of these requirements address, the complete 
verification study yields tangible evidence of the consistency and accuracy of the numerical 
methods used here in ALEGRA, and it is anticipated that future validation tests will yield further 
insight into the usefulness of these methods in MHD applications. 
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