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We propose a novel two-phase bounding and decomposition approach to compute optimal and near-optimal

solutions to large-scale mixed-integer investment planning problems that have to consider a large number of

operating subproblems, each of which is a convex optimization. Our motivating application is the planning

of transmission and generation in which policy constraints are designed to incentivize high amounts of

intermittent generation in electric power systems. The bounding phase exploits Jensen’s inequality to define

a new lower bound, which we also extend to stochastic programs that use expected-value constraints to

enforce policy objectives. The decomposition phase, in which the bounds are tightened, improves upon the

standard Benders algorithm by accelerating the convergence of the bounds. The lower bound is tightened by

using a Jensen’s inequality-based approach to introduce an auxiliary lower bound into the Benders master

problem. Upper bounds for both phases are computed using a sub-sampling approach executed on a parallel

computer system. Numerical results show that only the bounding phase is necessary if loose optimality gaps

are acceptable. Attaining tight optimality gaps, however, requires the decomposition phase. Use of both

phases performs better, in terms of convergence speed, than attempting to solve the problem using just the

bounding phase or regular Benders decomposition separately.

Key words : Benders decomposition, stochastic programing, investment planning, transmission and

generation planning, policy constraints

1. Introduction

The electric power industry is a major area of applications of optimization (Hobbs 1995). This

sector comprises over 2% of the U.S. economy, and recent restructuring has strengthened incen-

tives for electric utilities to plan and operate power infrastructure efficiently. Increasing amounts

of generation from renewable resources make optimization of short-term operations and long-term

planning more challenging, and so promote the development of new decision-support tools to
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account for renewable variability and unpredictability. For instance, stochastic unit commitment

models that explicitly factor in uncertainty in the availability of supply from wind and solar gener-

ators often yield lower dispatch costs when compared to traditional deterministic unit commitment

approaches. However, these cost reductions come at the expense of higher computational complex-

ity (Bertsimas et al. 2013, Papavasiliou and Oren 2013). Investment planning models, because they

consider both investment and operations, present even greater computational challenges. First,

resource-specific characteristics, such as locational constraints and distance from load centers and

the existing transmission grid, require analysis of both transmission and generation investment

alternatives on a system-wide basis. Second, failure to capture the variability and spatial corre-

lations among intermittent resources will likely result in suboptimal investment recommendations

(Joskow 2011). In this paper, we develop practical approaches to solve multi-area generation and

transmission investment planning problems that account for the aforementioned challenges.

Because of computational limitations, as well as uncertainty in long-term forecasts of demand and

capacity factors of intermittent resources, investment planning models have traditionally avoided

fine-grained representations of short-run production costs (Palmintier and Webster 2011). To

achieve computational tractability, investment planning instead utilized deterministic or probabilis-

tic models for calculating production costs based on load-duration curve approximations (Hobbs

1995, Kahn 1995). These models usually approximate the load or net-load duration curves using a

small number of categories (e.g., peak, shoulder and off-peak demand), ignore spatial correlations

between demand zones and intermittent generation across multiple regions, and do not model time

dependencies in operations, thereby ignoring ramping constraints and start-up costs. Early plan-

ning models only considered single-area load duration curves based on time-series of historical and

forecasted data (Anderson 1972, Booth 1972). These were later improved, e.g., through the use of

Gram-Charlier series (Caramanis et al. 1982), to account for the effect of non-dispatchable genera-

tion technologies, such as wind and solar, on the optimal generation mix. A simple approach is to

select operating hours to be simulated by performing moment matching on demand, wind, solar,

and hydro data (van der Weijde and Hobbs 2012). In this approach, the sample of hours that best

approximates the means, standard deviations, and correlations of the data is selected to determine

the optimal portfolio of transmission and generation investments. Palmintier and Webster (2011),

Shortt et al. (2013), and de Sisternes and Webster (2013) proposed further refinements of the use

of load-duration curves in planning models considering unit commitment variables and constraints.

Yet these were only applied to generation and not transmission planning. None of these approx-

imation methods, however, provide metrics (e.g., bounds) to quantify the effect of the quality of

the approximations on the resulting investment plans and total system costs. Therefore, they can

only be deemed as heuristics.
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Large-scale applications and computational limitations have historically motivated researchers

to solve generation and transmission planning models using Benders decomposition (Bloom 1983,

Bloom et al. 1984, Pereira et al. 1985, Sherali et al. 1987, Sherali and Staschus 1990, Huang

and Hobbs 1994). Such approaches separate the investment problem (i.e., master problem) from

the production cost problems (i.e., subproblems), which can then be solved independently taking

advantage of parallel computer systems. The quality of the investment plans proposed by the mas-

ter problem is improved by iteratively evaluating their performance against the production cost

models, which also provide marginal cost information that is subsequently used in the master prob-

lem. Benders decomposition also provides bounds upon the optimal system costs for each candidate

investment and its convergence is guaranteed under certain conditions (Geoffrion 1972). However,

these bounds cannot be guaranteed as valid if only a few observations of demand, wind, solar, and

hydro data are considered in the subproblems, as is often the case in planning studies. Furthermore,

convergence of the algorithm is often slow, which has prevented its widespread utilization among

practitioners, although acceleration techniques are an ongoing subject of research (McDaniel and

Devine 1977, Magnanti and Wong 1981, Sahinidis and Grossmann 1991). Finally, consideration

of environmental constraints, such as imposition of minimum annual amounts of generation from

renewable resources, impedes the parallel solution of the subproblems. These constraints couple the

solutions for distinct hours, which then all need to be considered simultaneously in the optimiza-

tion problem. This imposes a computational restriction on the level of granularity of the market

operations representation.

In this paper, we develop a computationally-tractable algorithm to generate candidate trans-

mission and generation investment plans, as well as bounds upon the minimum system costs. We

propose a two-phase approach based on a bounding algorithm (Hobbs and Ji 1999) and Ben-

ders decomposition, both of which provide on the expected system costs. In Phase 1, a lower

bound is computed by solving a low-resolution planning problem using clustered observations of

time-dependent demand, wind, solar, and hydro data, based on an extension of Jensen’s inequal-

ity for stochastic programs with expectation constraints. Upper bounds are estimated using a

sub-sampling method to approximate the operations costs for each candidate investment plan pro-

posed by the lower-bound planning problem. These bounds are progressively tightened by refining

partitions of the space of time-dependent load and renewable energy data. Due to the asymp-

totic properties of our algorithm, however, tight optimality gaps may only be achieved in the

limit, requiring very fine partitions of the data that result in computationally expensive lower-

bound planning problems. To overcome this difficulty, we propose a second phase (Phase 2) to

the bounding approach that uses Benders decomposition with an auxiliary lower bound to close

the optimality gap. This is the first solution approach capable of solving multi-area transmission
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and generation planning problems with expectation constraints, while providing bounds on the

optimal total system costs. We apply that algorithm to a realistic large-scale representation of a

power system in the U.S.. Our approach can be generalized to other stochastic programs with both

per-scenario and expectation constraints, such as optimization problems with CVaR constraints in

finance (Krokhmal et al. 2002).

The rest of this paper is organized as follows. In Section 2, we describe an abstract planning

model that is formulated as a stochastic mixed-integer linear program with per-scenario and expec-

tation constraints. In Section 3, we extend Jensen’s inequality in order to compute lower bounds

for a stochastic problem with expected-value constraints and describe a statistical method to com-

pute upper bounds that takes advantage of parallel computer systems. Section 4 describes our

implementation of Benders decomposition, including the introduction of auxiliary lower bounds in

the master problem to accelerate convergence. In Section 5, we illustrate the performance of the

proposed bounding and decomposition algorithms on a transmission and generation planning study

of a 240-bus representation of the Western Electricity Coordinating Council (WECC). The WECC

is the largest synchronized power system in the U.S., comprising 14 western states as well as the

portions of Alberta, British Columbia, and Mexico. Conclusions are presented in Section 6. Proofs

of all propositions together with details of derivations are provided in the electronic companion to

this paper.

2. Abstract Planning Model

We focus on investment planning models that can be formulated as linear or mixed integer linear

programs.1 Examples of such models include: Caramanis et al. (1982), Bloom (1983), and Sherali

and Staschus (1990) for generation expansion planning; Binato et al. (2001) for transmission expan-

sion planning; and Pereira et al. (1985), Dantzig et al. (1989), van der Weijde and Hobbs (2012),

and Munoz et al. (2014) for composite transmission and generation expansion planning. Other

electricity investment planning market simulation models that are commonly used for energy and

environmental policy analysis include IPM (ICF 2013), the Electricity Market Module of NEMS

(Gabriel et al. 2001) , ReEDS (Short et al. 2011), Haiku (Paul and Burtraw 2002), and MARKAL

(EPA 2013).

2.1. Notation

We now define the main notation used in the paper. Additional parameters and variables will be

introduced as needed.
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Parameters:

A : Coefficient matrix associated with investment constraints;
b : Right-hand-side vector associated with investment constraints;
c : Vector of marginal generation and curtailment costs;
d : Right-hand-side vector associated with expected-value constraints;
e : Vector of transmission and generation capital costs;
K : Fixed recourse matrix associated with expected-value constraints;
T (ω) : Coefficient matrix associated with investment variables in operations problem. Also

known as a transition matrix. This matrix includes scenario- or time-dependent param-
eters such as hourly levels of wind, solar, and hydro power production;

(Ω, p) : Discrete probability space composed of the sample space Ω and the probability measure
p(·) over Ω. For planning purposes, this space can, for example, be constructed using
8,760 historical observations of hourly demand, wind, solar, and hydro data from a
representative year (i.e., |Ω| = 8,760). Each event ωi would then have probability of
occurrence p(ωi) = 1/8,760, ∀ωi ∈Ω;

r(ω) : Right-hand-side vector of constraint parameters for scenario ω;
W : Fixed recourse matrix;

Decision variables:

x : Vector of generation and transmission investment variables. Some investment decisions
are often modeled as binary (e.g., transmission investments) while others are modeled
as continuous (e.g., generation investments);

y(ω) : Vector of power generation levels, power flows, phase angles, and demand curtailment
variables for each realization of ω in Ω;

2.2. Two-Stage Investment-Operations Model

Broadly, the goal of a planning tool is to provide a recommendation of where and when to invest

in new transmission and/or generation infrastructure, given a distribution of forecast operating

conditions that we model with the probability space (Ω, p). We formulate the planning problem as

the following stochastic mixed-integer linear program:

TC((Ω, p)) = min
x

eTx+ f(x, (Ω, p)) (1)

s.t. Ax≤ b (2)

x= (x1, x2), x1 ∈ {0,1}, x2 ≥ 0 (3)

The function f(x, (Ω, p)) denotes the minimum expected operating costs for a given set of invest-

ments x and scenarios described by (Ω, p). The function TC(Ω, p) denotes the minimum total

system cost. The matrix A and vector b define investment constraints such as generation build

limits, installed reserved margins per area, and limits on the maximum number of transmission

circuits per corridor. The elements in the vector of investment variables x can be defined as discrete

(x1, counts of plants or transmission lines at a particular location) or continuous (x2, generation
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capacity variables, in mega-watts). As in Binato et al. (2001), van der Weijde and Hobbs (2012),

Munoz et al. (2013), our application models transmission investments using binary variables and

generation capacity as continuous. The formulation in (1)-(3) presumes that there is a single invest-

ment planning stage, i.e., all investments are here-and-now-variables, while all recourse variables

are operations variables. However, more generally, the solution methods of this paper can be applied

to multi-stage planning models, such those described in van der Weijde and Hobbs (2012), Munoz

et al. (2013), and Munoz et al. (2014), which can be represented using minor variants of formulation

(1)-(3).

2.3. Operations Model

The objective of the operations problem is to minimize operating costs for a given discrete proba-

bility space, denoted (Ω, p). The problem is formulated as a linear program:

f(x, (Ω, p)) = Min
y(ω)

Eω[cTy(ω)] (4)

s.t. Wy(ω)≤ r(ω)−T (ω)x ∀ω ∈Ω (5)

Eω[Ky(ω)]≤ d (6)

y(ω)≥ 0 ∀ω ∈Ω (7)

In our application, the per-scenario (e.g., hourly) constraints (5) consist of Kirchhoff’s first and

second law, maximum generation limits for both conventional and intermittent units, maximum

power flow limits, flowgate limits, and ramping constraints. The expectation constraints (6) are

used to enforce policy objectives, such as renewable targets or emission limits on a yearly basis

(Munoz et al. 2014).

3. Phase 1: The Bounding Algorithm

One alternative to solving large-scale stochastic programs (Birge and Louveaux 1997) is to use

computationally-tractable approximations that provide lower and upper bounds on the optimal

objective function value. Well-known bounds for problems with stochastic right-hand sides include

Jensen’s inequality for lower bounds (Jensen 1906) and the Edmunson-Madansky inequality for

upper bounds (Madansky 1960). These bounds can be progressively tightened by refining the par-

titioning of the space Ω, until a certain optimality gap is achieved (Huang et al. 1977, Birge and

Louveaux 1997, Hobbs and Ji 1999). However, expectation constraints in our case prevent the direct

application of Jensen’s inequality, because it is only applicable to separable problems with per-

scenario constraints. Computation of upper bounds still involve the solution of large optimization

problems, which are sometimes facilitated by the application of decomposition algorithms (Hobbs
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and Ji 1999). We now introduce an extension of the Jensen’s-inequality-based lower bound to prob-

lems with both per-scenario and expectation constraints (Section 3.1), and describe a sub-sampling

method that provides a statistical estimate of the upper bound problem, which we implement on

a parallel computer system (Section 3.2).

3.1. New Lower Bounds

Proposition 1 extends the Jensen’s-inequality-based lower bound to stochastic linear programs

with expected value constraints, as is the case in the operations model of Section 2.3. Detailed

derivations and proofs are provided in Section EC.1 of the electronic companion.

Proposition 1. Given a discrete probability space Ω with measure p and a partition S1, ..., Sm of

Ω, a sample space Ψm = {ξ1, ..., ξm} is defined with measure qm such that the probability of each

event ξi in Ψm equals the probability of each subset Si, defined as qm(ξi) = p(Si), ∀i ∈ {1, ...,m}.

If the vector of right-hand-side parameters r(·) and transition matrix T (·) are computed using the

expected value of these parameters over the partitions S1, ..., Sm such that r(ξi) = Eω[r(ω)|Si] and

T (ξi) =Eω[T (ω)|Si], ∀ξi ∈Ψm, then for any vector of investments x, f(x, (Ψm, qm))≤ f(x, (Ω, p)).

The interpretation of this result is that if the space Ω is partitioned or clustered into subsets,

and if expected values of these parameters, conditioned on each subset/cluster, are used in the

optimization problem and weighted in the objective function in proportion to the cluster sizes,

then solving the operations problem f(x, (Ψm, qm)) provides a lower bound on the operations

problem f(x, (Ω, p))—which considers the full distribution of time-dependent parameters. If a hier-

archical clustering algorithm is used then the bound can be guaranteed to be nondecreasing (i.e.,

f(x, (Ψm, qm))≤ f(x, (Ψm+1, qm+1)), ∀x, ∀m∈ {1, ..., |Ω|−1}) and convergent to f(x, (Ω, p)) (Birge

and Louveaux 1997). Finally, Proposition 2 shows how this bound can be used to compute bounds

on the optimal total system cost TC(Ω, p) associated with the investment planning problem.

Proposition 2. Given the conditions described in Proposition 1, TC((Ψm, qm)) is a lower bound

on TC((Ω, p)).

Further, if a hierarchical clustering algorithm is used, such that f(x, (Ψm, qm))≤ f(x, (Ψm+1, qm+1)),

∀x, ∀m∈ {1, ..., |Ω| − 1}, then TC(Ψm, qm)≤ TC(Ψm+1, qm+1), ∀m∈ {1, ..., |Ω| − 1}.

3.2. Upper Bounds

For any feasible investment plan x, eTx + f(x, (Ω, p)) clearly provides an upper bound on the

optimal total system cost TC(Ω, p). However, computing f(x, (Ω, p)) could be prohibitive due to

the presence of expectation constraints that link all scenarios within the operations problem and

which consequently impede a direct parallel implementation on a per-scenario basis. Relaxation
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of these constraints through Benders or Dantzig-Wolfe decomposition methods can address this

difficulty (O’Brien 2004), but this approach then requires implementation of nested decomposition

algorithms within our proposed approach. Further, some investment planning problems require

consideration of multi-year time-series, sub-hourly resolution of intermittent data, and scenarios

including component failures. These additional features would result in extremely large sample

spaces (Ω, p) and, therefore, large operations models that would be difficult to solve even in the

absence of expectation constraints.

Other solution approaches that can reduce the computational complexity of large-scale stochastic

optimization problems involve the use of samples of uncertain parameters, as opposed to their full

distributions. Examples of this approach to compute upper bounds are described in Birge and

Louveaux (1997) and Pierre-Louis et al. (2011), and within Benders decomposition in Infanger

(1992) and Higle and Sen (1991). The quality of these approximations is progressively improved by

increasing the sample size between iterations (Birge and Louveaux 1997, Pierre-Louis et al. 2011)

or by combining information from multiple independent samples through Benders’ cuts (Higle and

Sen 1991, Infanger 1992). In particular, convergence of the Sample Average Approximation method

(SAA), which relies on large-sample results, is guaranteed for stochastic linear programs with per-

scenario and expectation constraints (Anitescu and Birge 2008). However, a major drawback of

these approximation methods is the poor quality of the estimation during initial iterations as a

consequence of their asymptotic convergence properties. Recent results from Birge (2011) show

that in some cases a combination of sub-sample estimates, as in the batch-means method (Law

and Carson 1979, Schmeiser 1982), can achieve faster convergence and more robust results than

when considering a single large sample of equivalent size. In the spirit of Birge (2011), our method

to compute estimates of f(x, (Ω, p)) utilizes a sub-sampling approach that is enhanced through

stratified sampling to reduce the estimate variance.

3.2.1. Sub-Sample Estimation Our estimation method relies on using the means of N

independent groups, or batches, of M observations each, instead of using a single large sample

of equivalent size N ×M . We denote a random sample of M observations from the space Ω

as ΩM , and define a new probability measure pM(·) such that all observations have the same

probability of occurrence pM(ωi) = 1/M , ∀i ∈ {1, ...,M}. To approximate f(x, (Ω, p)), we draw N

independent samples of M observations each, denoted {ΩM
1 , ...,Ω

M
N }, and solve N independent

operations problems, denoted f(x, (ΩM
1 , p

M
1 )), ..., f(x, (ΩM

N , p
M
N )). An estimate of f(x, (Ω, p)) is then

calculated as:

f(x, (Ω, p))∼=
1

N

N∑
j=1

f(x, (ΩM
j , p

M
j )) (8)
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Using our sub-sample method to approximate f(x, (Ω, p)), the term eTx+ 1
N

N∑
j=1

f(x, (ΩM
j , p

M
j ))

provides an upper bound on TC(Ω, p) for large values of M and N . Convergence of this method

as N is increased is assured for stochastic linear programs (Birge 2011), as it is in our case.

However, small systematic biases might arise depending on the structure and stringency of the

constraints in the operations problem. Previous research on the traditional batch-means estimator

shows that small batch sizes (i.e., small M) can be a source of bias for the sample-mean esti-

mator (i.e., sample size), although an asymptotically normal distribution of errors is guaranteed

for large samples and batch counts (Schmeiser 1982, Steiger and Wilson 2001). An advantage

of this method over other approaches that rely on unique, large-sample results is that problems

f(x, (ΩM
1 , p

M
1 )), ..., f(x, (ΩM

N , p
M
N )) can be solved in parallel. Therefore, the extra computational load

that results from increasing the sample size M or batch count N to reduce bias, and to ensure tight

confidence intervals on the sample mean, can be efficiently distributed among multiple indepen-

dent processors, instead of being given to a single optimization problem of comparable size (e.g.,

f(x, (ΩN×M , pN×M)).

3.2.2. Reducing the Variance through Stratified Sampling To further reduce the

computational cost of approximating f(x, (Ω, p)) through sub-sample estimations, we pro-

pose the utilization of a stratification technique to select samples that would more accu-

rately match the characteristics of Ω and, therefore reduce the variance of the sub-samples

f(x, (ΩM
1 , p

M
1 )), ..., f(x, (ΩM

N , p
M
N )). Stratified sampling has been previously used for electricity pro-

duction cost modeling (Marnay and Strauss 1991), but has yet to be utilized yet in the context

of the sub-sampling method proposed by Birge (2011). Our stratified sampling algorithm proceeds

as follows. For a given predetermined sample size M , the space Ω is partitioned into disjoint sub-

sets S1, ..., SM , with the objective of grouping the events into clusters with similar characteristics

(e.g., observations are grouped based on load, wind, solar, and hydro levels included in r(ω) and

T (ω)). A stratified sample of M observations {ω1, ..., ωM} ⊂Ω is such that ωi ∈ Si, ∀i∈ {1, ...,M}.

We weight each observation ωi in the operations problem with probability pM(ωi) = p(ωi)/p(ωi|Si)

∀i∈ {1, ...,M}.

3.3. Updating the Upper and Lower Bounds

Bounding methods that rely on clustering algorithms, or sampling, require either progressive refine-

ment of the sample space partition or increasing sample sizes to decrease the optimality gap and

improve the accuracy of the upper bound estimate (Birge and Louveaux 1997, Hobbs and Ji 1999,

Pierre-Louis et al. 2011). To avoid poor initial estimates of the upper bound, we propose select-

ing and fixing both the sample size M and batch count N prior to initialization of the bounding
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or decomposition phases of our algorithm. A experimental analysis of the effects of sample sizes

and sampling methodologies is given in Section EC.3 of the electronic companion to this paper.

Throughout the rest of this paper, we will assume that a computationally efficient method to

approximate f(x, (Ω, p)) for any candidate investment plan x is available.

The bounding algorithm, or Phase 1 of our methodology, proceeds as follows. For a given sample

size M and batch count M , we initialize the iteration counter by setting k= 0, and the lower and

upper bounds as LB0 =−∞ and UB0 = +∞, respectively. The incumbent solution is denoted x∗.

1. Set k= k+ 1, solve the lower-bound planning problem using the partitioned space (Ψk, qk) in

(1), instead of the full space (Ω, p). Find a trial investment plan x∗k, and a lower bound on

the optimal total system costs TC(Ψk, qk). If TC(Ψk, qk)>LBk−1, update the lower bound to

LBk = TC(Ψk, qk); otherwise, LBk =LBk−1.

2. Compute the operating costs f(x∗k, (Ω, p)). If eTx∗k + f(x∗k, (Ω, p))<UBk−1, update the upper

bound UBk = eTx∗k + f(x∗k, (Ω, p)) and the incumbent solution x∗ = x∗k; otherwise, UBk =

UBk−1.

3. Compute the optimality gap, defined as GAPk = 100%× (UBk−LBk)/UBk . If GAPk is less

than or equal to a pre-determined optimality gap, stop and use x∗ as the proposed investment

plan. Otherwise, go to step 1.

For a sequence of partitions defined such that its limit is the full discrete probability space (Ω, p),

and a large sample size M and batch count N , the lower (LBk) and upper bounds (UBk) are

convergent to TC((Ω, p)) as k → |Ω|. A formal proof of convergence is given in the electronic

companion to this paper.

It is often observed in clustering algorithms that only a few partitions explain a large fraction

of the variance of the full dataset (the “elbow” phenomenon), but that the remaining fraction of

variance explained converges asymptotically to 1 as the partitions are refined (Tibshirani et al.

2001). A potential implication of this observation for the bounding phase of our algorithm is that

moderate optimality gaps might be achieved using only small numbers of representative hours from

the sample space (clustered load, wind, solar, and hydro levels), but that tight optimality gaps

might be only attained for large values of k (Hobbs and Ji 1999). This is particularly challenging for

planning problems that consider binary decision variables (e.g., transmission investments), since

solving the lower-bound planning problems TC(Ψk, qk) using a branch-and-bound type of algorithm

for large values of k can become increasingly difficult. In the following section, we describe the use

of Benders decomposition (Phase 2 of our methodology) to close the residual optimality gap from

the bounding phase through the addition of cuts to the lower-bound planning problem.
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4. Phase 2: Enhanced Benders Decomposition

An alternative to the bounding approach described in the previous section is to take advantage of

the decomposable structure of the planning problem and solve it iteratively using Benders decom-

position (Bloom 1983). However, the main drawback of this method is its slow convergence speed

and the increasing size of the master problem as the algorithm iterates due to the accumulation of

cuts. Multiple techniques have been proposed to accelerate the convergence of Benders decomposi-

tion when applied to mixed-integer linear optimization problems. For example, speed improvements

can be achieved from tighter mixed-integer formulations and the selection of Pareto optimal cuts

for subproblems with degenerate solutions (Magnanti and Wong 1981, Sahinidis and Grossmann

1991). Other techniques address the computational challenge of solving multiple mixed-integer

linear master problems by initially computing cuts from linear (McDaniel and Devine 1977) and

Lagrangian relaxations (Hoang Hai 1980, van Roy 1983, Cote and Laughton 1984, Aardal and

Larsson 1990), as well as from feasible sub-optimal solutions found by prematurely stopping branch-

and-bound type algorithms (Geoffrion and Graves 1980). Trust regions combined with high-quality

initial solutions have been proposed to reduce the magnitude of changes in the master problem

solution from iteration to iteration, resulting in quicker convergence (Sherali et al. 1987, Sherali

and Staschus 1990). However, approximate solution methods may obviate the conditions needed

to guarantee convergence of Benders decomposition to the optimal solution, resulting in either

premature convergence to a suboptimal solution or failure to converge (Holmberg 1994).

Phase 2 of our algorithm uses a modification of Benders decomposition master problem, which

we augment with a polyhedral lower bound on the optimal operating costs f(x, (Ω, p)), based on

the results we introduced in Section 3.1. This approach can be interpreted as a generalization of

the stabilization scheme for the stochastic decomposition algorithm (Higle and Sen 1991) currently

implemented in the NEOS Solver (Sen 2013), which utilizes a partition with a single subset (i.e.,

the expected-value of all time-dependent parameters) to construct an auxiliary lower bound in the

master problem.

Our modified Benders decomposition master problem is:

min
x,θ

eTx+ θ (9)

s.t. Ax≤ b (10)

θ≥ f(x∗, (Ω, p)) +πT (x∗)(x−x∗) (11)

θ≥ f(x, (Ψm, qm)) (12)

x= (x1, x2), x1 ∈ {0,1}, x2, θ≥ 0 (13)



Munoz, Hobbs, and Watson: New Bounding and Decomposition Approaches
12

Constraint (11) represents the Benders’ cuts, which are computed using the sub-sampling method

described in Section 3.2.1. The Lagrange multipliers π(x∗) in (11) result from imposing x = x∗

in the calculation of f(x∗, (Ω, p)). Constraint (12) captures the operations problem defined by

Equations (4) - (7) for the sample space (Ψm, qm). The Benders master problem in electricity

capacity expansion typically only considers investment variables (Bloom 1983). In contrast, our

master problem corresponds to a planning problem with an embedded low-resolution operations

problem. The fidelity of the operations problem can be improved by increasing the number of

clusters k used to approximate the sample space Ω. For k = 0, no constraints on the value of θ

are imposed through constraint (12), so that the problem defined by Equations (9)-(11) and (13)

corresponds to the standard master problem. For k = |Ω|, all observations are considered and the

master problem is equivalent to the original planning problem, which converges in a single iteration.

A second improvement on the auxiliary lower bound is the utilization of the objective function

value of a relaxed linear programming version of the problem (1)-(3), denoted TCLP (Ψk, qk). For

a suitable large value of k, TCLP (Ψk, qk) might provide a tight initial lower bound (LB0) for the

Benders’ iterations. This auxiliary bound is introduced to address a potential limitation of bounding

algorithms that might find high-quality solutions during initial iterations, but optimality cannot

be proven until the difference between the upper and lower bounds is below a certain tolerance.2

Finally, as in the L-shaped method for stochastic programs (Birge and Louveaux 1997), we

compute a single cut at each Benders iteration using the expected value of the dual multipliers

π1(x
∗), ..., πN(x∗) and the operating costs f(x∗, (ΩM

1 , p
M
1 )), ..., f(x∗, (ΩM

N , p
M
N )) of theN sub-samples.

An extension of this method, known as the multi-cut L-shaped algorithm, requires the addition

of one cut per scenario (instead of a single “expected” cut) at each Benders iteration (Birge and

Louveaux 1988). However, improved convergence of Benders decomposition due to the multi-cut

method is at least partially offset by the increased growth in the size of the master problem. Thus,

we leave implementation of this extension to future research.

5. Numerical Example

In this section we describe an application of our two-phase bounding and decomposition algorithms

to a large-scale generation and transmission planning problem using a 240-bus representation of

the Western Electricity Coordinating Council (WECC) in the U.S. (Munoz et al. 2014). This model

consists of 240 existing buses, 448 transmission elements, and 157 aggregated generators. We model

intermittent resources using 151 historical profiles of hourly demand, wind, solar, and hydro levels

across multiple regions representing operating conditions for a typical year. More details of this

model are given in Section EC.2 of the electronic companion. The planning problem formulated

using 8,7363 observations of time-dependent data results in a mixed-integer linear program with
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56 million constraints and 31 million variables; 1020 of these variables represent discrete (integer)

transmission investment options. We consider both the mixed-integer linear formulation, suited

for real-world planning studies, and its linear relaxation, which resembles high-level models used

for policy analysis. In order to obtain feasible operations problems for any candidate investment

plan, we allow for load curtailment at a cost of $1,000 per MWh (the price ceiling used in most

electricity markets in the U.S.). Noncompliance with annual renewable energy targets is penalized

at a rate of $500 per MWh.

The clustering, bounding, and Benders decomposition algorithms are all implemented using the

Pyomo algebraic modeling package (Hart et al. 2012). All optimization problems are solved with

the CPLEX 12.4 solver and parallelized through the Message Passage Interface (MPI) on a 32-core

computer system with 2 AMD Optetron processors of 2.2 GHz and 112 GB of RAM.

5.1. Clustering Algorithm

We partition the space of time-dependent parameters using the k-means algorithm (MacQueen

1967), although other partitioning schemes have been used in similar applications (Hobbs and Ji

1999). k-means is a nonhierarchical clustering algorithm, implying that the total cost associated

with the planning problem might decrease rather than increase as the partitions are refined (Birge

and Louveaux 1997). Despite this property, Hobbs and Ji (1999) report that k-means yielded the

best clustering efficiency in their application (probabilistic production cost modeling), measured

as the fraction of variance captured from the full data set, compared to several other partitioning

methods– including hierarchical methods. Our implementation considers up to 500 clusters, which

capture 71.1% of the variance of the normalized data set of 8,736 observations of loads, wind,

solar, and hydro (see Figure 1). The point of diminishing returns (i.e., the elbow) is reached at

approximately 50 clusters, capturing 46.4% of variance. After this point, capturing an extra 10% of

variance requires partitioning the space of loads, wind, solar, and hydro levels using 100 additional

clusters.

5.2. Phase 1: Performance of the Bounding Algorithm

5.2.1. Linear Problem (LP) First, we consider a linear relaxation of the original mixed-

integer linear problem. This allow us to study the efficiency of our algorithm when applied to linear

electricity investment planning and market simulation models such as the ones described in ICF

(2013), Gabriel et al. (2001) , Short et al. (2011), Paul and Burtraw (2002), and EPA (2013). Figure

1 shows the optimality gap as a function of the number of clusters, calculated as 100%× UB−LB
UB

for

the linear relaxation. The lower bound (LB) is computed solving the planning problem using one

representative hour from cluster (i.e., average of all observations of loads, wind, solar, and hydro
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Figure 1 Optimality gap for the linear relaxation and percentage of variance captured as a function of the number

of clusters.

parameters within each cluster). The upper bound (UB) equals the sum of the investment costs

associated with the lower-bound problem, plus a statistical estimate of the 8,736 hour operations

problem f(x, (Ω, p)) computed using the sample mean of N = 20 sub-samples of M = 200 stratified

samples of time-dependent parameters. For this test-case, only 33 representative hours are needed

to obtain a solution within 10% of the global optimum (Figure 1), but more than 200 clusters are

required to reduce the gap further to 5%. The “knee” in the optimality gap mirrors the elbow

associated with the percentage of variance captured from the 8,736 hour dataset, which decreases

at a much slower rate after the first 39 clusters. The optimality gap is reduced from 28.9% to 8.9%

with the first 39 clusters and increasing the number of partitions to 500 only reduces the gap to

2.8%, but which is acceptable for high-level planning models associated with policy analysis. The

optimality gap for a single cluster, also known as the expected-value problem, provides an upper

bound on the Value of the Stochastic Solution (VSS) as defined in Birge and Louveaux (1997). This

is a measure of the potential cost savings that could be achieved by considering the full distribution

of hourly load levels and capacity factors of wind, solar, and hydro resources across all regions,

instead of planning a system using the expected value of these parameters.

5.2.2. Mixed-Integer Linear Problem (MILP) For the mixed-integer linear case we esti-

mate the optimality gap as 100%× UB−(1−ε)LB
UB

, where ε corresponds to the MILP optimality gap

for the lower bound model. Note that (1−ε)LB provides a lower bound on the optimal system costs

for a zero MILP gap (ε= 0). Therefore, 100%× UB−(1−ε)LB
UB

is an upper bound on the optimality

gap that could be achieved if ε = 0. As the MILP gap is increased, the optimality gap increases

as a consequence of both the deterioration of the lower bound (the (1− ε) factor) and the subop-

timality of the investment decisions, reflected as higher operating costs in the upper bound. We



Munoz, Hobbs, and Watson: New Bounding and Decomposition Approaches
15

observe that 10 clusters are sufficient to achieve optimality gaps of 12.1% for a 1% MILP gap and

that 90 additional clusters only reduce the optimality gap to 7.4%. Optimality gaps and bounds

as a function of the number of clusters are shown in Figures EC.4 and EC.5, respectively, of the

electronic companion. For practical implementations, the linear relaxation of the mixed-integer

planning problem could be used as a screening tool to assess the minimum number of clusters

needed to approximate the operations problem with a pre-specified optimality gap.

Solution times for the mixed-integer linear formulations are sensitive to the choice of the MILP

gap and are orders of magnitude larger than solution times for the linear relaxation. While the

linear relaxation of the 100-cluster problem requires only 5 minutes to solve, the mixed-integer

formulations requires approximately 1.3, 6.6, and 6.8 hours to achieve 5%, 3%, and 1% MILP gaps,

respectively. The reduction of 5.5 hours in solution time achieved from loosening the MILP gap

from 1% to 5% is, however, contrasted with an increase in the total optimality gap from 7.4% to

11.1%. Further attempts to solve mixed-integer linear problems with 200 or more clusters and a

MILP gap of 1% did not yield a solution within the optimality gap after more than 30 hours of

computation time, and execution was stopped.

5.3. Phase 2: Enhanced Benders Decomposition

To summarize the foregoing, the bounding algorithm can efficiently find investment solutions whose

total system costs have a 2.8% optimality gap for the linear relaxation and a 7.4% gap for the mixed-

integer linear case. Achieving tighter optimality gaps, however, requires significant refinements of

the clustering scheme due to the slow convergence of the bounding method (Hobbs and Ji 1999).

To overcome this limitation, we use Benders’ cuts to further reduce the optimality gap by iterating

successively between the lower-bound investment planning problem (i.e., master problem) and the

operations problems (i.e., subproblems).

5.3.1. Linear Problem (LP) Figure 2 shows the optimality gap for the linear relaxation

of Benders decomposition using different number of clusters as auxiliary lower bounds in the

master problem. The figure also illustrates the convergence behavior of the traditional Benders

decomposition algorithm without auxiliary bounds on the operations costs. The number of clusters

for the experiments was selected based on changes in the convergence rate of the optimality gap of

the linear relaxation (see Figure 1). No experiments are considered beyond 33 clusters due to the

significant decrease in the convergence rate of the bounding algorithm after that point. Although

more clusters could further reduce the number of Benders’ iterations required to achieve tight

optimality gaps, their use causes significant increases in the time required to solve the model in each

iteration, particularly in the mixed-integer linear case. We leave those experiments as a subject of
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future research. We use the objective function value TCLP (Ψ150, q150) to initialize the lower bound

(LB0), similar to the method proposed by van Roy (1983) to compute initial bounds for Benders

decomposition using Lagrangian relaxation.
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Figure 2 Optimality gap versus the number of iterations for different Benders decomposition schemes of the linear

relaxation. Upper and lower bounds are in Figure EC.6 in the electronic companion.

Table 1 Number of cuts and total computation time for different optimality gaps and auxiliary lower bounds of

the linear relaxation.

Solution 
Gap LP 

Relaxation 

Number of Clusters Used in the Auxiliary Lower Bound 

1 Cluster 10 Clusters 33 Clusters 

Number 
of Cuts 

Total  
Time (s) 

Number 
of Cuts 

Total  
Time (s) 

Number 
of Cuts 

Total  
Time (s) 

5.0% 117 31,140 38 11,307 17 6,026 

3.0% 329 95,053 69 21,018 29 10,359 

1.0% >400 >117,332 246 78,917 116 44,001 
 

In Figure 2 we observe that including the expected-value problem (i.e., single partition) in the

master problem, as done in Sen (2013), results in shrinkage of the optimality gap from 28.9% to

3% in 329 iterations after 26.4 hours of computing time (Table 1). In contrast, the regular Benders

decomposition implementation in which no such auxiliary constraint is included only yields a 10.0%

optimality gap after 400 iterations and 30 hours of computing time. Including more clusters results

in further reductions in the number of iterations and solution time to achieve tight optimality gaps

(Table 1). In this case, using 33 clusters reduces the solution time to achieve a 1% optimality gap

by more than half (to 12.2 hours), compared to including the expected-value solution (1 cluster)

in the master problem (more than 32.6 hours).



Munoz, Hobbs, and Watson: New Bounding and Decomposition Approaches
17

-1.2 

-1 

-0.8 

-0.6 

-0.4 

-0.2 

0 

0 50 100 150 200 250 300 350 400 

D
u

al
 V

ar
ia

b
le

 o
n

 A
u

xi
lia

ry
 L

o
w

e
r 

B
o

u
n

d
  

Number of Iterations 

Enhanced BD - 1 Cluster Enhanced BD - 10 Clusters 

Enhanced BD - 33 Clusters 

Figure 3 Dual multiplier on auxiliary lower bound versus number of iterations of Benders decomposition for the

linear relaxation.

Larger speedups can be attained for looser optimality gaps by including more clusters in the

auxiliary lower bound of Benders decomposition, but the resulting larger master problem even-

tually caused solution times to become higher than those achieved by increasing the number of

clusters using the bounding algorithm in the linear case. Attaining a 3% optimality gap for the

LP relaxation requires 400 clusters and 30 minutes of computation through the bounding method,

but 29 iterations and 2.8 hours using our enhanced Benders’ approach with 33 clusters. Hence,

the bounding method may be more efficient and practical than the modified Benders’ algorithm if

loose optimality gaps for the linear relaxation are acceptable for planning purposes.

Contribution of the auxiliary lower bound towards convergence of the UB and LB:

Figure 3 depicts the value of the dual variable on constraint (12) of the modified master problem.

The dual provides a measure of the contribution of the auxiliary lower bound to the objective

function value of the lower-bound planning problem (f(x, (Ψk, qk))). No cuts are available the

first time the master problem is solved in the modified Benders decomposition and the only lower

bound upon the operating costs is f(x, (Ψk, qk)). The dual variable is in that case equal to -1. As

Benders’ cuts are incorporated into the master problem, the contribution of the auxiliary lower

bound f(x, (Ψk, qk)) to the total system cost is progressively reduced, reflected in the smaller

magnitude of its dual. When Benders’ cuts alone provide a tighter (i.e., higher) lower bound on

the operating costs than f(x, (Ψk, qk)), the value of the dual variable for the auxiliary constraint

(12) is equal to zero, as it is the case for the 10- and 33-cluster experiments after 300 and 279

iterations, respectively. Note that the contribution of the lower bound is far beyond what a good

initial solution or warm start of the master problem can provide. This behavior can be observed in

the 33-cluster experiment, for instance, where constraint (12) is still binding after 278 iterations,

at which point the enhanced Benders’ algorithm has attained an optimality gap of 0.67%.
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5.3.2. Mixed-Integer Linear Problem (MILP) For the mixed-integer linear case we follow

the approach proposed by McDaniel and Devine (1977) and use cuts computed from the linear

relaxation of the mixed-integer master problem, in conjunction with the auxiliary lower bound

(12), to warm start the algorithm.

For illustration purposes, we only consider further iterations of the enhanced Benders decompo-

sition using the expected-value problem (1 cluster), a 0.5% MILP gap, and 400 pre-computed cuts

from the linear relaxation. Computing the 400 cuts required 32.5 hours, but results in significant

improvements in the optimality gap in the mixed-integer linear problem. Only 11 iterations are

needed to attain a 5% optimality gap (after 1.9 hours), and letting the algorithm run for 166 more

iterations and 39.4 hours only reduces the optimality gap to 4.1%. In contrast, the best investment

plan found without pre-computed cuts results in a 7% optimality gap after 200 iterations and

requires 43 hours of computation time.

As in the previous experiments with the linear relaxation, we utilize the objective function value

TCLP (Ψ150, q150) = $624.3B to initialize the lower bound (LB0 = $624.3B). However, a tighter lower

bound can be obtained from solving the linear relaxation close to optimality using the enhanced

Benders decomposition. In our experiments, the 33-cluster implementation results in the tightest

optimality gap (0.64%) and in the highest lower bound ($635.5B) after 400 iterations and 44 hours

of computation time (see Figure EC.3 in the electronic companion). If this value is used as an initial

lower bound (LB0 = $635.5B), the optimality gap after 200 iterations is reduced from 4.1% to 2.4%,

which is arguably sufficient for long-term planning studies. Attaining even tighter optimality gaps

requires more iterations of the algorithm, but these come at the expense of longer solution times

beyond the scope. Consequently, the auxiliary lower bound, pre-computed cuts, and a tight lower

bound can be used to attain tight optimality gaps for large-scale planning problems with integer

variables.

5.4. Can the Lower-Bound Problem Be Used for Planning?

The lower-bound investment planning problem can provide useful information about total and

marginal system costs required to meet forecasted demand and environmental goals, but these

results may only be meaningful for large cluster counts. Strictly using the objective function value

of the lower-bound planning problem (i.e., total cost) as an indicator of convergence, e.g., as in

Heejung and Baldick (2013), could result in premature termination of the algorithm. Changes in

the objective function value of the lower-bound planning problem only reflect improvements of the

fidelity of the embedded operations problem that utilizes clustered data, but do not necessarily

guarantee improvements in the quality of the investment plan when tested again the high-resolution

operations problem, which is used to compute upper bounds4
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We also observe that the lower-bound problem builds too little transmission capacity relative to

near-optimal solutions for small cluster counts, which increases penalties due to curtailed load and

noncompliance fines in the upper bound. Modifications to the clustering algorithm could potentially

address this issue by weighting (Tseng 2007) or constraining (Wagstaff et al. 2001) the clustering

algorithm to include peak-load hours, for instance, as individual clusters. Alternatively, the iden-

tification of hours that drive transmission and generation investments could also be automated by

first solving the planning problem for each hour independently. The resulting vector of total costs

could be used to bias an hour-selection algorithm, as done in importance sampling (Infanger 1992,

Papavasiliou and Oren 2013). However, these are all subjects of future research.
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Figure 4 Aggregate investments in wind capacity per state as a function of the number of clusters for the linear

problem.

The amount of generation investments by technology, on the other hand, remain roughly con-

stant as partitions are refined and more representative hours are introduced into the lower-bound

problem. However, increasing the resolution of the time-dependent parameters shifts the optimal

geographical distribution of investments for certain technologies. For instance, the expected-value

problem, which considers a single representative hour, underestimates wind capacity by 100% and

by 42% in the states of Utah (UT) and Arizona (AZ), respectively, and overestimates investments

in Wyoming (WY) by 60% with respect to the optimal levels of the 500-cluster problem (see Figure

4). Although the aggregate capacity of wind investments in these three states becomes stable after

only 50 clusters, there is a striking shift of wind investments from Colorado (CO) to Washington

(WA) as the number of clusters is increased to 500. This result highlights the importance of using

fine-grained representations of variability within investment planning models to capture the true

economic value of intermittent electricity generating technologies (Joskow 2011).
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In summary, unless large cluster counts are considered, we do not recommend using the lower-

bound planning problem to find investment plans without assessing their quality against the full

resolution operations problem (upper bound). In the linear case, more than 200 clusters were

needed to attain a optimality gap below 5%, which is nearly four times the number of clusters

needed to achieve the elbow on the fraction of variance explained from the full dataset of load,

wind, solar, and hydro levels (see Figure 1). The elbow criterion, often used to determine the

number of clusters in a dataset (Tibshirani et al. 2001), can be used in our case to identify the

point when the clustering algorithm becomes inefficient, and when it may be better to switch to

Phase 2 (Benders decomposition) of our proposed two-phase approach if tighter optimality gaps

are required. However, the elbow itself provides no information regarding the potential quality

(i.e., optimality gap) of the investment plan that results from solving the lower-bound planning

problem.

6. Conclusions

We propose a two-phase algorithm to find investment plans with bounds upon the optimal system

costs for large-scale planning models with numerous operating subproblems, with a focus on trans-

mission and generation planning. The bounding phase is an extension of approaches proposed in

Huang et al. (1977) and Hobbs and Ji (1999) for stochastic problems with environmental restric-

tions that we model with expectation constraints. The decomposition phase is a modification of

Benders decomposition that includes a low-resolution operations problem in the master problem as

an auxiliary lower bound upon the operating costs. We compute upper bounds for both algorithms

using a sub-sample estimation of the true operating costs for a given investment plan implemented

in a parallel computer system. From our numerical experiments, we find that the bounding phase

can be more efficient than the traditional Benders decomposition to find investment plans within

moderate optimality gaps (i.e., 3% to 6% approximately) for both linear and mixed-integer cases.

For implementation purposes, the bounding phase is far more practical than Benders decomposition

since improving the quality of the investments only requires refining the clustering of the time-

dependent data. However, for applications where the bounding method fails to converge sufficiently

rapidly, a combination of the bounding algorithm with Benders decomposition, as demonstrated

in Phase 2, can be used to attain tight optimality gaps, and is more efficient than using either of

these two algorithms separately.

Our enhancement of the Benders algorithm is based on a lower bound that can be progressively

improved by refining the partitioning of the space of load, wind, solar, and hydro levels, but

that requires the planning problem to have all stochasticity limited to the right-hand-side of the

constraints so that we can apply Jensens’ inequality. An interesting direction for future research
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would be to explore the effect of including other valid lower bounds in the master problem of

Benders decomposition. This could be done, for example, by relaxing constraints that complicate

the solution of the planning model and iterating between loosely constrained (lower bound) and

highly constrained (upper bound) problems.

Another potential extension of our algorithm is the inclusion of unit commitment variables and

constraints in long-term planning models, an area of growing attention among operation researchers

(Palmintier and Webster 2011, Nweke et al. 2012, Shortt et al. 2013). This would, however, require

including binary variables in the operations problems which would then become nonconvex. Our

bounding algorithm would still be applicable by relaxing all binary variables to compute lower

bounds; however, we would not be able to guarantee convergence of the bounds to the true opti-

mal system costs. Baringo and Conejo (2012) and Kazempour and Conejo (2012) have recently

implemented and shown convergence of Benders decomposition including integer variables in the

subproblems. Their results are based on Bertsekas and Sandell (1982), who proved that for a cer-

tain class of stochastic mixed-integer optimization problems, the duality gap converges to zero as

the number of scenarios and integer variables is increased to infinity. A future step in our research

is to study the implications of this result for a planning problem with unit commitment variables

and to verify convergence of the Benders’ algorithm with nonconvex subproblems.

Endnotes

1. Modeling unit commitment variables and constraints or AC optimal power flows yields non-

linear and non-convex operations models. Their use in long-term investment models has been

limited to research applications on small test-cases.

2. This is often observed in branch-and-bound type of algorithms, where even if an optimal

solution is found within the first iterations, optimality cannot be guaranteed until the algorithm

has completed all the nodes.

3. The sample is weighted by 8,760/8,736 in the objective function and expectation constraints

of the operations problem. The sample size of 8,736 hours results from considering 52 weeks of

hourly solar data for a typical year.

4. Upper and lower bounds for the linear relaxation are in Figure EC.3 in the electronic compan-

ion. The rate of improvement of the lower bound deteriorates rapidly after the first 20 clusters,

which could meet the convergence criterion described in Heejung and Baldick (2013), even though

the optimality gap is still above 10% (Figure 1)
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EC.1. Supporting Material for Section 3.1

For the development of new lower bounds, we first define the function g(x, (Ω, p)) as a relaxation of

f(x, (Ω, p)) that only includes per-scenario constraints (thus omitting (6)). Because g(x, (Ω, p)) is a

function that involves solving a stochastic linear optimization program with stochastic right-hand-

sides and no cross-scenario constraints, the standard lower bound based on Jensen’s inequality can

be invoked as in the Lemma EC.1 below.

Lemma EC.1. Given a discrete sample space Ω with measure p and a partition S1, ..., Sm of Ω, a

sample space Ψm = {ξ1, ..., ξm} is defined with measure qm such that the probability of each event

ξi ∈ Ψm equals the probability of each subset Si, i.e., qm(ξi) = p(Si), ∀i ∈ 1, ...,m. If the right-

hand-side vector of parameters r(·) and the transition matrix T (·) are computed using the expected

value of these parameters over the partitions, such that r(ξi) =Eω[r(ω)|Si] and T (ξi) =Eω[T (ω)|Si],

∀ξi ∈Ψm, then for any vector of investments x, g(x, (Ψm, qm))≤ g(x, (Ω, p)).

Proof of Lemma EC.1. The result follows from the convexity of the optimal objective function

of linear programs on the right-hand-side vector of constraints and the application of Jensen’s

inequality (Huang et al. 1977, Birge and Louveaux 1997) �

If the sample space Ω is partitioned using a hierarchical clustering algorithm (i.e., Ψm+1 is

derived from Ψm by subdividing one (or more) of the subsets S1, ..., Sm that define Ψm), then

the bound always improves as the partitions are refined (i.e., g(x, (Ψm, qm))≤ g(x, (Ψm+1, qm+1))

∀m ∈ {1, ..., |Ω|}) (Birge and Louveaux 1997). Convergence of the lower bounds g(x, (Ψm, qm))→

g(x, (Ω, p)) is guaranteed as m→ |Ω| (Birge and Wallace 1986, Kall and Mayer 2010). Comparisons

of the effect of different partitioning rules on convergence rates are presented in Birge and Wallace

(1986) and Hobbs and Ji (1999). Unfortunately these properties are not directly applicable to our

operations problem f(x, (Ω, p)), which has both per-scenario and expected-value constraints.

By definition, the relaxation g(x, (Ω, p)) provides a lower bound on f(x, (Ω, p)), and thereby

f(x, (Ψm, qm))≤ f(x, (Ω, p)), ∀x= (x1, x2), x1 ∈ {0,1}, x2 ≥ 0, ∀m∈ 1, , |Ω|. However, these bounds,

which relax the expectation constraints in f(x, (Ω, p)), are likely to be loose if these constraints

are active in an optimal solution to f(x, (Ω, p)). In Munoz et al. (2014), for instance, renewable

goals and emissions limits, both formulated as expectation constraints, are the main drivers of
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transmission and generation investments in the model; their relaxation would therefore be expected

to result in substantial underestimation of costs.

To develop tighter bounds we, first define the partial Lagrangian dual function φ(λ,x, (Ω, p)) of

the minimization problem f(x, (Ω, p)) as:

φ(λ,x, (Ω, p)) = φc(λ,x, (Ω, p)) = Min
y(ω)

Eω[cTy(ω)] +λT (Eω[Ky(ω)]− d) (EC.1)

s.t. Wy(ω)≤ r(ω)−T (ω)x ∀ω ∈Ω (EC.2)

y(ω)≥ 0 ∀ω ∈Ω (EC.3)

The weak duality theorem states that ∀λ≥ 0, φ(λ,x, (Ω, p))≤ f(x, (Ω, p)), while strong duality

ensures that ∃λ∗ ≥ 0 such that φ(λ∗, x, (Ω, p)) = f(x, (Ω, p)) (Bertsimas and Tsitsiklis 1997). Strong

duality holds because the objective function and constraints are all affine functions (Bertsimas and

Tsitsiklis 1997). The following proposition extends Lemma EC.1 to stochastic linear programs with

both per-scenario and expectation constraints.

Proposition 1. Given a discrete sample space Ω with measure p and a partition S1, ..., Sm of Ω,

a sample space Ψm = {ξ1, ..., ξm} is defined with measure qm such that the probability of each event

ξi ∈ Ψm equals the probability of each subset Si, i.e., qm(ξi) = p(Si), ∀i ∈ {1, ...,m}. If the right-

hand-side vector of parameters r(·) and the transition matrix T (·) are computed using the expected

value of these parameters over the partitions, such that r(ξi) =Eω[r(ω)|Si] and T (ξi) =Eω[T (ω)|Si],
∀ξi ∈Ψm, then for any vector of investments x, f(x, (Ψm, qm))≤ f(x, (Ω, p)).

Proof of Proposition 1. From the weak duality theorem it follows that ∀λ≥ 0 φc(λ,x, (Ω, p))≤
f(x, (Ω, p)). Defining a new cost vector cTλ = cT + λTK and re-arranging terms in the objective

function of φc(λ,x, (Ω, p)), we have gcλ(x, (Ω, p))− λTd= φc(λ,x, (Ω, p)). Now Lemma 1 (Jensen’s

lower bound) can be applied to gcλ(x, (Ψm, qm)), implying that ∀m ∈ {1, ...,m} gcλ(x, (Ψm, qm))−
λTd≤ gcλ(x, (Ω, p))−λTd. Replacing cTλ by cT +λTK in the objective function of gcλ(x, (Ψm, qm))

and re-arranging terms, we obtain φc(λ,x, (Ψ
m, qm)) = gcλ(x, (Ψm, qm)) − λTd. Using the strong

duality theorem, we pick λ∗m such that φ(λ∗m, x, (Ψm, qm)) = f(x, (Ψm, qm)), which implies:

f(x, (Ψm, qm)) = φ(λ∗m, x, (Ψm, qm))≤ φc(λ∗m, x, (Ω, p))≤ f(x, (Ω, p)) (EC.4)

�

From left to right in (EC.4): the equality results from the strong duality theorem; the first

inequality follows from Jensen’s inequality through Lemma 1; the last inequality derives from the

weak duality theorem. Similar arguments were used in Kuhn (2009) to develop convergent bounds

for multi-stage stochastic problems with expectation constraints, but our proof is much simpler.

Convergence of f(x, (Ψm, qm)) to f(x, (Ω, p)) as m→ |Ω|, for any trial investment plan x, follows

directly from propositions 3.7 and 4.6 in Birge and Wallace (1986).
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Proposition 2. Given the conditions described in Proposition 1, TC((Ψm, qm)) is a lower bound

on TC((Ω, p)).

Proof of Proposition 2 Assume x∗ and xm∗ are the investment plans that yield the minimum

total system costs for the full-resolution problem TC(Ω, p) and the partitioned/clustered problem

TC(Ψm, qm), respectively. From Proposition 1 we have that for x∗, eTx∗+f(x∗, (Ψm, qm))≤ eTx∗+

f(x∗, (Ω, p)) = TC(Ω, p), ∀m∈ {1, ..., |Ω|}. From the definition of xm∗, eTx∗m + f(x∗m, (Ψm, qm)) =

TC(Ψm, qm)≤ eTx∗+f(x∗, (Ψm, qm)), which implies that TC(Ψm, qm)≤ TC(Ω, p), ∀m∈ {1, ..., |Ω|}

�

Proposition EC.1. Assume the conditions described in Proposition 2 and consider an opti-

mal investment plan xm that yields total system cost TC((Ψm, qm)). Then, both the lower bound

TC((Ψm, qm)) and the upper bound eTxm+f(xm, (Ω, p)) are ε-convergent to TC((Ω, p)) as m→ |Ω|.

Proof of Proposition EC.1 From Propositions 3.7 and 4.6 in Birge and Wallace (1986), ∀ε > 0

∃Nε ∈ [1, |Ω|] such that ∀m ≥Nε, |f(x, (Ω, p))− f(x, (Ψm, qm))| < ε for any candidate investment

plan x. In particular, for the optimal investment plan xm, |f(xm, (Ω, p))− f(xm, (Ψm, qm))| < ε.

Adding and subtracting the capital investment costs eTxm, the last inequality is equivalent to:

|eTxm + f(xm, (Ω, p))− (eTxm + f(xm, (Ψm, qm)))|< ε (EC.5)

From Proposition 2, TC((Ψm, qm)) = eTxm + f(xm, (Ψm, qm) is a lower bound on the optimal total

system cost TC((Ω, p)). This directly implies:

|eTxm + f(xm, (Ω, p))−TC((Ω, p))| ≤ |eTxm + f(xm, (Ω, p))− (eTxm + f(xm, (Ψm, qm)))| (EC.6)

From Section 3.2 of the paper, eTxm+f(xm, (Ω, p)) is an upper bound on the optimal total system

cost TC((Ω, p)). Consequently:

|TC((Ω, p))− (eTxm + f(xm, (Ψm, qm)))| ≤ |eTxm + f(xm, (Ω, p))− (eTxm + f(xm, (Ψm, qm)))|

(EC.7)

By replacing the expressions EC.6 and EC.7 into EC.5, we obtain that ∀ε > 0 ∃Nε ∈ [1, |Ω|] such

that ∀m≥Nε:

|eTxm + f(xm, (Ω, p))−TC((Ω, p))|< ε (EC.8)

|TC((Ω, p))− (eTxm + f(xm, (Ψm, qm)))|< ε (EC.9)

Equations EC.8 and EC.9 imply ε-convergence of the upper bound to the optimal total system

cost TC((Ω, p)) �
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EC.2. Description of the WECC test case

Our numerical experiments were performed using a modified version of the two-stage transmission

and generation investment model used in Munoz et al. (2014). The network, depicted in Figure

EC.1, consists of 240 existing buses, 448 transmission elements, and 157 aggregated generators.

Generation build limits are given in Table EC.1.

Figure EC.1 Map of the 240-bus representation of the WECC.

Table EC.1 Maximum installed generation capacity per technology and state.

Biomass CCGT CCGT CCS Coal CT Geothermal Hydro Solar Wind

AB 269 20,000 20,000 5,275 20,000 1,890 1,959 69,393

AZ 489 40,000 40,000 2,685 40,000 74,361 8,363 205,898

BC 880 20,000 20,000 20,000 308 5,926 67,114

CA 340,000 340,000 340,000 62,569 14,777 1,097,346

CO 141 40,000 40,000 3,978 40,000 4,943 12,394 141,456

ID 358 20,000 20,000 13 20,000 279 8 1,603 62,261

MT 147 40,000 40,000 2,225 40,000 11,458 133,830

MX 20,000 20,000 20,000 60,000

NM 44 40,000 40,000 5,889 40,000 183 11,290 137,406

NV 318 60,000 60,000 1,037 60,000 1,368 2 56,303 1,228 240,256

OR 349 60,000 60,000 452 60,000 832 557 4,443 186,633

UT 3 20,000 20,000 5,091 20,000 225 15,868 1,678 82,865

WA 448 60,000 60,000 1,290 60,000 32 165 5,463 187,398

WY 29 20,000 20,000 4,675 20,000 22,093 86,797

Total per 

Technology 

(MW)

3,475 800,000 800,000 32,610 800,000 3,044 8,548 214,227 96,749 2,758,653

Maximum Installed Generation Capacity per Technology (MW) Total per 

State (MW)
State
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Time-varying resources were simulated using 151 historical profiles of hourly demand, wind,

solar, and hydro levels across multiple regions representing operating conditions for a typical year.

Table EC.2 shows the population moments of a sample of 18 profiles of load, wind, and solar

parameters. The full dataset consists of 8,736 observations of 22 demand profiles, 67 wind profiles

(18 existing + 49 candidate locations), 31 solar profiles (2 existing + 29 candidate), 29 hydro

profiles (27 existing + 2 candidate), and 2 profiles of existing biomass powered generators.

Table EC.2 Means, standard deviations, and correlations for a sample of load, wind, and solar profiles.

SOUTHWST BAYAREA NORTHWST CANADA ROCKYMT CA AZ NM CO NV AZ WA CA AZ NM CO

SOUTHWST 1.00

BAYAREA 0.71 1.00

NORTHWST 0.42 0.70 1.00

CANADA 0.25 0.68 0.91 1.00

ROCKYMT 0.67 0.82 0.86 0.79 1.00

CA -0.27 -0.28 -0.21 -0.21 -0.26 1.00

AZ -0.21 -0.18 -0.15 -0.13 -0.18 0.49 1.00

NM -0.27 -0.15 -0.01 0.06 -0.09 0.20 0.38 1.00

CO -0.31 -0.19 -0.03 0.04 -0.14 0.23 0.41 0.77 1.00

NV -0.30 -0.12 0.04 0.08 -0.04 0.46 0.37 0.20 0.20 1.00

AZ -0.33 -0.16 -0.02 0.03 -0.11 0.48 0.55 0.22 0.26 0.83 1.00

WA -0.16 -0.11 -0.03 0.06 -0.06 0.09 0.08 0.18 0.27 -0.03 0.03 1.00

CA 0.23 0.40 0.32 0.32 0.36 -0.07 -0.10 0.02 -0.01 -0.01 -0.07 0.05 1.00

AZ 0.25 0.43 0.32 0.34 0.37 -0.08 -0.10 0.01 -0.02 -0.01 -0.07 0.03 0.96 1.00

NM 0.24 0.42 0.33 0.34 0.37 -0.07 -0.10 0.02 -0.01 -0.01 -0.07 0.04 0.96 0.98 1.00

CO 0.23 0.41 0.33 0.34 0.37 -0.06 -0.09 0.02 0.00 -0.01 -0.06 0.04 0.96 0.97 0.98 1.00

15,077 4,246 21,299 14,160 9,593 0.37 0.26 0.31 0.34 0.27 0.26 0.23 0.24 0.22 0.23 0.22

3,328 741 3,289 1,571 1,348 0.29 0.25 0.26 0.27 0.25 0.21 0.21 0.32 0.30 0.30 0.29

Mean

Std. Dev.

Demand profiles per region Wind profiles per state Solar profiles per state

D
em

an
d

W
in

d
S

o
la

r

For illustration purposes, we assume that market and regulatory conditions are deterministic

and focus instead on capturing the variability of intermittent resources. The planning model used

to illustrate our algorithm is a single-scenario version of the two-stage stochastic model described

in Munoz et al. (2014) without disjunctive constraints.5
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EC.3. Analysis of Upper Bound Estimates

A formulation of the operations problem f(x, (Ω, p)) for 8,736 observations (i.e., |Ω| = 8,736) of

demand, wind, solar, and hydro data results in a linear program with only a few thousand variables

and constraints smaller than the original planning problem. Solving this problem with currently

available hardware is computationally infeasible due to memory limitations. To validate the sub-

sample approximation method, we instead use a large sample of intermittent data that minimizes

the sum of the square difference of means, standard deviations, and correlations between the sample

and the full dataset (van der Weijde and Hobbs 2012). A 5,000 hour operations problem is the

largest manageable approximation of the 8,736 hour operations problem and best matches its

statistical characteristics. Although decomposition approaches could be used to solve f(x, (Ω, p))

exactly (e.g., Hobbs and Ji (1999) and O’Brien (2004)), their implementation is beyond the scope

of this paper.

Table EC.3 Summary of results for 100 random and stratified samples for different sub-sample sizes.

Sub-Sample Size 
Random Samples Stratified Samples 

5000-hr 
problem 25 50 100 200 25 50 100 200 

Mean ($B) 543.9 526.3 535.7 526.3 527.0 532.6 528.2 529.7 527.7 

Standard 
Deviation ($B) 

100.2 70.9 52.2 37.5 59.3 43.5 27.8 16.6 - 

Mean Solution 
Time (s) 

23.4 48.3 103.1 208.6 23.4 48.7 104.3 211.5 8,814 

 

We choose a sub-sample size M and a sub-sample count N taking into account the quality of the

approximation and hardware restrictions. We first draw 100 independent samples of intermittent

data, using both random and stratified sampling, for sub-samples considering 25, 50, 100, and 200

observations. This allows us to study the effect of the data stratification and sub-sample sizes on

the quality of the estimator. All operations problems are run using the investment solution of the

linearized expected value (i.e., single cluster) planning problem.

As shown in Table EC.3 and Figure EC.2, the sub-sample standard error6 decreases dramatically

with the number of sample hours in the operations problems for both random and stratified samples.

The effect of data stratification using the k-means clustering method yields approximately one

half of the standard deviation observed in the random samples and is, in this case, more effective
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Figure EC.2 Sub-sample standard error versus sub-sample size for 100 replications of random and stratified

samples (N = 100).

than doubling the sub-sample size.7 Solution times also scale linearly. The same investment plan

yields $527.7B when tested against the 5,000 hour operations problem, but requires nearly two

and a half hours of computation time. In our implementation, we limit the sub-sample count to 20

(N = 20) in an attempt to balance computer resources for the estimation of the upper and lower

bounds. Because the sub-sample count is rather small in comparison to the 100-sample analysis

performed in this section, we choose to use sub-sample sizes of M = 200 stratified observations,

which yield the lowest sub-sample standard error among the four sub-sample sizes considered.

Much larger sub-sample counts and sizes can be used to ensure tight confidence intervals on the

optimal operating costs f(x, (Ω, p)), but at the expense of higher computational complexity. Other

potential extensions include re-sampling within the bounding phase (Pierre-Louis et al. 2011) or

within the Benders phase (Higle and Sen 1991, Infanger 1992), but we leave these as subjects of

future research in the context of our application.

Endnotes

5. Disjunctive constraints are used to enforce Kirchhoff’s Voltage Laws in candidate lines. In

this paper, Kirchhoff’s Voltage Laws are only enforced in existing lines and relaxed for candidate

lines. As discussed in Munoz et al. (2014), disjunctive constraints can cause numerical difficulties

in mixed-integer solvers. However, the bounding and decomposition procedures proposed here are

equally applicable to the formulation of the problem with disjunctive constraints.

6. The standard error (SE) is defined as SE = s√
N

, where s corresponds to the sample standard

deviation and N is the sub-sample count.
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7. For instance, the standard error of the 50 hour random sub-samples is approximately $8B.

Doubling the sample size to 100 hours reduces the standard error to approximately $6B. However,

stratifying the sample space in the 50-hour sub-samples yields a standard error of approximately

$5B.



e-companion to Munoz, Hobbs, and Watson: New Bounding and Decomposition Approaches ec9

Appendix A: Phase 1, Supporting Figures
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Figure EC.3 Upper and lower bounds for the linear problem versus the number of clusters.
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Figure EC.4 Optimality gap versus the number of clusters for different MILP gaps and the linear relaxation.
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Figure EC.5 Upper and lower bounds for the mixed-integer linear formulations versus the number of clusters.
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Appendix B: Phase 2, Supporting Figures
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Figure EC.6 Upper and lower bounds for the linear problem versus the number of iterations.
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Figure EC.7 Upper and lower bounds for the mixed-integer linear problem versus the number of iterations.


