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We discuss, in general terms, the hydro-code implementation of a rather 
simple empirical kinetic phase transition model originating with Carl W 
Greeff. We focus on general issues when introducing the additional 
ingredient of the kinetics of phase transitions in hydro-codes, such as 
phase coexistence and phase equilibrium.  

Introduction and Motivation 
When comparing experimental measurements to theoretical predication, it is often the case that 
perfect agreement is not achieved. In particular, there are often extra features in the experimental 
curves. Typically, the extra features in the experimental curves are minor, but occasionally these 
features must be explained to gain confidence that the calculations are accurately capturing the 
physical phenomena observed in experimental measurements. As measuring techniques advance, 
and results capture more features reproducibly, it also becomes necessary to advance 
computational models to include the physics that gives rise to these features. 

An example of such a feature in experimental velocimetry data is the appearance of shoulders as 
the material undergoes phase transitions as, for example, observed by Greeff et al in Reference 1. 
These shoulders cannot be described by standard single phase Equations of State (EoS) models 
used in the hydro-codes (see for example Figure 3), since single phase EoSs only describe the 
stable phase in each point in parameter space and assume an instantaneous transition between 
phases.  In reality, a phase transition occurs over some finite time period.  During this transition, 
at a given time and location, two or more phases are present simultaneously, with some or all 
phases being meta-stable or un-stable. In order to describe these multi-phase states 
computationally, a multi-phase EoS with an associated model for describing the time evolution of 
such mixed phases states is necessary. This kind of model is termed a Kinetic Phase Transition 
Model.  

 

Kinetics of Phase Transitions 
When a phase transition is not instantaneous, but takes some time to complete, a mixture of 
phases may be present during the transition. In a simulation, the mixture of phases at each 
element will need to be described using a new set of variables: the mole fractions, λj, of each of 
the phases j, in an element (the element index will be suppressed throughout this article).  
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The Gibbs free energy, 𝐺, with natural variables pressure, 𝑃, and temperature, 𝑇, governs phase 
equilibrium. The general assumption is that all phases in an element at a certain time have the 
same pressure and temperature. New subroutines are needed for the Equation of State (EoS) 
package to give a pressure, P, and temperature, T, in an element, given the total density, ρ, 
internal energy, E, and mole fractions, λj, in this element. Finally, we need to update the mole 
fractions of each phase, λj –› λj

new at each time step due to phase transitions. 

Since the Gibbs free energy, G(P,T) = E(V,T) –T S +P(V,T) V, that governs phase transitions 
requires more than the usually tabulated quantities of internal energy and pressure as functions of 
temperature and density, [ρ=1/V] complete EoSs, with entropy, S, are necessary. Additionally 
each phase will require a separate EoS even in its meta-stable and un-stable regimes. 

 

New variables needed: the mole fractions of each phase 
The new parameters, 0 ≤  𝜆! ≤ 1,  

𝜆!

!

!!!

= 1 , 

(1.) 

describe the mole fractions of each phase j in an element. For a given set of mole fractions, 
𝜆! !!!

!
, the specific volume and internal energy are simply the weighted sums of the same 

quantities in each phase: 

𝑉 = 𝜆!

!

!!!

 𝑉!      and   𝐸 =  𝜆!

!

!!!

 𝐸!  . 

(2.) 

Determining pressure and temperature given density, internal energy, and mole 
fractions 
The pressure and temperature is assumed to be the same for all phases in an element:  

𝑇 = 𝑇! 𝑉! ,𝐸!     and    𝑃 = 𝑃! 𝑉! ,𝐸!   for all 𝑗.  

(3.) 

Since the hydro-code updates only the total density, 1/V, and internal energy E, the 𝑉! !!!
!

and 

𝐸! !!!
!

are unknown. We need to construct a routine that self-consistently uses the equal 

temperature and pressure criteria in Equation (3), and values of V, E and 𝜆! !!!
!

, to arrive at the 

correct sets of volumes 𝑉! !!!
!

and internal energies 𝐸! !!!
!

, fulfilling Equation (2). The key to a 
stable routine is to use analytical (or very accurate) thermodynamic derivatives to update 
𝑉! !!!

!
and 𝐸! !!!

!
 in the self-consistent loop. With 𝑉!!!! = 𝐶 𝑉!! + Δ𝑉!!  and 𝐸!!!! = 𝐸!! +

Δ𝐸!! − Δ𝐸!, (𝐶 and Δ𝐸! providing adjustments for the n+1 quantities to still fulfill Equation (2)), 
we have for step n: 
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Δ𝑉!!
Δ𝐸!!

=

𝜕𝑉
𝜕𝑃 !

𝜕𝑉
𝜕𝑇 !

𝜕𝐸
𝜕𝑃 !

𝜕𝐸
𝜕𝑇 ! !!

Δ𝑃!!
Δ𝑇!!

 

           (4.) 

where Δ𝑃! = 𝑃! 𝑉! ,𝐸!  − 𝑃!, Δ𝑇! = 𝑇! 𝑉! ,𝐸!  − 𝑇!, and 𝑃! and 𝑇! are suitable means calculated 
from the pressures and temperatures in the individual phases in that self-consistent step. 

Complicating the application of the partial derivatives in Equation (4) is the reality that several 
different free energy frameworks using different state variables are used.  The framework with 
pressure and temperature, used by Equation (4), as natural variables is the Gibbs free energy, 
𝐺(𝑃,𝑇). The natural energy used in hydro-codes is the internal energy, 𝐸(𝑆,𝑉), with natural 
variables 𝑆, entropy, and 𝑉, volume.  Equation of State work is usually performed using 
Helmholtz free energy, 𝐹(𝑉,𝑇), with temperature and volume as natural variables.  Thankfully, 
the forth framework based on enthalpy, 𝐻(𝑆,𝑃), with natural variables entropy and pressure is 
not pertinent here. Obtaining values for the thermodynamic derivatives connected to the Gibbs 
free energy in Equation (4), requires deriving or looking up these derivatives as functions of other 
thermodynamic derivatives available in the code. Based on the first and second law of 
thermodynamics 

𝑑𝐸 = −𝑃𝑑𝑉 + 𝑇𝑑𝑆 

           (5.) 

and definitions that relate all four energy quantities (𝐹 = 𝐸 − 𝑇𝑆,𝐺 = 𝐹 + 𝑃𝑉,𝐻 = 𝐸 + 𝑃𝑉), a 
large number of relations among thermodynamic derivatives can be derived. The choice and 
application of formulas depends on the availability and accuracy of these quantities in the code. 
As an example, if we have Helmholtz free energy quantities, 

𝜕𝐸
𝜕𝑃 !

=
𝜕𝐸
𝜕𝑃 !

−

𝜕𝑃
𝜕𝑇 !

𝜕𝐸
𝜕𝜌 !

𝜕𝑃
𝜕𝜌 !

 . 

           (6.) 

For rapid and stable convergence very accurate values for the thermodynamic derivatives in 
Equation (4) must be use. We have used analytic derivatives derived from the Helmholtz free 
energy of our EOS models, which are of extended Vinet form2.  

Thermodynamic quantities 
In addition to values for the thermodynamic derivatives for each phase, as for the matrix in 
Equation (4), we also need to have derivatives for the mixed phase. Determining these 
thermodynamic derivatives in an element with mixed phases is not trivial but can be derived 
using their definitions together with Equation (2) and the fact that entropy is additive: 

𝑆 = 𝜆!𝑆!

!

!!!

   . 

This also implies that all described energies, internal, Helmholtz, Gibbs, and enthalpy, are 
additive in the same way. When phases are mixed only derivatives along isobars (constant 
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pressure) and isotherms (constant temperature) are well defined, since these quantities are the 
same in all phases. Combining the relation in Equation (6) with definitions in Equation (2), we 
have 

𝜕𝐸
𝜕𝑃 !

= 𝜆!
𝜕𝐸!
𝜕𝑃 !

!

!!!

= 𝜆!
𝜕𝐸!
𝜕𝑃 !!

!

!!!

− 𝜆!

𝜕𝑃
𝜕𝑇 !!

𝜕𝐸!
𝜕𝜌! !

𝜕𝑃
𝜕𝜌! !

!

!!!

 . 

An Equation of State model needs to output the values of some thermodynamic derivatives in 
each element at each time step. The length of each time step depends on sound speed, 𝐶!, which 
is related to the volume derivative of the pressure along an isentrope (constant entropy) and is 
suited for use in hydro-codes, based on internal energy with entropy and volume as natural 
variables.  Thus the derivative needs to be rewritten along isobars and isotherms. After some 
manipulations, the sound speed can be calculated if, in addition to the sound speed, Helmholtz 
quantities are available for the phases, and the global Helmholtz quantities are already calculated: 

 𝐶!!  

𝜕𝐸
𝜕𝑇 !
𝜕𝑃
𝜕𝜌 !

=  𝜆!𝐶!!
!  

𝜕𝐸!
𝜕𝑇 !!
𝜕𝑃
𝜕𝜌! !

!

!!!

  . 

A more extensive discussion of thermodynamic derivatives and how to calculate them will be 
given elsewhere3. 

 

Updating the mole fractions  
Complete Equation of State needed 

Updating the mole fractions with time uses the Gibbs free energy differences, Δ𝐺!" = 𝐺! − 𝐺!, 
between the phases, as Δ𝐺!" = 0 when the phases are at equilibrium with each other. The larger 
this difference is, the faster the material will transition from the higher Gibbs free energy phase to 
the lower Gibbs free energy phase. In order to calculate the Gibbs free energy, we need entropy in 
addition to the, usually provided, internal energy and pressure quantities since 𝐺 = 𝐸 − 𝑇𝑆 + 𝑃𝑉. 
An alternative is to use Helmholtz free energy as an additional quantity since 𝐺 = 𝐹 + 𝑃𝑉.  

The assumptions made in both the Mie-Grüneisen and the temperature enhanced Vinet EoSs, 
allow for a derivation of entropy from the first and second law of thermodynamics in Equation 
(5). The assumptions are that the specific heat at constant volume, 𝐶!, is constant and that the 
product of the Grüneisen parameter, Γ, and density, 𝜌, or isothermal linear expansion, 𝛼, and 
isothermal bulk modulus, 𝐵; 𝐶!Γ𝜌 = 𝛼𝐵, is constant. The result is 

𝑆 𝑉,𝑇 = 𝑆 𝑉!,𝑇! + 𝛼!𝐵! 𝑉 − 𝑉! + 𝐶!! ln
𝑇
𝑇!

  , 

where the subscript zero denotes values at the equilibrium volume on the reference isotherm 
𝑉!,𝑇! . 

While this form for the entropy violates the third law of thermodynamics, which states that the 
entropy of a system at zero temperature is a well-defined constant, it is appropriate for use at 
temperatures 𝑇 ≳ 𝑇!.  

An additional issue is that in the numerical self-consistent loop determining pressure and 
temperature, described in a previous section, the temperature can become negative, which would 
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make the entropy imaginary, an undesirable result. In our implementation we thus add the 
requirement that if 𝑇 ≤ 0, we set 𝑆 = 0. 

Updating the mole fractions 

In addition to the general implementation-details discussed above, which are needed as soon as 
we are dealing with systems that can have elements with mixed phases, we now need to have an 
explicit model for updating the mole fractions with time. Carl Greeff has proposed a simple 
model (see, for example, Reference 1) for updating the mole fractions: 

𝜆!
!"# = 𝜆! +  𝜆! Δ𝑡 

𝜆! =  𝑅!"𝜆!

!

!!!

−  𝑅!"𝜆!  

𝑅!" =
𝜈!"  

Δ𝐺!"
𝐵!"

 𝑒𝑥𝑝
Δ𝐺!"
𝐵!"

!

    if   Δ𝐺!" > 0

 0                                               if   Δ𝐺!" ≤ 0
 

where Δ𝑡 is the time step, and 𝜈!" and 𝐵!" are empirical constants. While this set of formulas 
maintains the relation in Equation (1), it does not prevent the mole fractions from becoming 
unphysical, that is, negative or larger than one. In addition, the exponential in the transition rate, 
𝑅!", needs to be handled correctly to avoid overflows and other numerical issues. This, and other 
details, will be discussed elsewhere3.  

Phase models 

 
Fig. 1. – Entropy on two isotherms, 298K and 1000K, for Sn 𝜷 and 𝜸 phases, as a 

function of density. The open symbols are data from Equations of State 
constructed by Carl Greeff and the full lines are from the temperature enhanced 

Vinet model with parameters fitted to the full data set. 
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We need one Equation of State model for each phase, covering not only the phase’s stable regions 
but also the meta- and un-stable regions. For this work we have used the temperature enhanced 
Vinet EoS model (see Appendix 1 of Reference 2) with parameters fitted to values for a number 
of quantities for the 𝛽 and 𝛾 phases of tin (Sn), among them pressure, internal energy, and 
entropy, as functions of volume, on two isotherms, 298 K and 1000 K. Since Carl Greeff 
tabulated these isotherms from his analytical EoS package, this allows us to compare results from 
our implementation to results from Carl Greeff’s original implementation despite not having the 
same EoS capabilities in the two implementations. 

In Figure 1 and 2, we see two examples of how well the temperature enhanced Vinet model can 
reproduce the given isotherms. We have used the Vinet EoS model to fit other multi-phase EoSs, 
as well, with good results. 

  
Fig. 2. – Pressure on two isotherms, 298K and 1000K, for Sn 𝜷 and 𝜸 phases, as a 

function of density. The open symbols are data from Equations of States 
constructed by Carl Greeff and the full lines are from the temperature enhanced 

Vinet model with parameters fitted to the full data set. 

Results 
We implemented the Kinetic Phase transition model, with Carl Greeff’s model for updating the 
mole fractions, into the LAMBDA Equation of State package, and subsequently used this 
package in the 1-D LASLO hydro-code. We tested the implementation on a ramp-wave problem: 
A ramped pressure boundary condition on the left side of a 0.003 m slab of Sn. The parameters in 
the mole fraction update model for Sn are: 𝜈!" = 𝜈!" = 1×10! s!! and 
𝐵!" = 𝐵!" = 421.2 J/kg. 

In Figure 3, we show results for pressure, temperature, density, and internal energy, as functions 
of time, using 350 elements and a small time step setting leading to an average time step of 
1×10!!" s. It is clear that a discontinuity is forming in all quantities that are not present in the 
pressure wave used as boundary condition (black line close to the red 𝑥 = 0 𝑚 line in the 
pressure panel). A closer examination reveals that this shock is forming in the phase transition.  
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Fig. 3. – Pressure, density, temperature, and internal energy, as a function of time, 
at three different positions, x=0 (red), 0.0005 (blue), and 0.001 (green) m, in a 0.003 

m thick Sn sample with a pressure ramp applied to the left, x=0 m, boundary 
(black line in the pressure plot). Full lines are the Kinetic Phase transition model 
results and, for comparison, dashed lines are the results using a standard one-

phase Mie-Grüneisen Sn EoS. 
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Fig. 4. – The trace in thermodynamic phase space of the element at 𝐱 = 𝟎 m (red 
lines in Figure 3.). The solid blue line is the equilibrium phase boundary between 
the two phases. In the blue dots, the mole fraction of the 𝜷 phase is larger than 
0.99, while the red dots have more than 0.99 mole fraction of the 𝜸 phase. In the 

green dots we have a mixture of 𝜷 and 𝜸 phases. For comparison, the black dotted 
line is the trace obtained from using a standard one-phase Mie-Grüneisen EoS for 

Sn. 

In Figure 4, we show the trace in thermodynamic phase space for the element at x = 0 m (the red 
lines in Figure 3). The phase boundary is calculated from the separate phase EoS models on the 
Vinet form. We clearly see that there is latency for the phase transition to occur, and that the state 
follows the phase boundary until all material has transitioned. The one-phase EoS cannot permit 
such behavior, as is seen when comparing to the black dashed line produced with a one-phase 
standard Mie-Grüneisen EoS for Sn. 

However, a similar plot for a position further into the material, for example the blue lines for 
x = 0.005 m in Figure 3, reveals some numerical problems, as seen in Figure 5. This is due to the 
shock that is forming. The rates for transitioning between the phases are very high during shock 
and thus the transition time is extremely small, smaller by orders of magnitude, than is possible 
for any hydro-code time step. Even though we have subdivided the time step given by the 
LASLO code, to avoid getting negative mole fractions, the abrupt transition gives rise to 
numerical instabilities, in particular, slushing between the phases. This issue has recently been 
successfully addressed and will be described in detail elsewhere3. The solution is based on 
updating the mole fractions by having the Kinetic Phase transition module internally properly 
resolve the phase transition time within the hydro-code timestep, based on the previous and 
present state, (𝑉,𝐸), of the element. 

Lastly we want to point out that with more normal settings for element size and time step, this 
problem is aggravated. In Figure 6, we show the same trace as in Figure 4, but calculated with 
only 250 elements and allowing for a larger time step, the average time step is now 8×10!!" s. 
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Fig. 5. – The same plot as in Figure 4, but for the element at 𝐱 = 𝟎.𝟎𝟎𝟎𝟓 m (blue 

lines in Figure 3.). It is clear that we have numerical instabilities in our 
implementation. 
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Fig. 6 – The same plot as in Figure 4, but overlaid with a calculation with fewer 

elements,  250 elements instead of 350 and a longer average time step, 𝟖×𝟏𝟎!𝟏𝟎 s 
instead of 𝟏×𝟏𝟎!𝟏𝟎 s. The slushing between phases is because the transition rates 

are so large that the transition time between phases is far faster than the time 
step. See text for a short description of our solution to this problem. 
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