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Basic equations of MHDBasic equations of MHD
lessless terms for ideal MHDterms for ideal MHD

Balance of mass

Balance of momentum

Balance of internal energy

Balance of magnetic flux

Plus thermodynamic stress closure

Maxwell stress tensor
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ALE MHD ALGORITHMALE MHD ALGORITHM

Nodal forces 
from timestep n

Degrees of 
freedom from 

timestep n

Degrees of 
freedom at 

timestep n+1

Nodal forces at 
timestep n+1Operator-split resistive MHD

Ideal-MHD 
Lagrangian

Motion
(FEM)

Constrained-
transport 

remap

Resistive 
magnetic 
diffusion

DOF’s:
Positions
Velocities
Magnetic flux

Each step preserves a discrete divergence free condition 
on magnetic flux (involution).
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Ideal MHD AlgorithmsIdeal MHD Algorithms

• Integration of equations of motion in Lagrangian frame.

• Compatible edge/face centering of magnetic quantities
• Maxwell stress tensor for magnetic forces
• Central difference time integrator (1st-order time-staggered,  unstable in 
expansion without artificial viscosity ) 

OR
Midpoint predictor-corrector method (2nd-order, stable) 

• Artificial viscosity for shocks based on fast magnetosonic speed.

• Remesh/Remap

• Constrained transport remap.
• deBar correction for magnetic energy

• This presentation discusses approaches and results for algorithm verification.
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Review of Constrained Transport Algorithms

Apply this requirement to the surface of the swept-out volume formed by 
the remesh motion of an element face:

Flux on remapped 
surface is the only 

unknown.

However, accurately evaluating 
these terms as EDGE quantities 
requires work

SLag

S1

S4

S2

S3Sremap

Eulerian mesh element

Element after Lag. motion
(before remap)
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• Construct a divergence free, limited, high-order representation.  This 
essentially adds cross face flux density contributions.

• Compute the flux integrals associated with each swept edge using the 
parametric representation of the flux density in the upwind element.

• Take a discrete curl to get updated fluxes (track sign conventions)

Summary of our CT algorithms

dx
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Upwind 
element

Topological face based 
reconstruction

Patch recovery/least squares for nodal 
B for high order reconstruction
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Normal gradient terms

Limited high order terms dependent on the cross face coordinate replace the 
original low order flux in the edge integrals.

1 1 1 2 1 1
2( ) ( ) ( )D DA s     



2 2 2 2 2 1
2( ) ( ) ( )D DA s     



2D Face Reconstruction Example
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3D Patch Recovery

Limit (harmonic limiting)

Use least square representation at nodes to compute s values at nodes

Edge integration
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Symmetry VerificationSymmetry Verification

Verification means that we check our solution by comparing against some 
other computational method.

We have found that simple symmetry requirements are excellent first checks.

For example, CT does not conserve energy but you can still verify that the 
energy loss is the same for solutions which should be invariant independent 
of flow direction.  

The properties can be checked completely automatically.  The testing 
framework should support runs of multiple tests with varying parameters.

The verification work does not count until the test is encapsulated and 
running in the automated testing framework.  That is, the test must leave the 
developer’s hands and end up in the team’s repository and process.

It is much better to implement a simple verification check than no verification!
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Order Verification for ALE MHDOrder Verification for ALE MHD

FF SS AA E

forward 
modes

backward 
modes

LEFT STATE RIGHT STATE

x

t

t = 0.1

IC

Solid line:
exact solution

Order verification means we examine convergence rates for wave 
propagation problems whose solution is available.

Discontinuous: MHD shocks
(self steepening)

Smooth: Alfvén waves 2.1.

Circularly polarized Alfvén wave.
Problem 5(a), 
Ryu & Jones, 
Ap. J., 1995.
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Circularly polarized Circularly polarized AlfvAlfvéénn wave problemwave problem

Alfvén wave: a non-compressive, isentropic, transverse disturbance in 
the velocity and B field only, propagating along lines of magnetic force 
with a velocity 

Following Toth (JCP, 2000), a continuous train of circularly polarized 
Alfvén waves is initialized in ALEGRA as:

With  = 30°, v|| = 0, B|| = 1, and  = 1, the wave train translates at 30° to 
the x-axis, with unit wavelength and period  = 2/ = 2k / vA = 1.  

x

y

z

Direction of B||
and wave 
motion.

Directions of 
transverse 

disturbance in B
and v

wavefronts

→ Exact solution is identical to IC for integer time t.
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Verification ApproachVerification Approach

Code Verification
• code verification in space: fixed 

CFL, various mesh resolutions
• the initial solution is the reference 

at periodic times

• solution is extrapolated from 
simulations at different resolutions

• usually used for error estimation in 
production calculations

• reference solution is exact
• ideal for testing algorithms and 

their implementations 

Solution Verification
• solution verification in time: one 

mesh, various (constant) t’s
• reference solution generated 

from the two solutions with the 
smallest time steps

• Artificial Viscosity is turned off for this shock-free problem
• All remaps are CT remaps, but different limiters are used
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Code VerificationCode Verification

Nominally 2nd-order, except for Donor-cell limiter (as expected)

Spatially 2Spatially 2ndnd--Order AccurateOrder Accurate

• Predictor-Corrector time 
integrator

• L2 norm of Bx at t=1.0

• Results for other components 
and velocity are the same

• Convergence rates degrade on 
coarser meshes for t=2.0
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Solution VerificationSolution Verification

First we tried code verification; no convergence as t -> 0.
Hunch: temporal error is in the noise compared to spatial error 

Spatial Error Dominates Temporal ErrorSpatial Error Dominates Temporal Error

How to isolate the temporal error? Solution verification. 

• All the simulations are done on 
the same mesh. 

• Assume the spatial and temporal 
errors are independent.

• Then the extrapolated solution 
has the same spatial error as 
each of the other solutions

• So the differences between 
simulations and the extrapolated 
solution are due to temporal error 
only. 

Predictor-Corrector: 2nd-order temporal convergence
Central Difference: 1st-order
Eulerian simulations show reduced order of accuracy in time
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Does Temporal Accuracy Matter?Does Temporal Accuracy Matter?
For ALEGRA, Stability Motivates PredictorFor ALEGRA, Stability Motivates Predictor--Corrector Corrector 

• Stability is driving the adoption of the predictor-corrector time integrator
• Demonstrating 2nd-order accuracy shows correct implementation 

Lineout at y=0.8, t=1.0
CFL = 0.95 Bx

By

Bz

Central Difference: 
growing oscillations 
(color)

Predictor-Corrector: 
no oscillations
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Magnetized Noh problemMagnetized Noh problem

1.   Magnetized Noh problem: supersonic stagnation flow

*Noh, J. Comp. Phys., 1979

-1

1

0

x0.5 10
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x
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• Standard test problem in 
shock hydrodynamics*

• Ideal-gas EOS

• Oblique, transverse B field 
added

• Ideal MHD

• Very strong MHD shocks

• Exact solution can be 
computed using ideal-MHD 
Riemann solver

As a test of MHD shock treatment, we also consider problems involving 
nonlinear, self-steepening MHD waves:

 = 1.0
p = 10-6

Initial condition: Time-space plot:

F FSS



17 of 24

DeBarDeBar correctioncorrection

ALEGRA uses a modern implementation of DeBar’s correction for the 
kinetic energy loss arising in elements near shocks due to remap:

The traditional form of the DeBar correction maintains full conservation of 
energy in remap for pure hydrodynamics.

= mass associated with element
= remap operator

= nodal velocity

actual remapped KE
conservatively remapped KE

Optional limiters are included in the implementation:
• Restrict to shocks only, using value of Q/P
• Limit magnitude of correction in the case of cooling
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DeBarDeBar correctioncorrection

DeBar’s correction is extended in ALEGRA to include magnetic energy 
losses arising in the solution due to remap:

actual remapped ME
conservatively remapped ME

= vector face shape functions
= element shape functions

= magnetic flux on face f

With the magnetic DeBar correction implemented, full conservation of 
total energy and its components is maintained in remap by ALEGRA.

Same limiters apply for hydrodynamic and magnetic DeBar correction. 
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Magnetic Noh Test ResultsMagnetic Noh Test Results

Code Verification in space:
• constant CFL=0.95
• Central difference time integrator
• 16, 32, 64, 128, 256, 512 elements
• Results shown at t=0.75

Debar Corrections Required for ConvergenceDebar Corrections Required for Convergence
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Magnetized Noh Shock ProfilesMagnetized Noh Shock Profiles

• Shock speeds mispredicted
• Wrong post-shock state
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Magnetized WoodwardMagnetized Woodward--ColellaColella problemproblem

*Woodward and Colella, J. Comp. Phys., 1984
**Gardiner and Stone, J.Comp. Phys., 2005
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2.   Magnetized Woodward-Colella problem: interacting 
blast waves

• Standard test problem in 
shock hydrodynamics*

• Ideal-gas EOS

• Oblique, transverse B field 
added

• Ideal MHD

• Very strong MHD shocks

• No exact solution available; 
reference solution can be 
computed using ideal-MHD 
Godunov method (Athena)**

A second problem provides a more stringent test of shock capability, 
though without the possibility of rigorous code verification: 

Initial condition: Time-space plot:

 = 1.0
v = 0.0
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Results with energy conservationResults with energy conservation

No DeBar
KE DeBar
Full DeBar

Acceptable convergence observed only with full energy conservation via Debar:

t = 0.025

Reference solution: 
Athena (Eulerian Godunov)

Number of elements in x-direction
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IssuesIssues

• The DeBar correction, in its current implementation, introduces 
robustness issues.

• Adjustment to internal energy can have either sign; thus, it can
introduce negative temperatures in some cases

• The correction also introduces anomalous behavior at contacts in
some cases.

• Limiters can be applied to address these issues, but then energy
is again not fully conserved.

• Energy redistribution should have a more consistent node 
weighting

• Artificial viscosity for MHD shock (7 modes, with transverse modes) 
should be improved.
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SummarySummary

• Application of a formal verification methodology has been 
of significant use in gaining confidence in ideal MHD 
algorithms and implementations.  Both simple and more 
extensive order verification methods are highly useful.

• Symmetry tests
• Order verification

• All verification tests must be implemented in a team owned 
test harness which is run on a regular basis.
• Verification suite clearly points out fruitful avenues for 
future research and provides the basis for future success.

• deBar robustness
• Artificial viscosity for MHD shock


