

SANDIA REPORT
SAND2007-0570
Unlimited Release
Printed January 2007

Modeling and Simulation Technology
Readiness Levels
Robert L. Clay, Scot J. Marburger, Max S. Shneider, Timothy G. Trucano

Prepared by Sandia National Laboratories
Albuquerque, New Mexico 87185, and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

 2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of their
employees, nor any of their contractors, subcontractors, or their employees, make any warranty,
express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent that its use would
not infringe privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government, any agency thereof,
or any of their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any of their
contractors.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-#online

 3

SANDIA REPORT
SAND2007-0570

Unlimited Release
Printed January 2007

Modeling and Simulation Technology
Readiness Levels

Robert L. Clay
Scot J. Marburger
Max S. Shneider

Timothy G. Trucano

Abstract
This report summarizes the results of an effort to establish a framework for assigning and
communicating technology readiness levels (TRLs) for the modeling and simulation (ModSim)
capabilities at Sandia National Laboratories. This effort was undertaken as a special
assignment for the Weapon Simulation and Computing (WSC) program office led by Art Hale,
and lasted from January to September 2006. This report summarizes the results, conclusions,
and recommendations, and is intended to help guide the program office in their decisions about
the future direction of this work.

The work was broken out into several distinct phases, starting with establishing the scope and
definition of the assignment. These are characterized in a set of key assertions provided in the
body of this report. Fundamentally, the assignment involved establishing an intellectual
framework for TRL assignments to Sandia’s modeling and simulation capabilities, including
the development and testing of a process to conduct the assignments. To that end, we proposed
a methodology for both assigning and understanding the TRLs, and outlined some of the
restrictions that need to be placed on this process and the expected use of the result. One of the
first assumptions we overturned was the notion of a ‘static’ TRL – rather we concluded that
problem context was essential in any TRL assignment, and that leads to dynamic results (i.e., a
ModSim tool’s readiness level depends on how it is used, and by whom). While we leveraged
the classic TRL results from NASA, DoD, and Sandia’s NW program, we came up with a
substantially revised version of the TRL definitions, maintaining consistency with the classic
level definitions and the Predictive Capability Maturity Model (PCMM) approach. In fact, we
substantially leveraged the foundation the PCMM team provided, and augmented that as
needed.

Given the modeling and simulation TRL definitions and our proposed assignment
methodology, we conducted four ‘field trials’ to examine how this would work in practice.
The results varied substantially, but did indicate that establishing the capability dependencies
and making the TRL assignments was manageable and not particularly time consuming. The
key differences arose in perceptions of how this information might be used, and what value it
would have (opinions ranged from negative to positive value). The use cases and field trial
results are included in this report. Taken together, the results suggest that we can make
reasonably reliable TRL assignments, but that using those without the context of the
information that led to those results (i.e., examining the measures suggested by the PCMM
table, and extended for ModSim TRL purposes) produces an oversimplified result – that is, you
cannot really boil things down to just a scalar value without losing critical information.

 4

Acknowledgements
The authors are grateful to the steering committee members, who worked through the problem
with us to provide both guidance and direct help with the issues and problems. Specifically,
we wish to thank Paul Yarrington as our primary sponsor within the steering committee, as
well as Fran Current, Pete Wilson, Mike Hardwick, Scott Klenke, and Mike Chiesa. Also, we
appreciate the guidance provided by our executive sponsor Art Hale.

We are also grateful to Jay Dike, Jeff Gruda, Roy Hogan, Jr. and Sean Brooks for their time
and valuable help provided during the field trials. Their patience and insight was greatly
appreciated.

Finally, we need to acknowledge Paul Yarrington for providing raw information from which
we constructed the Program Office Use Case in Appendix 7 in this report.

 5

Table of Contents

Abstract ...3

Acknowledgements...4

Glossary and Acronyms... 7

Executive Summary ..9

Introduction...11

The Scope of the ModSim TRL Effort .. 11

Key Assertions Used to Guide this Effort.. 11

ModSim TRL Definitions and Their Mappings... 14

TRL Assignment Process – Proposed Methodology ... 19

Analysts Examples and Use Case .. 21

Program Office Use Case... 23

Conclusions and Recommendations .. 23

Appendix 1: Analyst Use Case .. 27

Appendix 2: TRL Assignment Process Details ... 30

Appendix 3: Detailed Discussion of Utility... 33

Appendix 4: Analyst Example Dependency Trees .. 34

Appendix 5: Analyst Example TRL Assignment Matrices ... 36

Appendix 6: Dependency Tree Templates... 43

Appendix 7: Program Office Use Case.. 45

 6

List of Figures

Figure 1 – ModSim TRL Assignment Process ...20

Figure 2 – Jay Dike’s dependency tree ...34

Figure 3 – Jeff Gruda’s dependency tree ..35

Figure 4 – Roy Hogan, Jr.’s dependency tree...35

Figure 5 – Analyst Dependency Tree Template (Jay Dike, Roy Hogan Jr., and Jeff
Gruda) ...43

Figure 6 – DART Dependency Tree Template (Sean Brooks)...44

List of Tables

Table 1 – Modeling and Simulation TRL Definition Table (Part 1) ..15

Table 2 – Modeling and Simulation TRL Definition Table (Part 2) ..16

Table 3 – Jay Dike’s TRL Assignment Matrix...37

Table 4 – Jeff Gruda’s TRL Assignment Matrix ..39

Table 5 – Roy Hogan, Jr.’s TRL Assignment Matrix...42

 7

Glossary and Acronyms

ASC – Advanced Simulation and Computing.

CSE – Computational Science and Engineering.

DOE – Department of Energy.

DP – Defense Programs.

DSW – Directed Stockpile Work.

ModSim – Modeling and Simulation.

NNSA – National Nuclear Security Administration.

NW – Nuclear Weapons.

NWSMU – Nuclear Weapons Strategic Management Unit.

PCMM – Predictive Capability Maturity Model.

QMU – Quantification of Margins and Uncertainties.

TRL – Technology Readiness Level.

V&V – Verification and Validation.

WSC – Weapon Simulation and Computing.

 8

This page intentionally left blank.

 9

Executive Summary

This report summarizes the results of an effort to establish a framework for assigning and
communicating technology readiness levels (TRLs) to the computational science and
engineering (CSE) modeling and simulation (ModSim) capabilities at Sandia National
Laboratories. (We always intend ‘ModSim’ in this report to mean ‘CSE ModSim.’) This effort
was undertaken as a special assignment for the weapon simulation and computing (WSC)
program office led by Art Hale, and lasted from January to September 2006. This report
summarizes the results, conclusions, and recommendations, and is intended to help guide the
program office in their decisions about the future direction of this work.

The work was broken out into several distinct phases, starting with establishing the scope and
definition of the assignment. These are characterized in a set of key assertions provided in the
body of this report. Fundamentally, the assignment involved establishing an intellectual
framework for TRL assignments to Sandia’s Advanced Simulation and Computing (ASC)
program ModSim capabilities, including the development and testing of a process to conduct
the assignments. To that end, we have proposed a methodology for both assigning and
understanding the TRLs, and outlined some of the restrictions that need to be placed on this
process and the expected use of the result. One of the first assumptions we overturned was the
notion of a ‘static’ TRL – rather we concluded that problem context was essential in any TRL
assignment, and that leads to dynamic results (i.e., a ModSim tool’s readiness level depends on
how it is used, and by whom). While we leveraged the classic TRL definitions from NASA,
DoD, and Sandia’s NW program, we came up with a substantially revised version of the TRL
definitions, maintaining consistency with the classic level definitions and the Predictive
Capability Maturity Model (PCMM) approach being developed by the SNL ASC Verification
and Validation (V&V) program. In fact, we substantially leveraged the foundation the PCMM
team provided, and augmented that as needed.

Given the modeling and simulation TRL definitions and our proposed assignment methodology
we conducted four ‘field trials’ to examine how this would work in practice. The results varied
substantially, but did indicate that establishing the capability dependencies and making the
TRL assignments was manageable and not particularly time consuming. The key debate arose
in perceptions of how this information might be used, and what value it would have (opinions
ranged from negative to positive value). The use cases and field trial results are included in
this report. Taken together, the results suggest that we can make reasonably reliable TRL
assignments. However, using those assignments without the context of the information that led
to them (i.e., examining the measures suggested by the PCMM table, as extended for ModSim
TRL purposes) produces an oversimplified result – that is, you cannot really boil things down
to just a scalar value without losing critical information.

There are four main conclusions and associated recommendations from this report, discussed in
detail in the final section of the main body of this report. They are:

• Conclusion 1: We can assign TRLs to ASC ModSim capabilities.

 10

• Recommendation 1: Use the framework and process proposed in this report as a
baseline for refinement.

• Conclusion 2: ModSim TRLs and the PCMM specification are connected.

• Recommendation 2: Conduct TRL assessments as an adjunct to the PCMM process,

not as a stand-alone exercise.

• Conclusion 3: The ModSim TRL framework and process described in this report are
not complete – there is still work to be done.

• Recommendation 3: If the sponsors decide to proceed with this line of development,
continue to resolve the framework and process using the baseline approach described in
this report.

• Conclusion 4: There remain questions about the utility of ModSim TRLs.

• Recommendation 4: Address key issues before proceeding to the next phase of
developing the TRL framework and process.

 11

Introduction
This report summarizes the results of an effort to establish a framework for assigning and
communicating the technology readiness levels of the modeling and simulation capabilities at
Sandia National Laboratories. This effort was undertaken as a special assignment for the SNL
Weapon Simulation and Computing (WSC) program office led by Art Hale, and lasted from
January to September 2006. This report summarizes the results, conclusions, and
recommendations, and is intended to help guide the program office in their decisions about the
future direction of this work.

The Scope of the ModSim TRL Effort
Our charter was to develop a framework for the assignment and communication of TRLs for
Advanced Simulation and Computing (ASC) program computational science and engineering
(CSE) modeling and simulation (ModSim) capabilities at Sandia National Laboratories. (In
what follows, the acronym ‘ModSim’ will always means ‘CSE modeling and simulation’
unless specifically noted.) Since this had not been done before at Sandia and little
implementation information about applicability of TRLs to CSE modeling and simulation
exists at other DOE institutions, there was an exploratory aspect to this work. At the outset, we
established some guiding principles that were cast as assertions and vetted by a steering
committee (which was, in fact, more of a working group). This steering committee included
the following people: Robert Clay (chair, ModSim TRL team), Paul Yarrington (WSC program
office manager), Timothy Trucano (QMU/V&V staff), Mike Hardwick (ASC CSSE manager),
Pete Wilson (engineering analyst manager), Mike Chiesa (engineering analyst manager), Fran
Current (WSC program office manager), Scott Klenke (DSW staff), Scot Marburger (ModSim
TRL team), and Max Shneider (ModSim TRL team). This group was intended to represent a
reasonable cross section of the WSC stakeholders for the current effort.

Key Assertions Used to Guide this Effort
During the scope-definition phase of this effort we developed a set of assertions that
established some baseline principles for the work to follow. These were reviewed by the
steering committee (described above), and captured as follows in a set of eleven core assertions
that define the scope and purpose of this work.

Assertion 1: ModSim capability is the ability to simulate weapons systems physical and
engineering performance in a specific context using CSE modeling and simulation tools,
expertise, and computing hardware.

This assertion is a straightforward definition of what we mean by ‘modeling and simulation
capability’ in the context of NWSMU ModSim. It was drawn from various sources, including
numerous interviews with a cross-section of individuals representing the capability providers
(tool developers), users (analysts), and consumers (SNL nuclear weapons engineers).

 12

The notable extensions to this definition are the notion that a ModSim capability is not just the
tool (software/code), but also requires consideration of user qualification1 (expertise) and
infrastructure (computing hardware) to be complete.

Assertion 2: We are determining ModSim capability readiness because it is the right thing
to do.

This statement goes directly toward answering the question of “Why are we doing TRLs?”
There are potentially numerous uses and purposes for establishing a ModSim TRL framework,
but the ones called out by the steering committee include the following:

• communicate ASC preparedness to respond to customer needs

• communicate the maturity level of ASC ModSim products and the confidence that can be
placed in the technology

• help guide ASC programmatic investments in analytical capabilities.

This is further extended in Appendix 7, the WSC Program Office Use Case, provided by Paul
Yarrington and refined by the authors.

Assertion 3: Our sponsor is the WSC management team, and our stakeholders include:

• PCMM team (also partners)
• NWSMU TRL team
• Weapons Engineers
• Analysts
• ModSim developers
• ASC program office.

This is simply a statement of who our sponsor and stakeholders are. As part of this discussion,
we established a basic requirement that the ModSim TRL framework needed to be consistent
and compatible with the ASC V&V/PCMM program effort and the NWSMU TRL approach
for hardware products and capabilities. This is also explicitly stated in Assertion 7.

Assertion 4: “Static” TRLs do not work for ModSim capabilities, since the readiness level
depends on the question and context. Therefore, we need a flexible approach to assessing
ModSim TRLs that is responsive to problem context.

We were initially hoping to establish the TRLs in core capability areas for ModSim. However,
it quickly became apparent (see discussion in Assertion 1 above) that it is essential to establish
the problem/usage context prior to assigning a TRL. The reason for this is readily apparent

1 The point of user qualification was initially questioned, but think of handing a hammer and chisel to
Michelangelo and a chimpanzee, each with a slab of marble and instructions to sculpt ‘David’, and you clearly get
the sense that who is using the tool matters in terms of the expected outcome. Implicitly assuming that experts are
always using ModSim tools, so as to factor the expertise issue out of the TRL specification, is not a valid
approach because the impact of expertise on ModSim predictions is profound.

 13

upon consideration – how well a tool will perform depends on what you intend to do with it.
When you couple this basic notion to the dependency on who is using the tool and where they
are using it, the notion of a static (i.e., non-time-dependent) TRL assignment becomes illogical.
The steering committee did acknowledge that high-level TRL assignments could be made for
generalized capabilities so long as the set of assumptions for those assignments were clearly
documented (e.g., what is the set of problems of interest, what split (weighting) between the
various problem types is necessary to form an aggregate TRL, etc.).

Assertion 5: Independent assessments improve credibility.

A requirement placed on the team from the WSC program office was to define a robust,
relatively objective approach to TRLs – that is, for a given set of conditions (problem, persons,
tools), the answers should be consistent and stable (meaning that the same problem, persons,
tools should yield the same TRL evaluation). This assertion simply emphasizes the need for
independence in the TRL assignment process, and the methodology we propose in this report
calls for independence in the assignment teams. ‘Independence’ specifically means
‘independent of the tool/capability developers.’

Assertion 6: The ModSim community includes:

• producers (tool/capability developers)
• users (analysts)
• consumers (product engineers)
• sponsors (WSC/ASC).

This assertion simply states explicitly who we view as the modeling and simulation community
associated with this ModSim TRL framework.

Assertion 7: Our TRL solution needs to be compatible with the ASC/PCMM and NWSMU
TRLs.

By ‘compatible,’ we mean that the TRLs for ModSim must be able to be unambiguously
communicated within a framework involving these stakeholders.

Assertion 8: There will be nine TRLs to conform to existing NWSMU convention. We will
define the levels for ModSim, and then map that back to NWSMU TRLs.

This requirement simply states that there will be nine levels for ModSim TRLs, as is common
practice for hardware TRL assignments at NASA, DoD, and Sandia’s NWSMU. We note that
the quantization of the TRL process directly mirrors the fidelity of the process for performing
the assessment. Nine evaluation levels requires a process that can unambiguously resolve nine
different levels of information required in TRL evaluation.

Assertion 9: We want to assign readiness levels to ASC and commercial tools, hardware,
and expertise.

 14

This statement acknowledges the fact that we are interested in ModSim capabilities, whether
the source is ASC or commercial suppliers. From the customer’s perspective, the issue is how
well the tool performs the job, not who provides the tool. (Obviously, evaluating commercial
ModSim tools external to the SNL ASC program poses some different problems than for ASC
tools, such as availability of needed V&V information.)

Assertion 10: A rigorous, reproducible process is required.

This is related to Assertion 5 above. Two key points were brought out during this discussion
of this assertion:

• Consistency in the assessment process is required to enable TRL comparisons across
time.

• Consistency in the assessment process also ensures that comparisons between similar
capabilities are meaningful.

Assertion 11: We are working under the assumption that some of the information involved
in the TRL assessment process will be classified, and therefore we may need a classified
version of the process.

This simply acknowledges that our framework and process need to be able to address classified
information and capabilities.

ModSim TRL Definitions and Their Mappings
In order to make TRL assignments, we first need to define how many levels there are and what
we mean by any given level. Standard examples of TRL definitions exist from NASA, DoD,
and Sandia’s NWSMU, all of which are primarily oriented at defining TRLs for hardware.
Sandia’s ModSim capability set is an entirely different category of technology from hardware.

First, a ModSim capability is generally not a physical device, but a synthesis of software,
hardware, and expertise (see Assertion 1 above). Second, there is no fixed specification,
operating environment or ‘finished product’, per se. Most of the software tools are evolving on
an ongoing basis and their application (specification and operating environment) can change
often. Basically, they are moving targets in general, and in many cases the core components
(features in the codes and pre and post processing tools) involve an R&D component whereby
new features show up in an ongoing manner. Fundamentally, the concept of ‘readiness’ for
ModSim is uncertain. This is entirely different from the standard TRL model, and presents a
host of issues for the application to modeling and simulation.

Our initial attempt to create ModSim TRL definitions was based on a modest transformation of
the language in the NASA, DoD, and Sandia NWSMU ‘hardware-based’ TRL definitions. In
four field trials with this set of definitions the participant teams found the language vague and,
in general, not an adequate representation of the key attributes associated with ModSim
capability readiness. Further, there was no clear mapping between that language/scheme and

 15

the PCMM maturity table2. As a result, we revised the definitions by leveraging the PCMM
attributes and language, and recast the definitions as a table where the rows are TRL levels and
the columns are augmented PCMM key attributes (see Tables 1 and 2). This change of the
definitions had the advantage of being relatively consistent with the PCMM approach (since
we directly used much of their language and measures) and completely consistent with the
NWSMU TRL levels (i.e., both approaches used nine levels, and the 1-to-1 mapping is
consistent based on our test assessments). Another round of field tests indicated that this new
configuration was much better suited to the task and preferred by the assignment teams. These
tests also provided a number of refinements to the definition table, most of which have been
incorporated into Tables 1 and 2.

Table 1 – Modeling and Simulation TRL Definition Table (Part 1)

2 M. Pilch, T. Trucano, and J. Helton, SAND2006-5001; more extensive documentation of the PCMM (by Pilch,
Oberkampf, and Trucano) is in progress at the time of writing. Some additional comments on measuring ModSim
capability dimensions are found in Trucano, SAND2006-7725P
3 Description for verification and validation are taken from the PCMM table by Pilch, Trucano, and Helton,
SAND2006-5001.

TRL Capability
Maturity

Verification3 Validation User Qualification

1 Concept Phase: basic
principles identified.

2 Concept Phase:
technology concept
and/or app
formulated.

3 Concept Phase: proof
of concept initiated.

Judgment only,
or numerical
errors
unacceptably
pollute
validation or
application
decisions.

Judgment only. Insignificant
coverage of the dominant
physics. Dominant physics
assessed to be inadequate.

None required.

4 Prototype Phase:
concept demonstrated
on ‘toy’/lab problem.

5 Prototype Phase: key
elements
demonstrated on
realistic problem.

Explore
sensitivity to
discretization
and algorithm
parameters.

Qualitative comparisons of
measurement to predicted.
Substantially incomplete
coverage of dominant physics.

Familiar with similar tools on
similar problem type.

6 Prototype Phase:
system model
demonstrated on
realistic problem.

Familiar using this tool on similar
problems and computer systems.

7 Production Phase:
system demonstrated
on realistic problem
in production.

Estimate
numerical errors.

Quantitative validation w/o
assessment of variability and
uncertainties in diagnostics and
model. Or, w/ significant
extrapolation to application
parameter space. With
significant coverage of
dominant physics.

Familiar using this tool on similar
problems and production
computer systems.

8 Production Phase:
system completed and
qualified on
production through
test and
demonstration.

9 Production Phase:
system completed and
in ongoing production
use.

Quantify
rigorous
numerical error
bounds.

Quantitative validation w/
assessment of variability and
uncertainties in diagnostics and
model. Without significant
extrapolation to application
parameter space. With
significant coverage of
dominant physics and their
interactions.

Routine production use of tool on
similar problems on the target
production computer system.

 16

Table 2 – Modeling and Simulation TRL Definition Table (Part 2)

4 Description for software attributes (columns) are taken from the PCMM table by Pilch, Trucano, and Helton,
SAND2006-5001. Geometry attribute description altered to focus more on fidelity instead of dimensionality.
5 Physics and material models – applies to simulations.
6 Physical geometry – applies to simulations.
7 QMU and sensitivities.
8 Computer system TRL.

TRL Code Readiness4 Models5 Geometry6 QMU7 System8
1 1
2 2
3

Judgment only. Critical
features and capabilities are
missing or lack robustness.
Sustained unit/regression
testing w/o significant
coverage. Unsustained
unit/regression testing w/ or
w/o significant coverage.

Model form
unknown.

Low fidelity: Significant
defeaturing and/or
simplification of
geometry. Low level of
detail represented (e.g.,
block representations of
assemblies and parts).

Deterministic Best
Estimate or nominal
margins. Judgment-
only assessment of
uncertainty and
sensitivity.

3

4 4
5

Code managed and assessed
against SQE requirements.
Sustained unit/regression
testing w/ significant
coverage. Unsustained
verification testing w/ or
w/o significant coverage.

Empirical
model forms
speculated or
calibrated to
represent
trends.
Calibration of
physics-
informed
models.

Deterministic margins.
Or, informal “what if”
assessment of
uncertainty and
sensitivity.

5

6

Medium fidelity:
Without significant
defeaturing and/or
simplification of
geometry – still captures
key aspects of the
geometry. Very little
block representation, but
with some
simplifications of small
features/parts. 6

7
Code managed and assessed
against SQE requirements.
Sustained unit/regression
testing w/ significant
coverage. Sustained
verification testing w/
significant coverage of
separate physics.

Alternate
plausible
physics-
informed
models.
Potentially w/
model form
calibration.

Initial attempts to
formally quantify
margins, uncertainty,
and sensitivity. With
significant judgment, or
significant judgment as
to what to include.

7

8 8
9

Code managed and assessed
against SQE requirements.
Sustained unit/regression
testing w/ significant
coverage. Sustained
verification testing w/
significant coverage of
high-order interactions.

Established
physics-based
model.

High fidelity: Geometric
representation consistent
with “as built”, with
little to no defeaturing
and/or simplification.
Appropriate level of
detail for qualification.
Small features and parts
captured.

Formal quantification of
margins, uncertainty,
and sensitivity. Without
significant judgment as
to what to include.

9

 17

Further explanation of the entries and usage model for this combined table is in order. We will
start with explaining the entries in more detail than the table itself provides. The first column
in both tables is the numerical value of the TRL (i.e., the row labels).

Capability Maturity: This attribute is a condensation of the traditional TRL definition, and is
meant to give a gross numerical indicator of the general state of the capability in question.
Users decide whether it is in the concept, prototype, or production phase, and then expand that
into further resolution. Some of the testers found this confusing when compared to the “Code
Readiness” attribute. Maturity is effectively a high-level definition and qualifier to match the
numbers – its resolving characteristics versus some of the other attributes is limited.

Verification: This attribute was taken directly from the PCMM table with a mapping into the
TRL levels as shown above. There is extensive documentation in the SNL ASC V&V program
that explains this attribute. This attribute answers two questions: (1) ‘Are mathematical,
algorithmic, and/or software errors degrading the readiness for application of the ModSim
capability?’ (2) ‘Are numerical errors degrading the readiness for application of the ModSim
capability?’

Validation: This attribute was taken directly from the PCMM table with a mapping into the
TRL levels as shown above. There is extensive documentation in the SNL ASC V&V program
that explains this attribute. This attribute answers the question: (1) ‘Is the physical fidelity of
the ModSim capability degrading its readiness for application?’

User Qualification: This attribute accounts for the level of expertise of the person using the
tool for the problem that defines the TRL assignment context (see the “TRL Assignment
Process” discussion below). It is intended to be applied taking into consideration the person
doing the work, or the expertise of the person expected to do the work. If the analysis team
was not already established at the time of the TRL assignment, it is expected that the manager
of the capability area (e.g., thermal analysis) would make this TRL assignment.

Code Readiness: Also taken from the PCMM table, this attribute indicates the state in terms
of code management and testing practices. The concept points more at the readiness for use by
a user community (for example, can a user simply pick up the code and run it, or is there some
probability that the code will not function properly) than a general statement of appropriateness
for a given application, the latter being the entire point of a TRL. Readiness has to do with
configuration management, stability of available software versions, availability of
documentation, support by code developers, and availability of appropriate computing
hardware to at least execute calculations of interest, and so on. None of this implies that the
code is “ready” for some particular application. Therefore, as used here, code readiness is just
one part of a ModSim TRL assessment.

Models: This attribute was taken directly from the PCMM table with a mapping into the TRL
levels as shown above. This attribute basically addresses the question ‘What physics are
important to the application and how physics-based are the models?’

 18

Geometry: This attribute was adapted from the PCMM table with a mapping into the TRL
levels as shown above. An important question that this attribute addresses is ‘Are you
overlooking important feature details that could significantly impact the results?’ Our field
tests indicated that the dimensionality of the problem was of less concern than the geometric
fidelity – i.e., in some cases a high-fidelity, low-dimensional geometric representation was
completely sufficient for obtaining the required analysis result. The most recent field tests
provided further feedback indicating that in some cases the required analysis results can be
obtained using medium geometric fidelity models, but this should not result in an overall lower
TRL. We have yet to resolve this issue in the table, nor do TRLs in and of themselves bring
clarity to this issue.

QMU: This attribute was taken directly from the PCMM table with a mapping into the TRL
levels as shown above. It refers to elements of ModSim readiness that are pertinent to QMU,
and is discussed in the Pilch, Trucano, and Helton report referenced above.

System: This is an indicator of the TRL for the computer hardware system used to do the
computations. It is expected that the TRL assignment on that system is done ‘externally’ – i.e.,
done separately from an analysis-based capability TRL assignment. ‘System’ includes what
may also more generally be called ‘infrastructure’ enabling ModSim, including storage and
communication systems. Evaluation of the ‘readiness’ of complex hardware architectures for
ASC-scale ModSim is obviously nontrivial and well beyond the scope of our initial TRL
assessment effort.

Unfortunately, the columns that were taken directly from the PCMM table were not used
extensively in the field tests. Some of the example problems did not use V&V or QMU at all,
and in other cases the users were confused by the definitions. To resolve this issue, we either
need to adapt the PCMM to clarify the wording in the columns, or list a point of contact that
can answer such questions. As noted in the executive summary above and recommendations
below, we recommend performing the TRL assignments as an adjunct to the PCMM process,
and that should directly address the clarity issue.

Tables 1 and 2 are intended to be used in the TRL assignment process as follows:

1. For each applicable column in the table, choose the definition that most accurately
describes the node in question. For example, if you are using a relatively new physics-
based model, you would probably choose the box that spans levels 6 and 7 in the Model
column.

2. If the result of step 1 spans multiple rows, use your discretion as to which row it should
be assigned. For instance, if the example in step 1 was very reliable and had a number
of users, you would probably choose level 7 over level 6.

3. After you have done steps 1 and 2 for each column, the TRL is then selected as the
minimum of those levels. For example, if Model was a 3, Geometry was a 9, and the
rest of the levels were 6, the TRL would be a 3.

 19

TRL Assignment Process – Proposed Methodology
The next step is to describe how to use the TRL definitions to produce a readiness level for the
required capability. We have constructed a process methodology for this purpose, which is
depicted in Figure 1 below.

On the left side of the figure are the ModSim TRL definitions and their direct mappings to
NASA, DoD, and NWSMU TRLs, as described in the previous section. These mappings are
important because they show that ModSim capability readiness levels can be compared to
those of weapon hardware, etc., if need be.

At the top of the diagram is the capability being evaluated and its problem context. The
capability can be something that was worked on in the past or something new that is planned
for the future. It is usually given as the starting point of the analysis, although it might be
necessary to clarify the details related to context. This problem context is important because it
forms the basis for the remaining steps in the process. For example, the same feature in a
software code could have a very different TRL depending on what is being done with it.

After defining the capability and problem context, the next step is to create a dependency tree
that identifies the components needed to perform the capability. The dependency tree is
exactly what its name implies, a way to represent dependencies between high and low-level
capabilities (it is not, however, meant to represent priority or parent-child relationships, a
question that was frequently asked in the field trials). The capability and problem context form
the top node in the tree, and the rest of the nodes are filled in beneath it. Each of these nodes is
a capability in itself (or a sub-capability of the node above it, depending on how one looks at
it). Sub-capabilities can take on any shape or form, provided that they sufficiently describe the
software, hardware, and expertise required by their parent capability.

 20

ModSim TRL
Capability Node

ModSim TRL
Capability Tree

N
A

SA
, D

O
D

, a
nd

 N
W

S
M

U
 T

R
Ls

M
od

S
im

 T
R

Ls

M
ap

pi
ng

s

2. The ModSim capability and
the problem context become the
top node in the dependency tree

ModSim Capability
and Problem Context

1. ModSim TRLs are
created that map to NASA,
DOD, and NWSMU TRLs

4. A ModSim TRL is assigned to
each leaf-level node in the

dependency tree

3. The dependency tree is expanded so that
sub-capabilities sufficiently represent the

hardware, software, and experience required
to fulfill the capability above them.

Figure 1 – ModSim TRL Assignment Process

Since there are multiple ways to view the same problem, the tree can take on a number of
shapes and forms. However, all of the trees in our analyst examples (explained in the next
section) looked remarkably similar, suggesting that a generic dependency tree template could
be used as a starting point to save time in future evaluations. On the other hand, a DART
example developed by Sean Brooks (Appendix 6) produced a unique tree compared to the
others, which suggests that we might have different templates for different classes of problems.
Both of the dependency tree templates that were created and approved by the analysts are
included in Appendix 6. The notion of termination criteria, or at what point the tree expansion
stops, will be addressed in the next section.

Once the dependency tree is created, the last step is to assign readiness levels to the leaf-level
(i.e., bottom) nodes using the TRL definitions. It is first necessary to decide which columns in
the table apply to each node, since some are only targeted towards software, hardware, etc.
Next, a TRL is assigned to each of those columns, recording notes for each. These notes put
justifications behind the numbers, and could eventually get captured in a final report. We
found that a matrix was an easy way to record this information, where the rows are the names
of the leaf-level nodes and the columns are the same as the definitions table. Then a number is
marked in each box that applies, recording notes for the rows as the matrix is completed.
Example matrices can be found in Appendix 5.

We initially envisioned an aggregation process, where leaf-level TRLs would percolate up the
tree according to some aggregation calculus, and eventually yield a TRL for the entire
capability. However, aggregation was a hotly debated topic with the steering committee, so we

 21

decided to focus our efforts on the TRLs of leaf-level nodes, since they would be necessary
whether we ended up aggregating or not. One of the analysts suggested that we assign
rankings to leaf-level nodes while computing their TRLs, and to use those as weights during
the aggregation process. His reasoning was that certain nodes are more important than others,
and it is hard to describe those relationships ahead of time without first constructing the tree.
Of course, this mainly shifts conceptual difficulties to the challenge of quantifying ‘weights’
rather than eliminates them. Whether we end up aggregating TRL information, or simply
looking at the leaf-level TRLs, is a decision that is still being debated within the WSC program
at the time of writing.

Analysts Examples and Use Case
In this section we will describe the analyst use case, the full specification of which can be
found in Appendix 1. We initially created this use case to get an idea of how ModSim TRLs
would actually be used in practice within the Sandia ModSim community. However, it also
gave us an opportunity to test the key assertions, TRL definitions, and TRL assignment process
described in previous sections. We targeted analysts as opposed to developers and engineers
because of their personal familiarity with the wide range of capabilities that are necessary to
solve ModSim-related problems. The analysts that helped co-author the use case are Jay Dike
(SNL/CA, multiphysics/mechanical analysis), Jeff Gruda (SNL/NM, mechanical analysis), and
Roy Hogan, Jr. (SNL/NM, thermal analysis). We also met with Sean Brooks (an expert geometry and
meshing model builder) at a later point, who gave us feedback from the Design Through Analysis
Realization Team (DART) perspective. As can be seen, the analysts work in different locations on
different classes of problems, which helps to make the use case more representative of Sandia’s work as
a whole. However, it is also clear that yet more work could be (should be) performed to develop a more
systematic experience base.

We went through the same set of steps with each of the analysts. First we discussed the overall
process so that they understood what we were doing and why we were doing it. Then we
helped come up with a specific problem and problem context. We had them pick something
they had worked on in the past, so that they were familiar with the software tools, hardware,
and expertise required to solve the problem. We also wanted the problem to cover as much of
the analysis process as possible, from geometry and mesh creation to post-processing and
visualization of ModSim information. Once that was complete, the analysts created a
corresponding dependency tree, and then used the TRL definitions to assign readiness levels to
the leaf-level nodes in the tree. For this step, we created a matrix where the columns were
borrowed from the TRL definition table, and the rows were the leaf-level nodes (example
matrices can be found in Appendix 5). For each row, we ran through the columns, and
assigned TRL numbers to each that applied. We also captured notes for each node, which
would document the justification if this were to be packaged into a final report. Finally, we
captured analyst’s thoughts on the complete process and its utility to them.

A question that came up in all of the examples was that of termination criteria, or the point at
which tree expansion stops. The analysts showed that tree expansion could go on forever,
unless one made a conscious decision to halt at some point. Our advice as facilitators was to
do this at whatever place made the most sense to them. Initially we thought this might depend
on things like accuracy and maturity or alternative capabilities. However, we soon realized

 22

that it was a function of TRLs. New nodes should be created only when something requires
further explanation and a TRL cannot be accurately assigned to the current node.

While we did not ask the analysts to try to assign aggregate TRLs, the topic came up often
during the exercise. Roy noted that all of the leaf capabilities can be in good shape, but
integration is where the most problems surface. Because of this, he viewed aggregation as an
important part of the process, as do we. Jay took this a step further and suggested that we
assign rankings to the leaf-level nodes along with the TRLs that would essentially turn into
weights during the aggregation process.

The analysts liked the column format of the TRL definitions because it let them apply filters to
different types of nodes. For instance, it is possible to have one node for a software code and
another for a piece of hardware, have different columns apply to each, and yet still arrive at an
equivalent TRL definition. They were also concerned about the effect of certain columns such
as “Geometry” because in some cases they only needed “medium fidelity” models (which are a
TRL of 5 or 6) to match the test data. However, in our current model, those would percolate
through and lower the overall TRL, so we need to rework the wording in the definitions to
prevent this from happening. The analysts were also confused on the “User Qualification”
column because they were not sure if it depended on who was doing the analysis or who could
be doing the analysis. In the latter case, their argument was that there will almost always be
someone at Sandia that is an expert with a given tool, so if we are evaluating how capable
Sandia is to perform a capability, the "User Qualification" should always be a 9. However, the
expert user will not always be available due to time constraints, so we must take into
consideration who will actually be performing the analysis with the ModSim capabilities when
assigning TRLs.

The analysts did not find much personal utility in the process (in other words, they were not
particularly interested in assigning TRLs to ModSim capabilities). However, they did
recognize their role in assigning TRLs, since they are familiar with the tools and are able to
provide unbiased opinions (as compared to developers, who could be biased in regard to their
particular tools). They were also able to provide answers in almost every step in the process,
which would not be true for most of the other stakeholders. In all three cases, the dependency
trees were created in under an hour, and TRLs were assigned to the leaf-level nodes in less
than three hours of additional time, which includes writing notes to correspond with the
numbers. Taken together, this means that the entire process could be completed in less than a
day, which would probably decrease as the number of evaluated capabilities went up (the
analysts mentioned that they tend to use the same methods over and over). Thus, the burden on
analysts in this specification of the process seems to be relatively small.

Two of the analysts expressed serious concerns about how TRL assessment was going to be
used by the WSC Program Office. They were worried that a low TRL would be interpreted as
doing a bad job, and would result in lower funding. Or conversely, that a high TRL would be
interpreted as having a mature code that did not need further substantial funding support. This
is part of the reason why we created a separate use case specifically targeted at Program Office
application of ModSim TRLs, as described in Appendix 7.

 23

Program Office Use Case
In addition to the field trials and use case developed with the analysts, Paul Yarrington
provided information for a program office use case. We refined this information into a more
detailed specification. We have included this use case as Appendix 7 in this report. The use
case addresses the areas of investment, communication, application, response, and planning.
The reader is referred to the appendix for full details.

Conclusions and Recommendations
When we started this project, we knew that we were working on an interesting problem for a
number of reasons. Our initial thinking indicated that while people had evaluated the readiness
of software systems in general, they had not applied TRLs to CSE modeling and simulation
specifically. The predominant use of TRLs has been in system hardware applications (and for
certain kinds of software systems like avionics software), but in fact very little information is
available about the application of TRLs to CSE software in general. A lot was learned from
this exercise, and we have reached four important conclusions that are associated with our primary
recommendations.

Conclusion 1: We can assign TRLs to ASC ModSim capabilities.

While we recognize that there is work remaining to refine the modeling and simulation
framework and process, we have developed a baseline ModSim TRL framework and solution
to the assignment process, as documented in this report.

Recommendation 1: Use the framework and process proposed in this report as a baseline
for refinement.

Conclusion 2: Modeling and simulation TRLs and the PCMM process are connected.

As shown in Tables 1 and 2 above, we have defined the evaluation criteria for modeling and
simulation TRLs to substantially overlap with those of the PCMM table. This is a result of a
combination of factors, including: a) the inherent nature of understanding the usability state of
a ModSim capability, and b) our aim to keep the two representations synchronized. It is
important to acknowledge that while the TRL and PCMM tables share some criteria, they are
not attempting to solve the same problem. The PCMM approach is primarily concerned with
risk identification and mitigation, while the TRL table is primarily concerned with estimation
of readiness levels – those are not the same thing, although they share much in common.

Recommendation 2: Conduct TRL assessments as an adjunct to the PCMM process, not
as a stand-alone exercise.

Considering the degree of overlap in the core criteria being measured, and the fact that those
overlapping criteria are by definition components of a PCMM evaluation, we recommend that
TRL assessments be included as needed as an augmentation to PCMM evaluations.

 24

Conducting a ‘stand-alone’ TRL evaluation would require one to assess many of the PCMM
criteria in the process, and that should be done according to the formal procedures and
guidelines specified by the PCMM team, not in a reduced or simplified form just to complete a
TRL evaluation.

Conclusion 3: The modeling and simulation TRL framework and process are not
complete – there is still work to be done.

This report documents the baseline framework and process for assigning TRLs to modeling
and simulation capabilities. Four field trials confirm that the basic approach described is
sound, although incomplete and unrefined.

While we have made progress, there are still things that need to be finished. Perhaps most
important are the descriptions in the ModSim TRL definitions table. Many of the field test
users were either confused by the original wording in the columns, or had suggestions for
improvement. We have recorded their feedback in Appendix 1 and updated the tables, but
further refinements are still needed.

As mentioned above, we ultimately need to resolve the aggregation issue. Modeling and
simulation capabilities are naturally aggregated to solve classes of problems – i.e., tools are
assembled into higher-level problem solving capabilities.

As for the bigger picture, one might conceive of evolving this framework into a corporate
business practice, which would standardize ModSim assessment throughout SNL. More
tactically, it would be useful to have some sort of web application that would make it easy (or
at least easier) to create and modify dependency trees, assign TRLs to nodes in those trees, and
track and search through capabilities that were evaluated in the past.

Recommendation 3: If the sponsors decide to proceed with this line of development,
continue to refine the framework and process using the baseline approach described in
this report.

Conclusion 4: There remain questions about the utility of ModSim TRLs.

One of our early discoveries was that even within our own small team there were substantially
differing views of the utility of using TRLs for modeling and simulation capabilities. While
some team members viewed TRLs as a helpful aide in representing and communicating our
ModSim capability readiness levels, others were more skeptical about their application. This
latter view was due in large part to the implications of oversimplifying the assessment of the
maturity and readiness of these capabilities and the potential misuse of the information.
Further, we noted a range of opinions in our initial field tests with the analysts, from those that
considered it useful to those that were wary of the misapplication of results (specifically, some
analysts were concerned that a well-rated TRL might cause a code group to lose funding due to
the implication that the code was sufficiently mature already).

 25

In addition to the ‘cultural’ concerns above, there were fundamental concerns about the
applicability of TRLs to advanced ModSim capabilities in general, since these capabilities are
so substantially different in nature from the hardware that are usually associated with TRLs.
Application of TRLs to ASC ModSim is not an obvious extension of the standard TRL usage
paradigm. Substantial differences exist, including the following:

• There is no physical specification. The context for judging the readiness of a physical
product (hardware) can be expressed as a physical specification (size, weight,
performance measures) applied in a context (e.g., F-15 instrument panel, specified G-
force range, specified temperature range, etc). Most of the software components for
modeling and simulation do not have such a well-defined specification and context –
indeed, the problems being addressed at Sandia National Labs are often ‘one off’.

• Application of modeling and simulation capabilities is unique. Whereas the hardware

being produced is typically being made in some quantity greater than one, modeling
and simulation results are virtually always unique to the problem context.

• Application of modeling and simulation capabilities is not static. Whereas the
hardware being produced is made according to an essentially static specification and
application context, the exact opposite is true for modeling and simulation capabilities.
The problem context is entirely dependent on the analysis objectives, and the
underlying tools (e.g., simulation codes) are continuously changing. In some cases, the
problem solution requires problem-specific extensions to the codes. Hence, the
readiness level of a modeling and simulation capability is in general time and problem
context dependent.

So, in addition to the utility concerns above, there remain differences of opinion about the
appropriateness of applying TRLs to advanced modeling and simulation capabilities.
Another debate about TRLs for ModSim focused on aggregation. We all agreed that we
needed to break ModSim capabilities into pieces (which are represented as leaf-level nodes in
the capability-dependency tree), but we could not reach a consensus on how to aggregate the
information to arrive at a final TRL for a high-level capability. We originally proposed
aggregating via some predefined calculus, such as an averaging method or the weakest-link-in-
the-chain (minimum of all relevant TRLs contributing to a given capability assessment).
However, not everyone agreed that it was possible to define an aggregation scheme ahead of
time, and they were also worried about the same loss of information issue discussed above.
Because of this, we decided to put aggregation on hold, but at some point we will need to
revisit the issue. As currently defined, WSC use of TRLs requires an aggregation procedure.

Recommendation 4: Address key issues before proceeding to the next phase of developing
the TRL framework and process.

 26

This page intentionally left blank.

 27

Appendix 1: Analyst Use Case

Modeling and Simulation Technology Readiness Level
Analyst Use Case

Analysts

Jay Dike, Jeff Gruda and Roy Hogan, Jr.

ModSim TRL Team
Robert Clay, Scot Marburger and Max Shneider

Sandia National Laboratories

2/6/2007
Background

This document describes a generalized analyst use case for modeling and simulation (ModSim)
technology readiness levels (TRL). It was written as part of a study examining the use and
utility of ModSim TRLs for Sandia National Laboratories, from the analysts’ point of view.
This use case is one deliverable of a WSC program office effort to establish a framework to use
TRLs as a means (in addition to other ongoing efforts such as V&V and PCMM) of describing
and communicating readiness level of the ModSim capabilities the program provides in
support of the NWSMU efforts.

The analysts and co-authors of this use case were:

• Jay Dike – SNL/CA multiphysics/mechanical analyst (8774)
• Jeff Gruda – SNL/NM mechanical analyst (1524)
• Roy Hogan, Jr. – SNL/NM thermal analyst (1516).

TRL Assignment Process

The discussion and results of the TRL assignment process as applied to the three analyst
examples are presented in Appendix 2. In this section we will review the high-level process
and comment on the roll the analysts played in generating the dependency trees presented in
Appendix 4 and the TRL assignment matrices presented in Appendix 5.

Figure 1 (within the SAND report) describes the high-level process flow for TRL assignments.
This basic process was followed by the analysts developing the examples for this use case. A
summary of the key steps follows:

 28

1. Define the problem context for the capability TRL assignment.
2. Generate the capability dependency tree.
3. For each “leaf” in the tree, assign a TRL and document reasoning.
4. Validate the TRL assignments.

Step 1 was a simple matter – each analyst selected an analysis problem they were either
currently. Their selections were as follows:

• Jay Dike – Abnormal/mechanical tension test of 304L using EMMI model, LS-
Dyna3D, to failure.

• Jeff Gruda – Abnormal/mechanical penetrator, new fuse, new design LDRD.
• Roy Hogan, Jr. – Abnormal/thermal W80 V&V ModSim Milestone for WES Mock-2

with experimental data.

Step 2 proved easier than anticipated, since each tree was generated in an hour or less. Despite
the fact that the tree depths were relatively consistent, some unexpected complexities arose.
All three analysts asked questions about termination criteria, or the point at which you stop
expanding the tree. Initially, there were many different theories as to when you should stop
creating sub-nodes (discussed in Appendix 2), but we ultimately found that you should halt at
places where you can naturally assign TRLs. Creating sub-nodes beneath those spots would
only result in extra work, since it would be hard to assign TRLs to them.

The analysts weren’t sure which way the arrows pointed between nodes (they thought that in
some cases there should be directed edges from parent nodes to children, and in other cases the
edges should be bi-directional). The main reason this came into question was because they
wanted certain parts of their trees to be iterative (to represent, for instance, optimization loops).
However, the analysts were trying to use the trees for more than their intended purpose, to
show dependencies. It is up to the analysts to define the process flow that uses those
dependencies. The three analyst dependency trees can be found in Appendix 4. As you can
see, the trees all have similar structures, which seemed to suggest that a template tree could be
used as a starting point to save time in future evaluations. This dependency tree template has
been created and approved by the analysts, and is included in Appendix 6.

For step 3, we initially attempted to use a set of ModSim TRL definitions that were essentially
a modest transformation of the NASA, DoD, and Sandia NWSMU ‘hardware-based’ TRL
definitions. However, the analysts found the language vague and in general not an adequate
representation of the key attributes associated with modeling and simulation capability
readiness. Because of this, we constructed a new set of definitions (which can be found in
Tables 1 and 2) that were better suited to the task and preferred by the analysts. They especially
liked the new column format because it let them apply filters to different types of nodes, and
yet still arrive at an equivalent TRL definition. The actual TRL assignments and
corresponding notes for each example problem can be found in Appendix 5. While we did not
ask them to assign aggregate TRLs, the topic came up naturally during the exercise. All of the
analysts thought that aggregation was important, but they agreed that coming up with a
solution was non-trivial.

 29

Discussion of Utility

The analysts did not find much personal utility in the process (in other words, they weren’t
particularly interested in what TRLs were assigned to ModSim capabilities). However, they
did recognize their importance in the TRL assignment process, since they’re familiar with the
tools and are able to provide unbiased opinions (as compared to developers, who are most
likely tied to their particular tools). They were also able to provide answers in almost every
step in the process, which would not be true for most of the other stakeholders. And perhaps
most importantly, they agreed that it wouldn’t be too much of a burden to evaluate the
readiness of ModSim capabilities from time to time, if asked to do so.

Two of the analysts expressed serious concerns on how this was going to be used by the
Program Office. They were worried that a low TRL would be interpreted as doing a bad job,
and would result in lower funding. This is the part of the reason why we created a separate use
case specifically targeted at the program office.

A more detailed discussion of utility can be found Appendix 3.

 30

Appendix 2: TRL Assignment Process Details

A high-level process flow has been defined that describes the necessary steps for the evaluation
of a particular capability, which can be summarized as follows:

A team consisting of at least analysts and possibly engineers, developers, and other
constituents:
1. Creates a capability-dependency tree of supporting technologies beneath the requested

capability, as defined by the problem context,
2. Assigns and documents ModSim TRLs to each leaf node in the tree,
3. Optionally, aggregates the leaf-level TRLs up the tree to get an overall TRL.

In step 1, the capability request essentially becomes the top-level node, and a dependency tree
is expanded beneath it. The leaf-level nodes in this tree represent the software codes,
hardware, and expertise needed to solve the problem, in context, from beginning to end, while
the edges represent dependencies between nodes. In step 2, each leaf-level node is assigned a
ModSim TRL based on the level definitions. As described in step 3, these leaf-level TRLs
might also be aggregated up the tree to produce an overall TRL for the requested capability in
the specified problem context (i.e., as defined in the top node of the tree). There are various
aggregation schemes that we could apply, such as taking the lowest TRL of the leaves, or
simply averaging the leaf TRLs. However, aggregation has been a source of contention among
the steering committee, so for the time being the focus will be on developing the level
definitions and methodology for assigning TRLs to the leaf nodes, tackling the aggregation
problem after new knowledge has been gained in the process.

It’s worth noting that this is a dynamic process, and a new tree must be created and expanded
with each problem invocation. This is because a TRL doesn’t make sense without a specific
problem context. PRESTO, for instance, might have entirely different readiness levels from
one context to the next. Furthermore, a readiness evaluation is also a snapshot in time since the
requirements and capability components (such as software codes and hardware) are constantly
changing.

Several experienced analysts, representing an initial sample of the analyst community, were
chosen to test the TRL assignment process and co-author this analyst use case:

• Jay Dike – SNL/CA multiphysics/mechanical analyst (8774)
• Jeff Gruda – SNL/NM mechanical analyst (1524)
• Roy Hogan, Jr. – SNL/NM thermal analyst (1516)

The analysts represent two different locations (New Mexico and California), and two different
classes of problems (mechanical and thermal). Each of the analysts performed the following
tasks as part of the exercise:

 31

••• Selection of a specific analysis problem (defining the top-level ModSim capability and
TRL assignment context)

••• Expansion of a dependency tree beneath that capability/context
••• Assignment of TRLs to the leaf nodes in the capability dependency tree
••• Documentation of those assignments
••• Discussion of the process and its utility.

For step 1, we asked each analyst to select a specific modeling and simulation problem to use
as the basis for their example. These examples had to be complex enough to produce a
nontrivial dependency tree. They were based on the analysts’ previous work, so that they’d be
familiar with the individual components required to complete the problems. Their selections
were as follows:

• Jay Dike – Abnormal/mechanical tension test of 304L using EMMI model, LS-
Dyna3D, to failure.

• Jeff Gruda – Abnormal/mechanical penetrator, new fuse, new design LDRD.
• Roy Hogan, Jr. – Abnormal/thermal W80 V&V ModSim Milestone for WES Mock-2

with experimental data.

Each analyst created a dependency tree for step 2. Jay actually started off by creating a list of
components, and then grouping the terms before creating the diagram. Jeff and Roy, on the
other hand, simply went straight to the diagram, brainstorming as they went. In all three cases,
the tree was created in under an hour, which was less time than anticipated.

One question that came up in all three meetings was that of termination criteria, or the point at
which you stop expanding the tree. The analysts realized that you could basically expand the
tree forever, unless you made a conscious decision to halt at some point. Jay viewed the
termination criteria as a function of accuracy and maturity. If the tool or feature had risk and
wasn’t guaranteed to give perfect results, he made it into a new node. If, on the other hand, it
always gave the correct answer, it simply factored into the TRL of its parent node. Jeff had an
entirely different termination perspective based on choices. When he expanded the tree, he’d
usually get down to a level with a list of options that could all be used to solve the same task.

His termination condition was then picking an option from the list, which could depend on
many factors. For instance, one material model might require fewer tests than another, or one
might select a tool because there’s an expert down the hall that can answer questions about it.
As it turned out, TRLs were the deciding factor, and we recommended that they stop at places
where you can naturally assign TRLs to nodes. Creating sub-nodes beneath those spots would
only result in extra work, since it would be hard to assign TRLs to them.

When Jeff and Roy constructed their capability dependency trees they both questioned the
directions of the arrows between nodes. We had simply assumed that the arrows were directed
edges connecting parent nodes to their children, providing an overall downward flow from the
requested capability to the leaf-level nodes. However, both Jeff and Roy agreed that in some
cases the edge arrows were actually bi-directional. They explained that the node might give
results, and depending on what they are you could either accept them and move on or tweak

 32

some parameters and try again. In effect, the tree would change as the analyst work the
problem and adjust their decisions based on what they learned.

One of the reasons that directions of arrows came into question was because the analysts
thought that the tree should be iterative. We imagined that you’d start at the top of the tree and
incrementally work your way down, but it turns out that in some cases the tree might contain
loops. For instance, Jeff’s example contained an optimization branch, which meant that you’d
do everything else in the tree a certain number of times, either by hand or using a tool like
DAKOTA. Roy actually took this a step further and drew a loop at the top of his tree, which
meant that you’d do everything in the example one or more times. However, the analysts were
trying to use the trees for more than their intended purpose, to show dependencies. It is up to
the analysts to define the process flow that uses those dependencies.

We initially attempted to use a set of ModSim TRL definitions that were essentially a modest
transformation of the NASA, DoD, and Sandia NWSMU ‘hardware-based’ TRL definitions.
However, the analysts found the language vague and in general not an adequate representation
of the key attributes associated with modeling and simulation capability readiness. Because of
this, we constructed a new set of definitions that were better suited to the task and preferred by the
analysts. They liked the column format of the TRL definitions because it let them apply filters
to different types of nodes. For instance, you could have one node for a software code and
another for a piece of hardware, have different columns apply to each, yet still arrive at an
equivalent TRL definition.

They were also concerned about the effect of certain columns such as “Geometry” because in
some cases they only needed “medium fidelity” models (which are a TRL of 5 or 6) to match
the test data. However, in our current model, those would percolate through and lower the
overall TRL, so we need to rework the wording in the definitions to prevent this from
happening. The analysts were also confused on the “User Qualification” column because they
weren’t sure if it depended on who was doing the analysis or who could be doing the analysis.

In the latter case, their argument was that there will almost always be someone at Sandia that's
an expert with a given tool, so if we’re evaluating how capable Sandia is to perform a
capability, the "User Qualification" should always be a 9. However, the expert user will not
always be available due to time constraints, so we must take into consideration who will
actually be performing the evaluation when assigning TRLs.

While we did not ask the analysts to try to assign aggregate TRLs, the topic came up naturally
during the exercise. Roy noted that all of the leaf capabilities can be in good shape, but
integration is where you run into problems. To paraphrase Roy, you can have a box full of
perfect hammers, but it doesn’t make you a sculptor. For instance, you can assign a mesh, but
there’s no place in the current model that describes how it works with the other pieces. For this
reason, he thought that aggregation was an important part of the process. Jay didn’t address
this issue directly, but he did think that aggregation was possible, although he wasn’t sure
which aggregation scheme to use.

 33

Appendix 3: Detailed Discussion of Utility

Jeff and Roy were first asked about the value they found in the process, and both gave similar
answers. Neither thought that it helped them much directly, and they couldn’t see themselves
doing this on their own unless their managers requested it. Roy explained that when analysts
get a problem, they can either do it with the tools they have at hand or they can’t. Ratings
don’t really help them solve their problem. As project leads, they typically want an effect, not
an approach. They ask their team members for the answers, and usually don’t care what tools
they use to get it. They did agree that this could be a means for analysts to shop around and
find other tools to use, but unfortunately they thought analysts might only look for tools once a
year, or a few times in their career.

However, both recognized the importance of analysts in the TRL process, since they know and
work with the tools in question, and are able to provide unbiased opinions (in the sense that
they aren’t tied to one tool over another). They were also able to provide answers to almost
every step in the TRL process, which would not be the case with most of the other
stakeholders. And they all agreed that if they had to evaluate the readiness of a ModSim
capability from time to time, it wasn’t too much of a burden. In each example, the dependency
trees were created in under an hour, and TRLs were assigned to the leaf-level nodes in under
three hours (of additional time). This includes writing notes that correspond with the numbers,
but it does not include the time that’s necessary to wrap the notes in an overall report, if
required. Taken together, this means that the entire process could be completed in a day,
which would probably decrease as the number of evaluated capabilities went up (the analysts
mentioned that they tend to use the same methods over and over).

All of the analysts agreed that the TRL assignment process was probably of more use to the
WSC program office. They understood that it could be a communication mechanism, since
TRLs are already used in other parts of Sandia as well as various government agencies. They
also noted that TRLs could help guide investment decisions by and identifying capability
weaknesses. However, Roy’s main concern was that if a tool was assigned a 7 or an 8, it
would cause the WSC office to declare victory. He wouldn’t want to see a decrease in
investment just because a project is doing well, since tools are always improving. Roy
observed that the class of problems that they are solving is a moving target, and today’s TRL 8
could be tomorrow’s TRL 3 based on the changed problem context. These suggestions explain
why we’re also creating a separate WSC Program Office use case.

 34

Appendix 4: Analyst Example Dependency Trees

Simulation of high
rate tension test of
304L using EMMI

model, LS-Dyna3d,
to failure

Model creation –
drawing -> cubit ->

simba…
Analysis code

LS-Dyna
Vis/post-processing

LS-Prepost

Elem types Material models Boundary conditions Initial conditions
Other code

features

Storage,
documentation, etc

Mass storage (smss2),
powerpoint or word for

document, WFS for
archiving doc..

1 pt. hex

Full int. hex
Shell type 1

Shell type 2

elastic

Bi-linear plastic
Johnson-cook plastic

EMMI

foam

fixed

pressure
velocity

acceleration

…

Initial velocity

….
…

….

…

Run controls

output
Mass scaling

contact

…parameters

damage shear plasticity
experiments

Example – Jay Dike
W80 Abnormal/Mechanical

Tension Test

Figure 2 – Jay Dike’s dependency tree

 35

Example – Jeff Gruda
Penetrator, new

fuse, new
design LDRD

Penetrator
Design

Pro E
- SolidWorks

Reqs &
EnvelopesPenetrator

Fuse

Target
Materials

Target Testing
Materials &
Parameters

Sim
(PRESTO)

Pre

Post

Analysis
Code

User Support

Mesh

CUBIT,
SEACAS

Tools

Archiving

Word

Memos

Storage
Post

Processing
(plots, graphs,

movies)
Xmgr

Ensight
Blot

Material
Properties

TargetFuse

Penetrator

Explosives

Metals

•Elastic
•E-P
•PLH

•EMMI
•JC

•EOS

Loading

Cavity
Expansion
(Material
Models,

SPH)

Soil
Layered
Geology Limestone

Contact (sliding,
frictional, tied)

Efficiency

Failure

Element
Death

Failure
CriterionBoundary

& Initial
Conditions Symmetry

Iniitial
velocity

Computing

Parallel

Desktop

Rogue
(Cluster)

Optimization

Figure 3 – Jeff Gruda’s dependency tree

Home-grown
Software

Example – Roy Hogan, Jr.

W80 V&V
Milestone

WES Mock-2
Abnormal/Thermal

Model
Creation

Analysis
Objectives
Materials,
boundary
conditions

Impl. of
BCs and ICs

Document.
Archiving

Analysis
Code

Results
Assessment

Experimental
Data Design

Requirements

Uncertainty
ParametersAnalysis

Input
Parameters

Legacy
Tools

(therme,
grepos,
gjoin.

simba)

SolidWorksPaperPro-E

Geometry
Info

CUBIT
Patran

Element
Types

Cosmos
Works
Legacy
Tools

Mesh
Modification

Mining
results of
simulation

Matlab Plotting
Software

EnsightParaview Blot

Visualization

Measurements

Literature

TestsMaterial
Properties

Tests

Requirements

Approximations

Boundary
Conditions

Post-processing
Tools

Material
Properties

-Specified temp. BCs
-Convection flux BCs
-Radiation flux BCs
-Enclosure radiation BCs
-Contact interfaces

-Conduction
-Reactive materials
-Enclosure radiation
-Anisotropic materials
-Element type

Code
Capabilities

Literature Tests Estimates

Transport Radiation Chemical
Properties Properties Reactions

Adequate
Documentation
& User Support

Meshing

Conduct
Comparisons

Calore,
Dakota

Uncertainty
Quantification

Figure 4 – Roy Hogan, Jr.’s dependency tree

 36

Appendix 5: Analyst Example TRL Assignment Matrices

Jay Dike’s TRL Assignments

1. This particular simulation was able to run on a desktop, so no cluster/parallel issues
2. Would use LS-Prepost here. Not a 9 on maturity because it would be nice if it was

faster, and because of that, they don’t do it as much as they’d like to. Also, in general,
some of the features aren’t there (doesn’t have transparencies, can’t represent all of the
variables you want to in the output, can’t get orientation/tracking easily). Also, can’t
do certain things in batch mode. 7 for code readiness because there are times where
you get weird answers because sometimes versions between analysis code and post-
processor don’t match up. Sometimes they also have something implemented that’s not
quite right. Room for improvement with performance between remote and desktop.

3. Using LS-Prepost here as well, so similar to (2). LS-Prepost is not very good on
remote platforms. No mining in this particular example.

4. A lot of times it doesn’t work very well (talking about HPSS). It is production, which
is why it’s a 7 and not a 6. Some of the connections between platforms aren’t reliable
(for instance SMSS).

5. Includes WebFileshare and Sharepoint
6. They did do uncertainty, even though it wasn’t on original diagram. There are codes

and tools associated with this (Dakota, etc.) that would be easier to assign TRLs to. If
we were doing more of a parameter study, this would be applicable and there would be
more bubbles under this one that we’d assign more levels to.

7. 9 for this problem – they can do it, and they think it’s done correctly. Other cases, they
might go in and check. Fixed is special case of velocity.

8. EMMI as been applied to a number of realistic problems, but we know that there are a
number of things it should doesn’t do or should do differently. For verification, knows
that he can quantify the errors, but the errors are still going to be larger than he likes.
Many times can get “is it going to break, or not”, but would like more information than
that. There has been quantitative validation against test, but there’s still a lot to sort
out. For user qualification, a lot of people don’t use it because they’re not familiar with
it. Jay’s familiar, but not as much as the model guys, but in this case he has all of the
expertise to solve this problem. Usability could be improved for selecting parameters
for specific materials. Has some regression testing, but there’s probably a lot more
coverage that they could have. 7 for models because some forms of damage models
that are still being sorted out (like shear). Experiments have a good readiness level (8,
not a 9 because there are improvements we could make) – we know which ones we like
to use. Getting the parameters for the EMMI model to match all 3 test results at once
are more of a problem.

9. Each element type has inherit limitations, but that probably doesn’t play into that
10. SIMBA doesn’t know all of the features for any particular code. You just dump in the

stuff that it knows about. Doesn’t know all the run controls, so you just dump those
into a text file that gets spit back out. So all in all, it does the most important things,

 37

but things that are easier for you to do manually, it leaves for you to do. Knows they do
a lot of regression testing. Knows that it seems to work equally well on Linux and
Windows machines.

11. Knows that they do a lot of regression testing and software quality.
12. Geometry info for this case is experimentalist just giving them a drawing, or at least

dimension information

N
od

e
N

am
e

A
bo

ve
 N

ot
e

C
ap

ab
ili

ty

M
at

ur
ity

V

er
ifi

ca
tio

n

V
al

id
at

io
n

U
se

r
Q

ua
lif

ic
at

io
n

C
od

e
R

ea
di

ne
ss

M
od

el
s

G
eo

m
et

ry

Q
M

U

Sy
st

em

Computing Hardware 1 9 9 9
Visualizations 2 8 9 7 7
Post-Processing Tools 3 8 9 8 7
Mass Storage 4 7 7
Documentation 5 9 9 9
Uncertainty Parameters 6
Velocity BCs and ICs 7 9
Fixed BCs and ICs 7 9
EMMI Material Model 8 7 6 6 7 3 7
Damage, Shear, and Plasticity
Experiments

8 8

Run Controls 9 9 9
Mass Scaling 9 9 9
1 pt. Hex 9 9 9 9
Mesh Modification (SIMBA) 10 7 9 9 9
Meshing (CUBIT) 11 9 9 9 9
Geometry Information 12

Table 3 – Jay Dike’s TRL Assignment Matrix

 38

Jeff Gruda’s TRL Assignments

1. Doesn’t really fit into any of the columns. Maybe user support should be its own
column as well (manuals, FAQs, verification tests, ISO9000, phone support)

2. Never got to the point of optimization – he intended to use DAKOTA, but never got
there. His user qualification was low, but that shouldn’t drop down the TRL level. If
he would have used DAKOTA, he would have called in a person to help.

3. Very vague because it was a design and the requirements moved a lot, which is the
whole purpose of an LDRD. Used low geometry to find an optimum point and move
on from there, but that shouldn’t lower the TRL level. Pro-E and Solidworks do simple
tasks well.

4. Meshing. 9 because CUBIT, SEACAS tools have been around and used. 3 because of
geometry.

5. Code capabilities – code readiness probably a 7. 5 for verification – doesn’t know how
well contact models have been tested out – same for validation. Most of these are a
matter of guessing, not of truth, since he’s not necessarily the one who would be
answering those questions.

6. Soil, layered geometry, and limestone should be under target instead of where they are
now.

7. Cavity expansion – temper.
8. Only a couple of them, elastic, plastic.
9. Readiness and models: 7 – been around awhile, standard stuff. Not empirical.
10. PRESTO – 8 because it’s been compared to other codes
11. Archiving – PowerPoint presentations. Wasn’t a big thing that took 10 days that he had

to run 5 times. Word and PowerPoint work pretty good.
12. Considers them at similar level as pre-processing tools – same types of tools, same

usage.
13. Pretty rock-solid. Desktop and rogue both work pretty well.

 39

N

od
e

N
am

e

A
bo

ve
 N

ot
e

C
ap

ab
ili

ty

M
at

ur
ity

V

er
ifi

ca
tio

n

V
al

id
at

io
n

U
se

r
Q

ua
lif

ic
at

io
n

C
od

e
R

ea
di

ne
ss

M
od

el
s

G
eo

m
et

ry

Q
M

U

Sy
st

em

User Support 1
Optimization 2
Geometry 3 9
Requirements and Envelopes 3 3
Pre-Processing/Meshing/Element
Types/Mesh Modification

4 9 3

Code capabilities/contact 5 6 5 5 ? ? N/A ?
Failure 6 5 5 3 5
Loading 7 7 6 5 5
Material Models 8 8 8
Material Properties 8 4
BCs and ICs 9 8 7 7
Efficiency 10 8
Archiving 11 7
Post-Processing 12 9
Computing Hardware 13 9 9

Table 4 – Jeff Gruda’s TRL Assignment Matrix

 40

Roy Hogan, Jr.’s TRL Assignments

1. Clusters for this problem – 8 because it’s production, and compared to other cluster
systems, it’s probably in the middle. 8 in user qualification, because uses them a lot,
but wouldn’t say he’s the number one expert at Sandia.

2. Using all 3, Paraview, Blot and Ensight. Focus on Ensight. Capability maturity – runs
on most platforms that he’s aware of, . Gives himself a 6 because he can do 7 or 8
because he can do most of what he needs to do, but does he know everything about
Ensight? Definitely not. Explained to him that the latter was the way to go.

3. Matlab is what they mostly use on that. Basically has results for all post-processing
tools, using Matlab to match them up because Matlab is very useful in doing that sort of
thing. With some help (other team members), was able to get the job done. During this
project, he learned how to use Matlab better, were other guys that were probably
already an 8 or a 9. Code readiness, would guess that it would be pretty high. Also
comparing with test data.

4. Post-processing tools really embodied by the Vis and Conduct Comparisons.
5. Dependency in the sense that you need the test data. For this project, maybe a 7 for

validation because uncertainties in diagnostics, etc. Not a geometry of a numerical
model, but geometry of a test. Some simplification of parts, but intended to have some
representation of geometry. Test geometry almost always 3D.

6. Believed that some of this went into one of Marty’s V&V databases. Marty would like
it to be a standard, but it probably depends on your perspective. SAND report,
corporate archiving. Particular runs – probably not. If you just store information to
regenerate results, might not be able to in the future, since codes, operating systems,
etc. change. Can’t recover a previous generation of a code.

7. How well do you know the parameters that are associated with your problem. Based on
what he calls validation – we believe that those tests covered the dominant physics.
Geometry – basic geometry but test did have some block representation. 7 on
approximations, requirements and tests based on QMU because we did
sensitivity/uncertainty quantifications based on BCs. Specifically applied to what are
the affects of the BCs.

8. 8 because they quantified the uncertainty using formal methods.
9. Material models – more mechanical – doesn’t really apply to thermal
10. Some you know well, some you don’t know as well. 5 or 6 under models because in

some cases models were calibrated, and in some cases it was a 9. Radiation properties,
might not know emittance as well. 4 under validation because uncertainty under
properties is large unknown.

11. Could run this one up to talk about analysis code itself. Could split them out, but
doesn’t think we want to go to that level of detail. Figured out mathematical model –
binary, even you put them in or you didn’t. 8 under models, maybe a 7. Would not be
an 8 or a 9 because some of the foam decomposition models are not first principle –
require some parameters. About a 7 on code readiness because he doesn’t know the
coverage or the high order interactions (coverage when exercised with multiple
features). User qualification probably an 8.

12. On this project, they didn’t use SIMBA or the SEACAS/legacy tools. So
meshing/mesh modification could almost be put into 1. On this project, they used

 41

mostly Patran and Therme. On user qualification, if it’s the guys in 2900, probably
give them an 8 (they made the mesh as he recalls). If it’s him, probably a 6 – maybe
less on SIMBA when they use that (not on this project). Big distinction in user
qualification between can you operate the tool well enough to get your job done, or are
you an expert in it. Probably about a 6 on geometry – had to capture key aspects, but
had some simplification (cheaper to build simplified version than version they gave us.
Put in surrogate strong link that had same features, but not as much detail – to cast one
of these bases, costs a lot more). Code readiness – pretty good because they’re either
commercial, or tools they’ve used for quite awhile.

13. Probably combination of Pro-E and Solidworks. In terms of code readiness, both of
those are about an 8. Geometry – 5/6, getting repetitive because there are
simplifications, since that’s the level of detail they needed in the model. So geometry is
always low because it reflects the test – didn’t need a more detailed model. 7/8 on code
readiness because Pro-E and SolidWorks are pretty solid. Probably a 2 for Roy in Pro-
E, but for guys who built it, they were 8s because it was a very good model. So long
ago, hard for him to remember these types of details.

14. Optimization is iteration in Roy’s case. You’re doing the entire problem multiple times
– implied. Probably lots of parts of tree you’re doing multiple times. Hard to assign a
TRL to this node individually.

15. Lot of information there for Calore, but could be improved in terms of providing
guidance and instruction.

 42

N

od
e

N
am

e

A
bo

ve
 N

ot
e

C
ap

ab
ili

ty

M
at

ur
ity

V

er
ifi

ca
tio

n

V
al

id
at

io
n

U
se

r
Q

ua
lif

ic
at

io
n

C
od

e
R

ea
di

ne
ss

M
od

el
s

G
eo

m
et

ry

Q
M

U

Sy
st

em

Computing Hardware 1 8 8 8
Visualization Tools 2 8 8
Conduct Comparisons 3 8 7 8
Post-Processing Tools 4
Experimental Data Design
Requirements

5 7 6

Documentation, archiving 6 7/8 7/8
BCs and ICs 7 7 6 7
Uncertainty Parameters 8 8 7
Material Models 9
Material properties 10 4 5/6
Code capabilities 11 8 8
Meshing/Mesh Modification 12
Patran 12 8/6 7/8 6
Therme 12 8/6 7/8 6
Geometry 13 7/8 2 7/8 5/6
Optimization/Iteration 14
Doc and user support 15 7

Table 5 – Roy Hogan, Jr.’s TRL Assignment Matrix

 43

Appendix 6: Dependency Tree Templates

Figure 5 – Analyst Dependency Tree Template (Jay Dike, Roy Hogan Jr., and Jeff Gruda)

 44

Figure 6 – DART Dependency Tree Template (Sean Brooks)

 45

Appendix 7: Program Office Use Case

Paul Yarrington briefly summarized potential applications of TRL’s for the WSC program
office as follows in an email to our team. This information is summarized as follows:

- Investment: Look at representative applications in the various Focus Areas. Assess
TRLs for corresponding compute capability required to support the representative
apps. Decide if overall/aggregate TRLs are OK. If not, target investments to raise
TRL of weakest underlying sub-capability to get TRL to desired threshold for
representative apps.

- Investment: Provides a basis for decisions on buy versus build. Assume that can

assess (roughly, at least) the TRL of some key commercial products. If in-house
efforts will take “too long” to get to comparable TRL, then buy the capability and
invest where SNL products are more competitive.

- Communication: Framework for common language to use in interactions and
collaborations with external organizations. Facilitate decision on how to carve up
responsibilities for advancing state of the art based in TRL of sub-capabilities from
the various parties.

- Application: Provides a basis for assessing the uniformity of TRLs across a
collection of sub-capabilities assembled to address some engng issues. Helps avoid
overlooking a “weak link” in the sub-capability collection that produces an overall
low TRL “product/tool/capability” with an otherwise apparently high TRL
approach. (Clearly similar to the "response" use case above.)

- Response: Urgent request is received, say due to National emergency. Assemble
M&S capability such that overall TRL is adequate. Identify any specific sub-
capabilities that might be limiting overall TRL and replace with more mature
alternative to get adequate confidence (TRL) in overall capability. Alternatively,
could be viewed as providing rationale for resisting programmatic zeal to always
use “latest/greatest” sub-capabilities that might (in principle and in the future) have
more physics fidelity (and potential programmatic appeal) but are in fact lower in
TRL due to immaturity of say the V&V.

- Roadmap: Identify the criteria and chart the expected timeframes for advancing
through TRLs for given sub-capability/application. Gives metric for assessing
progress... i.e. how much is enough and are we getting there fast enough?

We expanded upon Paul’s initial description to create a ‘use case’ for the Program Office. This
‘Use Case’ targets ‘Investment’ but ends up encompassing ‘Communication,’ ‘Response,’ and
‘Application.’ ‘Roadmap’ remains slightly different. The presentation below is basically
unmodified for purposes of this report, which preserves the ‘look and feel’.

 46

Use Case Investment:

Inputs: (per Paul’s general description)
1. Defined applications, A1 through AN. These are drawn from WSC Program Focus Areas.

a. [Comment: Some focus areas have many applications associated with them. It is
unlikely that N can be very large.]

2. Defined TRLs.
a. [Comment: This is in progress.]

3. Defined M&S components for A1 through AN, say C1A1, … , CM1A1; C1A2, …, CM2A2;
etc.

4. Assigned TRLs for corresponding component M&S capability needs for A1 through AN,
call these TRL(C1A1), … , TRL(CM1A1); TRL(C1A2), …, TRL(CM2A2); etc.

5. Aggregated TRL for M&S capability for the application, written as TRL(C1A1, … ,
CM1A1); TRL(C2A2, … , CM2A2); etc

6. Specification of required/needed/desired TRL levels for application A1 through AN, call it
LA1 through LAN.

Outputs: (per Paul’s general description)
1. Decision: (a) If aggregate TRL is adequate (e.g. TRL(C1A1, … , CM1A1) ≥ LA1, etc) , no

supplemental funding needed [possible disinvestment? Funding required to maintain TRL?
(b) If aggregate TRL is inadequate, identify components that weaken the aggregate and
invest to improve their TRLs.

TRL needs implied by this usage:
1. A concrete definition of TRLs.

a. [Comment: In progress, with some emphasis on CS&E software components.]
2. Systematic procedure for identifying M&S components required for specified applications

for which TRLs must be evaluated.
a. [Comment: Such a procedure has not been implemented currently, but note that this

strongly correlates with the development of a PIRT [an ASC V&V program
construct] for the intended application. The procedure can probably be
characterized as a PIRT development task.]

b. [Comment: There is an ongoing effort to define Dependency Trees that are useful
for identifying separate M&S components for TRL evaluation. This is also linked to
the Analyst Use Case development activity. We expect that this effort will be
successful at application decomposition, but it does not directly address the problem
below, that is, of specific TRL assignment. The current effort, however, suggests
that an aggregation approach rooted in dependency trees may reduce to "lowest
TRL in the dependency tree wins", at least for the investment use case. See below
for more comments on aggregation.]

3. Systematic procedure for assigning TRLs to identified M&S components.
a. [Comment: One analysis of this task is being developed in the current TRL

investigation with the “Analyst Use Case” – that is, how analysts would evaluate
M&S components from a given specification of TRLs. There is some expectation
that this may be easier to accomplish at lower component levels, as well as some
demand to do this (from Pete Wilson). But note that the lower the component level,

 47

the larger the actual number of component evaluations that have to be performed for
each application.]

b. [Comment: (Marburger) – “We have started to standardize on terminology with
respect to the various parts and elements of the TRL process. Some helpful
definitions that are starting to emerge are:

i. Capability - The collection of software, hardware, and expertise needed to
deliver an analytical result in response to a customer request.

ii. Component - one of the elements of software, hardware, or expertise needed
to produce an analytical result in response to a customer request.

iii. Context - the set of boundary conditions, expected results, funding, and
schedule requirements negotiated by a customer and analyst that help to
define a capability.

iv. Dependency Tree - the list of components and their relationships to each
other that comprise a capability, usually expressed graphically.]

c. [Comment: Note that multidimensionality is automatically appearing in the context
of even terminology standardization. Multidimensionality requires collapse in the
aggregation process. Thus, aggregation is not only combining separate TRL
evaluations, but collapsing the inevitable multidimensionality.]

4. A TRL aggregation procedure.
a. [Comment: This has not been defined at this point. The implication of the

description provided by Paul is that the aggregate TRL is the minimum of the
component TRLs. This idea has been discussed but not really analyzed.]

5. A means of specifying a required/needed/desired TRL level for the given application.
a. [Comment: Specifying a required/needed/desired TRL requires involvement from

the application side, if not outright ownership by the application side of this
specification. Note that this level may naturally originate from the same analysis
that provides a PIRT for decomposing the application, another advantage of
thinking PIRTs.]

b. [Comment: However the level is specified, involvement on the application side
requires communication, thus Paul’s “communication” use case is subsumed under
this use case.]

c. [Comment: Communicating requires communicating the specified WSC TRLs to
the application side, which may have other ideas about what TRLs mean. Thus, this
communication probably puts constraints on how far the WSC language defining
TRLs can deviate from the language of the application area. Remember the
arguments that TRLs appropriate for advanced development M&S products are
likely to be highly divergent from those appropriate to hardware products.
Nonetheless, realistically some significant compatibility is likely a requirement.
This is an essential tension that must be resolved.]

d. [Comment: One approach is that WSC specifies required/needed/desired TRL level
for given applications. This helps us move forward without having to solve the
communication problem, but carries the same danger as inviting code developers to
specify TRLs for their own software. We suggest that we need to deal with the
communication use case as part of this use case.]

 48

We believe that both the “response” and the “application” use cases mentioned by Paul are
subsumed by the tasks that must be performed to achieve the “investment” use case. Thus, four
of the five general use cases Paul proposes are subsumed by the “investment” use case.
Emphasizing the “investment” use case provides broad value.

The “Roadmap” use case is a bit different.
1. Evaluating TRLs theoretically (but only theoretically) implies knowledge about how to

elevate the TRL. This is harder the more the TRL is aggregate.
2. Achieving a higher TRL is a project planning exercise as well as an advanced development

issue. Thus, built into the roadmap use case are factors like cost estimation, which has been
a nontrivial problem for the ASC program in the past.

3. “How much is enough” is defined by a TRL that doesn’t need to be exceeded. But
remember that this is across a lot of components and involves an aggregation procedure.

4. Roadmap also implies dealing with uncertainty in TRL specifications. [Or do we really
believe that these evaluations won’t have uncertainty associated with them.]

Final questions based on the “investment” use case:
1. Will WSC identify A1 through AN?

a. [Answer: (Yarrington) – SNL WSC and DSW should define these. ASC Focus
Areas provide a reasonable structure for doing so. The NNSA HQ ASC
“predictivity” performance indicator provides additional impetus for this. The
current plan rests on selecting canonical applications for each Focus Area (then
quantifying the performance level through some algebra applied to assessment
based on PCMM taxonomy).]

2. How do we move forward on the aggregation procedure?
a. [Comment: (Yarrington) – It is agreed that this is a difficult issue and the TRL team

will have to provide progress on this.]
3. Confirm that the “Investment” use case M&S components include hardware (computers,

systems, etc), software (Apps codes, system software, infrastructure, etc), and people (skill
levels). Or define the restriction.

4. How will time dependence be handled? This has strong implications for the agility,
expense and response time required/needed/desired of TRL evaluation procedures.

a. [Answer: (Yarrington) – We are expecting the Focus Area structure to provide
clarity around investment needs from one FY to the next, hence this becomes one
way of at least enveloping time dependence. Accordingly, re-evaluation on an
annual basis of TRL status for the Defined Applications for the various Focus Areas
in preparation for budget and program plan decisions should provide a structure for
the re-evaluation.]

 49

Distribution

1 MS0104 Bickel, T.C., 01200
1 MS0139 Current, M. F., 02998
1 MS0139 Hale, A. L., 01900
1 MS0139 Thomas, R. K., 01904
1 MS0139 Yarrington, P., 01910
1 MS0321 Nelson, J. E., 01430
1 MS0370 Trucano, T. G., 01411
1 MS0372 Gruda, J. D., 01524
1 MS0374 Brooks, S., 02991
1 MS0376 Blacker, T. D., 01421
1 MS0380 Jung, J., 01542
1 MS0380 Morgan, H. S., 01540
1 MS0382 Sjaardema, G. D., 01543
1 MS0382 Stewart, J. R., 01543
1 MS0384 Ratzel, A. C., 01500
1 MS0427 Klenke, S. E., 02118
1 MS0469 Corbett, D. W., 02900
1 MS0469 Verardo, A. E., 02990
1 MS0631 Witek, H. M., 02910
1 MS0639 Terhune, G. M., 02950
1 MS0735 Merson, J. A., 06310
1 MS0801 Leland, R. W., 04300
1 MS0801 White, D. R., 04340
1 MS0821 Thornton, A. L., 01530
1 MS0824 Hermina, W. L., 01510
1 MS0836 Hogan Jr., R. E., 01516
1 MS0847 Baca, T. J., 01523
1 MS0847 Wilson, P. J., 01520
1 MS1002 Roehrig, S. C., 06300
1 MS1005 Skocypec, R. D., 06340
1 MS1104 Robinett III, R. D., 06330
1 MS1138 Mitchiner, J. L., 06320
1 MS1318 Womble, D. E., 01410

1 MS1319 Ang, J. A., 01420
1 MS1322 Dosanjh, S. S., 01400
1 MS9004 Damkroger, B. K., 08130
1 MS9004 Falcone, P. K., 08110
1 MS9004 Hruby, J. M., 08100
1 MS9004 Lindner, D. L., 08120
1 MS9042 Chiesa, M. L., 08774
1 MS9042 Dike, J. J., 08774
1 MS9042 Kistler, B. L., 08774
1 MS9104 Ortega, A. R., 08229
1 MS9151 Hirano, H. H., 08960
1 MS9151 Napolitano, L. M., 08900
1 MS9151 Oien, C. T., 08940
1 MS9152 Marburger, S. J., 02998
1 MS9153 Handrock, J. L., 08810
1 MS9155 Nielan, P. E., 08116
1 MS9159 Ammerlahn, H. R., 08962
5 MS9159 Clay, R. L., 08964
5 MS9159 Hardwick, M. F., 08964
1 MS9159 Shneider, M. S., 08964
1 MS9161 Pontau, A. E., 08750
1 MS9404 Kwon, D. M., 08770
1 MS9405 Carling, R. W., 08700
1 MS9409 Moen, C. D., 08757

2 MS9018 Central Tech. Files, 08944
2 MS0899 Technical Library, 04536

