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Abstract We present a spectral mimetic least-squares method for a model diffusion-
reaction problem, which preserves key conservation properties of the continuum problem.
Casting the model problem into a first-order system for two scalar and two vector variables
shifts material properties from the differential equations to a pair of constitutive relations.
We use this system to motivate a new least-squares functional involving all four fields
and show that its minimizer satisfies the differential equations exactly. Discretization of
the four-field least-squares functional by spectral spaces compatible with the differential
operators leads to a least-squares method in which the differential equations are also sat-
isfied exactly. Moreover, the latter are reduced to purely topological relationships for the
degrees of freedom that can be satisfied without reference to basis functions. Numerical
experiments confirm the spectral accuracy of the method and its local conservation.
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1. Introduction

We consider the model diffusion-reaction problem

(1)
−∇ · A∇φ + γφ = f in Ω ,

φ = g on ΓD ,
n · A∇φ = h on ΓN ,

where Ω ⊂ Rn has a Lipschitz-continuous boundary ∂Ω = ΓD ∪ ΓN and n is the outward
unit normal to ∂Ω. We assume that A is a symmetric positive definite tensor and γ is a
real-valued, strictly positive function, i.e., there exist constants fmin, fmax, γmin, γmax > 0
such that

(2) fminξ
Tξ ≤ ξTA(x)ξ ≤ fmaxξ

Tξ and γmin ≤ γ(x) ≤ γmax ,

for all x ∈ Ω and ξ ∈ TxΩ. The tensor A and the function γ describe material properties.
For instance, in heat transfer applications A is the thermal conductivity of the material and
γ can be related to the specific heat capacity.

Almost all published1 least-squares methods for (1) start with the reformulation of the
governing equations into an equivalent first-order system

(3)

∇ · u + γφ = f in Ω ,
u + A∇φ = 0 in Ω ,

φ = g on ΓD ,
n · u = −h on ΓN .

followed by setting up a least-squares functional

(4) J(u, φ; f ) :=
1
2

(
‖∇ · u + γφ − f ‖2X + ‖u + A∇φ‖2Y

)
,

and a least-squares principle, which is the following unconstrained minimization problem:

(5) (u, φ) = arg min
v∈U, ϕ∈V

J(v, ϕ; f ) .

We will refer to φ and u as the potential and flux variables. In (4)–(5) X, Y and U, V are
some appropriate data and solution spaces. The key juncture in the definition of a well-
posed least-squares method is to choose these spaces such that J is norm-equivalent, i.e.,
the residual “energy” |||(u, φ)||| := J(u, φ; 0) defines an equivalent norm on the solution
spaces:

(6) C1

(
‖v‖2U + ‖ϕ|2V

)
≤ |||(v, ϕ)|||2 ≤ C2

(
‖v‖2U + ‖ϕ‖2V

)
, ∀v ∈ U, ϕ ∈ V .

This guarantees the strong coercivity of the Euler-Lagrange equation for (5), which is the
least-squares variational problem. As a result, restriction of the least-squares principle (5)
to finite dimensional subspaces Uh ⊂ U and Vh ⊂ V yields a well-posed discrete least-
squares problem with symmetric and positive definite linear system. This obviates the
need for an inf-sup condition and makes the method amenable to well-established iterative
solvers, which is one of the key advantages of least-squares methods. Furthermore, norm-
equivalence (6) implies that minimization of J amounts to minimization of the error in u
and φ in their respective norms. Therefore, the least-squares functional provides a natu-
ral a posteriori error estimator [9], which is another important advantage of least-squares
methods.

One common choice for which (6) holds is X = Y = L2(Ω), U = H(div,Ω) and V =

H1(Ω). Because strong coercivity is inherited on subspaces, one can approximate both

1The negative norm least-squares method for second order elliptic equations [7] is one notable exception.
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solution spaces by standard C0 elements. Since the inception of least-squares methods this
has often been quoted as one of their principal advantages. However, when formulated
in this way, the least-squares method is not conservative [14, 15, 25] and in some cases
solutions can be very inaccurate; see [3, 10] for examples.

The use of div-conforming elements for the flux, such as Raviart-Thomas elements
[27], has been suggested in [2] as a way to improve the accuracy and conservation of
least-squares methods for (1). Analysis in [2] shows that div-conforming elements enable
optimal L2 convergence of the flux, which does not hold true for nodal elements. Further-
more, the flux approximation becomes locally conservative.

In this paper we extend these ideas to develop a spectral mimetic least-squares method
for (1) that is locally conservative. Reformulation of the model problem into a four-field
first-order system involving two scalar and two vector variables allows us to shift material
parameters from the differential operators into a pair of constitutive relations. The four-
field system prompts the inclusion of two new equation residuals to the standard least-
squares formulation (4). We show that the resulting least-squares principle satisfies exactly
the differential equations, while the constitutive relations are satisfied approximately. The
key idea then is to approximate the four fields by finite elements from a discrete exact
sequence. This allows us to satisfy exactly the differential equations in the discrete setting
and yields a locally conservative least-squares method.

In contrast to other high-order methods, which utilize modal degrees of freedom, our
approach uses compatible spectral elements with geometrically localized degrees of free-
dom; see, e.g., [26] for a related construction of high-order Whitney elements on simplices.
Because these degrees of freedom live on geometric mesh entities, they are co-chains of the
same order as the dimension of the entity. This reduces the action of differential operators
such as div, grad and curl to the action of the co-boundary operator on the corresponding
co-chain, i.e., the discretized differential operators are purely topological and independent
of the size or shape of the mesh. As a result, our approach transforms the differential equa-
tions into purely topological relationships for the degrees of freedom that can be satisfied
without reference to basis functions. In so doing we obtain a least-squares method in which
the discrete differential equations are satisfied exactly, and the approximation takes place
in the constitutive relations involving A and γ.

The rest of the paper is organized as follows. Section 2 transforms (1) into a first-
order four field system and explains the formulation of the mimetic least-squares method.
Section 3 derives topological discretizations of the differential equations, which are inde-
pendent of the basis functions. Section 4 presents the corresponding compatible spectral
elements used in this work. We discuss approximation of constitutive laws, which depends
on the basis functions, in Section 5. In Section 6 the behavior under mappings will be pre-
sented. We conclude with numerical examples in Section 7 and conclusions in Section 8.

2. The model problem deconstructed

Our starting point is the following least-squares principle for the first-order system (3):

(7) min
φ∈U,u∈VJ(φ,u) :=

1
2

(∥∥∥A−1/2 (u + A∇φ)
∥∥∥2

0 +
∥∥∥γ−1/2 (γφ + ∇ · u − f )

∥∥∥2
0

)
.

To motivate the mimetic least-squares method we reformulate (1) into an equivalent first-
order system involving two scalar and two vector variables. To this end, we introduce two
more variables defined by

(8) v = A−1u and ψ = γφ ,
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respectively. Then, the model problem (1) can be written as

(9)
∇ · u + ψ = f in Ω ,

v + ∇φ = 0 in Ω ,

v = A−1u in Ω ,

ψ = γφ in Ω ,
and

φ = g on ΓD ,

−n · u = h on ΓN .

As a result of these substitutions, the first two equations

(10) ∇ · u + ψ = f and v + ∇φ = 0 ,

have become independent of the material properties A and γ. The first equation expresses
a conservation law, which can be directly related to the fluxes u · n over the boundary of
a volume and the second equation expresses the fact that ∇ × v ≡ 0. These two conserva-
tion laws provide a complementary view of the same physical process. Loosely speaking,
the divergence relation describes this process using a normal component of velocity flux
through a surface, whereas the gradient relation describes the same process by using a tan-
gential component of the velocity along a curve. In the discrete world the two view points
generally cannot coexist on the same grid, i.e. the vector variable can be a flux or a velocity,
but not both.

The two new equations, (8), are constitutive laws involving the material parameters.
Note that these laws do not involve derivatives. By introducing v as a new variable, we have
u for the flux and v for the velocity which allows for an independent discrete representation.

The two differential equations, ∇ · u + ψ = f and v + ∇φ = 0, only depend on the space
topology and, in the discrete setting, on the grid topology. This property is employed in
mimetic methods to exactly represent these equations without any reference to the size and
shape of the grid, [5, 17, 18, 19, 22, 28].

Motivated by these properties of mimetic methods we define a new least-squares func-
tional by augmenting (7) with the residuals of the “topological” equations (10)
(11)
J((φ, v), (ψ,u); f ) =

1
2

(∥∥∥A−1/2(u + A∇φ
)∥∥∥2

0 +
∥∥∥γ−1/2(γφ + ∇ · u − f

)∥∥∥2
0 +

∥∥∥v + ∇φ
∥∥∥2

0 +
∥∥∥∇ · u + ψ − f

∥∥∥2
0

)
,

and consider the associated least-squares principle

(12) min
(φ,v)∈U,(ψ,u)∈V

J((φ, v), (ψ,u); f )

where U = H1(Ω) × (L2(Ω))n and V = L2(Ω) × H(div,Ω).
Our first result shows that (12) is a well-posed minimization problem.

Theorem 1. For homogeneous boundary conditions, g = h = 0, the least-squares func-
tional J((φ, v), (ψ,u); 0) is norm-equivalent:

(13) J((φ, v), (ψ,u); 0) ∼ ‖u‖H(div,Ω) + ‖φ‖H1(Ω) + ‖v‖L2(Ω) + ‖ψ‖L2(Ω) .

Proof. Owing to the assumptions (2) it suffices to prove the theorem for A = I and γ = 1.
Expanding the terms in the least-squares functional yields

(14)
2J((φ, v), (ψ,u); 0) = ‖u‖20 + 2‖∇ · u‖20 + 2‖∇φ‖20 + ‖φ‖20 + ‖v‖20 + ‖ψ‖20

+2(u,∇φ) + 2(∇ · u, φ) + 2(v,∇φ) + 2(∇ · u, ψ).

The sum of the first two inner-products vanishes for homogeneous boundary conditions

2(u,∇φ) + 2(∇ · u, φ) = 2
∫
∂Ω

φ(u · n) dS = 0 .
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For the remaining two inner products we use the Young’s inequality:

2(v,∇φ) ≥ −δ‖v‖20 −
1
δ
‖∇φ‖20 and 2(∇ · u, ψ) ≥ −δ‖ψ‖20 −

1
δ
‖∇ · u‖20 .

Combining with (14) yields

2J((φ, v), (ψ,u); 0) ≥ ‖u‖20 +

(
2 −

1
δ

) (
‖∇ · u‖20 + ‖∇φ‖20

)
+ ‖φ‖20 + (1 − δ)

(
‖v‖20 + ‖ψ‖20

)
The theorem follows by choosing any 1/2 < δ < 1. �

The next result provides some information about the conservation properties of (12).

Proposition 1. The minimizers of (11) satisfy (10) in L2(Ω).

Proof. The variations of the least-squares functional in (11) with respect to v and ψ yield
the equations

(15)
∫

Ω

(v + ∇φ) · ṽ dx = 0 ∀ṽ ∈ L2(Ω) and
∫

Ω

(∇ · u + ψ − f )ψ̃ dx = 0 ∀ψ̃ ∈ L2(Ω) ,

respectively. The minimizers of (11) necessarily satisfy these equations, which implies that
(10) hold in L2-sense. �

Proposition 2. If (10) is satisfied in L2(Ω), then the equations for φ and u decouple.

Proof. The variations of the least-squares functional in (11) with respect to u and φ yield
the equations∫

Ω

γ−1∇ · u∇ · ũ dx +

∫
Ω

uA−1ũ dx −
∫

Ω

γ−1 f∇ · ũ dx =

∫
Ω

(∇ · u + ψ − f )∇ · ũ dx ,

and ∫
Ω

∇φA∇φ̃ dx +

∫
Ω

γφφ̃ dx −
∫

Ω

f φ̃ =

∫
Ω

(v + ∇φ)∇φ̃ dx ,

for all ũ ∈ H(div,Ω) and φ̃ ∈ H1(Ω), respectively. Proposition 1 shows that the right
hand side of these variational statements vanishes and therefore the equations for φ and u
decouple. See also [3] for a similar decoupling in a constrained formulation. �

2.1. A mimetic least-squares method. Suppose that Uh = Gh × Ch and Vh = S h × Dh

are compatible finite element discretizations of U and V such that {Gh,Ch} and {Dh, S h}

belong in a discrete DeRham complex [1, 11]. In other words, there holds

(16) ∇φh ∈ Ch ∀φh ∈ Gh and ∇ · uh ∈ S h ∀uh ∈ Dh .

We define the mimetic least-squares principle for (9) as the restriction of (12) to the discrete
spaces Uh and Vh:

(17) min
(φh,vh)∈Uh,(ψh,uh)∈Vh

J((φh, vh), (ψh,uh); f ).

Because Uh and Vh are conforming spaces, the norm equivalence (13) continues to hold
and (17) is a well-posed minimization problem. In addition, the least-squares solution is
locally conservative.

Theorem 2. Let {(φh, vh), (ψh,uh)} ∈ Uh × Vh be a minimizer of (17). Then,

(18) vh + ∇φh = 0 and ∇ · uh + ψh = PS f

where PS is the L2 projection on S h.
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Proof. Consider first the gradient equation in (18). The minimizers of (17) necessarily
satisfy the equations ∫

Ω

(vh + ∇φh) · ṽh dx = 0 ∀ṽh ∈ Ch

Since ∇φh ∈ Ch there exists vh
φ = −∇φh and so, the first equation holds for the pair {φh, vh

φ}.
By the uniqueness of the least-squares minimizer it follows that vh = vh

φ.
Consider now the second equation in (18). The weak equation∫

Ω

(∇ · uh + ψh − f )ψ̃h dx ≡
∫

Ω

(∇ · uh + ψh − PS f )ψ̃h dx = 0 ∀ψ̃h ∈ S h ,

is a necessary condition for (17). Since∇·uh ∈ S h there exists ψh
u such that∇·uh+ψh

u = PS f .
Again, the uniqueness of the least-squares solution implies that ψh = ψh

u. �

Corollary 1. Let {(φh, vh), (ψh,uh)} ∈ Uh × Vh then the discrete equations for φh and uh

decouple in the variational formulation.

Proof. Take variations with respect to φh and uh to obtain weak forms similar to the ones
in the proof Proposition 2 and use the fact that Uh × Vh is a conforming subspace of
(H1(Ω), L2(Ω)) × (L2(Ω),H(div,Ω)) which implies that Theorem 2 also holds on the finite
dimensional subspace. �

Remark 1. Note that the results of Theorem 2 and Corollary 1 do not require Uh and Vh

to be defined on the same grid. Thus, in principle, one can implement the least-squares
method (17) using two different grid partitions of these spaces, i.e., we can consider for-
mulations in which the gradient and divergence equations live on different grids.

The possibility to satisfy (10) in a discrete setting brings up an intriguing question.
Suppose that instead of augmenting a standard least-squares functional to obtain (11) we
start directly with a least-squares principle for (9)

(19)
min

(φ,u),(ψ,v)
J((φ, v), (ψ,u); f ) :=

1
2

(∥∥∥A−1/2(u − Av
)∥∥∥2

0 +
∥∥∥γ−1/2(γφ − ψ)∥∥∥2

0 +
∥∥∥v + ∇φ

∥∥∥2
0 +

∥∥∥∇ · u + ψ − f
∥∥∥2

0

)
.

and then proceed to discretize it using the exact same spaces Uh and Vh as in (17). Will
then the solution of (19) also satisfy exactly the conservation laws (10)? Theoretical studies
[4] suggest that this may not be the case, even though the discrete spaces can support the
exact representation of the conservation laws. In Section 7 we present numerical results
that confirm these conclusions.

To understand the root cause for the different properties of (11) and (19) note that vari-
ations of (19) with respect to v and ψ yield the equations∫

Ω

(v +∇φ) · ṽ dx =

∫
Ω

(
Av−u

)
· ṽ dx ∀ṽ and

∫
Ω

(∇ ·u +ψ− f )ψ̃ dx =

∫
Ω

(
ψ− γφ

)
ψ̃ dx ∀ψ̃

These equations imply that (10) hold with an error proportional to the error in the consti-
tutive laws. As we shall see in Section 5, the latter cannot be satisfied exactly in a discrete
setting, except in a few special cases beyond the scope of this paper. As a result, it follows
that solutions of (19) may not satisfy (10) exactly even if the discrete spaces allow it.
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3. Topological discretizations of the differential equations

In this paper we focus on developing a fully conservative spectral least-squares formu-
lation based on (17). In order to preserve the topological nature of the conservation laws
in (10) we choose to work with spectral elements having geometrically localized degrees
of freedom. These degrees of freedom live on k-dimensional mesh entities, i.e., they are
k-cochains [8]. This reduces the action of gradient, curl and divergence on spectral ele-
ment fields to the action of the coboundary operator on 0, 1 and 2-cochains. As a result,
the discrete differential operators assume particularly simple algebraic forms and can be
evaluated by operating directly on the degrees of freedom without reference to the basis
functions. The next section reviews the relevant notions from algebraic topology.

3.1. Basic concepts from algebraic topology. For the purposes of this paper it suffices
to consider the quadrilateral shown in Fig. 1. A k-chain is a formal linear combination of
k-dimensional entities. Our quadrilateral incorporates three different chains: the 0-chain
c0 = A + B + C + D (the vertices), the 1-chain c1 = C1 +C2 − C3 − C4 (the edges, or sides)
and the 2-chain c2 = S , which is the quadrilateral itself. The boundary of a k-chain is a
k − 1-dimensional chain. For instance,

∂S = C1 + C2 − C3 − C4 ,

∂C1 = −A + B ∂C2 = −B + C ∂C3 = C − D and ∂C4 = −A + D .

The k − 1 chains resulting from the application of ∂ reflect the orientations of the entities
involved. Note that

(20) ∂∂S = (−A + B) + (−B + C) − (C − D) − (−A + D) = 0 .

The identity ∂∂ = 0 is a fundamental property of the boundary operator. The set of all

C1

C2

C3

C4

A B

CD

S

Figure 1. A quadrilateral is a chain complex comprising a 0-chain
{A, B,C,D} (the vertices), 1-chain {C1,C2,C3,C4} (the edges) and a 2-
chain {S} (the cell itself). The discrete gradient relation along curve C1
is given by (23) and involves the action of the coboundary operator δ on
the 0-cochain {φA, φB}. This operator is dual to the boundary ∂C1 = B−A,
which makes it dependent only on the connectivity between the vertices
and the line segments, but not on the shape of the cell.
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k-chains is a linear space Ck and Ck is its dual. We associate the elements of Ck, called k-
cochains, with numbers living on the k-chains of Ck. Returning to the example in Fig. 1 this
means that the 0-cochain {φA, φB, φC , φD}, the 1-cochain {u1, u2, u3, u4}, and the 2-cochain
{ψS } correspond to values living on the vertices, edges and the quadrilateral itself. The
adjoint of ∂ is called the coboundary operator and denoted by δ. The coboundary operator
maps k-cochains into (k + 1)-cochains:

δ{φA, φB, φC , φD} = {−φA + φB,−φB + φC , φC − φD,−φA + φD}

The identity ∂∂ = 0 implies a similar identity δδ = 0 for the coboundary. For example,

δδ{φA, φB, φC , φD} = (−φA + φB) + (−φB + φC) − (φC − φD) − (−φA + φD) = 0 .

is the analogue of (20).

3.2. Mimetic approach for the differential equations. Mimetic methods use coordinate-
independent representations of differential operators to derive the discrete equations; see
e.g., [22] and [5]. Application of this approach to (10) leads naturally to approximation
of fields and derivatives by cochains and coboundary, respectively. Let us start with the
gradient equation

(21) v + ∇φ = 0 .

Mimetic discretization of (21) requires a coordinate-independent representation of the gra-
dient. Given any curve C ∈ Ω with endpoints A, B integration of (21) from A to B yields

(22) 0 =

∫
C

(v + ∇φ) = φ(B) − φ(A) +

∫
C

v .

This reduces the differential equation (21) to an algebraic equation

(23) vC + φB − φA = 0 ,

where φA = φ(A), φB = φ(B) and vC :=
∫
C

v. Note that if φ and v satisfy the continuum
equation (21) this relation is true for all points A and B and any curve C which connects
these points. Note also that (23) is independent of any material or mesh parameters.

The curve C with its two endpoints forms a chain complex comprising the 0-chain
−A + B and the 1-chain C. Furthermore, the values {φA, φB} and {vC} define 0 and 1-
cochains associated with the endpoints and the curve, respectively. This allows us to write
(23) as

(24) vC + δ{φA, φB} = 0 .

This equation is the mimetic discretization of (21) along C. In particular, the coboundary
acting on 0-cochains gives the mimetic discretization of the gradient.

Extension of (24) to the (oriented) mesh cell in Figure 1 is straightforward. We ap-
proximate φ by the 0-cochain {φA, φB, φC , φD} and the vector field v by the 1-cochain
{vC1 , vC2 , vC3 , vC4 }. As a result, (21) reduces to a set of four algebraic equations: vC1 + δ{φA, φB} = 0

vC2 + δ{φB, φC} = 0
and

vC3 + δ{φC , φD} = 0

vC4 + δ{φD, φA} = 0
,

where
δ{φA, φB} = −φA + φB; δ{φB, φC} = φC − φB; δ{φC , φD} = φC − φD;

and δ{φD, φA} = φD − φA
,

are the restrictions of the coboundary to the endpoints of the edges.
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Since integrals are additive, we have for the closed contour (1-chain) C = C1 + C2 −

C3 − C4 that

(25) vC1 + vC2 − vC3 − vC4 = −φB + φA − φC + φB + φC − φD + φD − φA ≡ 0 ,

or, in terms of the coboundary,

(26) δ{vC1 , vC2 , vC3 , vC4 } = δδ{φA, φB, φC , φD} = 0 .

This relation is a discrete version of the identlty

(27) vC ≡
∫
C

v =

∫
S

∇ × v ≡ 0

that holds on any surface S with boundary ∂S = C, provided v is a gradient. Simply put
(26) means that (i) the action of coboundary on a 1-cochain approximates the action of curl
on a vector field, and (ii) the identity ∇ × (∇φ) = 0 also holds at the discrete level.

Note again that this discrete notion of the curl does not involve any mesh parameters; it
holds on very coarse meshes and very fine mesh. There is no truncation error, no asymp-
totic regime, no need to consider these equations in the limit h → 0. We will refer to such
discretizations as topological and we call the discrete equations exact.

uS

uEuW

uB

uF

uN

ΨV ,fV

Figure 2. The fluxes uW , uE , uS , uN , uF , and uB form a 2-cochain asso-
ciated with the 2-chain comprising the West, East, South, North, Front
and Back sides of the volume. The volume integrals over f and ψ are
3-cochains fV and ψV, respectively.

Mimetic discretization of the second conservation relation,

(28) ∇ · u + ψ = f ,

requires a coordinate-free approximation of the divergence. This approximation is best
explained in R3. To this end, consider a three-dimensional volume, V, see Figure 2. We
can think ofV as a chain complex comprising a 3-chain given byV itself, and the 2-chain
−SW +SE − SS +SN − SF +SB, where the subscripts stand for West, East, South, North,
Front and Back surfaces of V. The minus signs reflect the orientation of SW , SS and SF

by a unit normal pointing into the volume. The rest of the surfaces are oriented by a unit
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normal pointing outwards. As a result, integration of (28) on V reduces it to an algebraic
equation

(29) uE − uW + uN − uS + uB − uF + ψV = fV .

where

fV :=
∫
V

f ; u? :=
∫
S?

u · n , ? ∈ {E,W,N, S , F, B} and ψV =

∫
V

ψ .

The fluxes {uE ,uW ,uN ,uS ,uB,uF} represent a 2-cochain associated with the surfaces of
V, whereas fV and ψV are 3-cochains living on the volume itself. As a result, we can
write (29) as

δ{uE ,uW ,uN ,uS ,uB,uF} + ψV = fV ,

that is, the action of δ on 2-cochains represents the divergence. Note again that this dis-
crete representation holds for arbitrarily shaped volumes and that this expression does not
depend on basis functions.

Remark 2. The variables φ and ψ, and v and u are called dual variables. If one variable is
associated with k-dimensional objects, its dual variable is associated to (n−k)-dimensional
objects, where n = dim(Ω). If a dual grid structure is employed, [5, 6, 12, 16, 21, 20, 23],
the discrete Hodge matrix, which maps variables associated with k-dimensional entities
to variables associated with (n − k)-dimensional entities is a square, invertible matrix.
The latter is essential for finite volume and finite element methods. Least-squares methods
allow for a non-square Hodge matrix thus alleviating the need for a strict primal-dual grid
structure in mimetic least-squares methods. This is a direct consequence of Theorem 2 and
Corollary 1. See also Remark 1.

4. Spectral basis functions

In this section we derive spectral basis functions on tensor product elements (quadrilat-
erals and hexahedrals) with geometrically localized degrees of freedom. In so doing we
are able to obtain topological discretizations of the conservation laws (21) and (28) that
depend only on the mesh topology. This in turn provides an effective means to implement
the mimetic least-squares method presented in Section 2.

We need four different kinds of spectral basis functions to approximate
• a scalar function represented on the mesh by a 0-cochain, i.e., its nodal values;
• a vector field represented on the mesh by a 1-cochain, i.e., its line integrals along

edge segments of the mesh;
• a vector field represented on the mesh by a 2-cochain, i.e., its surface integrals

along surface segments of the mesh; and
• a scalar function represented on the mesh by a 3-cochain, i.e., its integrals over

mesh subvolumes.
Accordingly, we refer to these as the k-cochain spectral basis functions. Let Rk be the
operator that reduces a particular field to a k-cochain {ak

1, . . . , a
k
n}. Following [5] we want

to define a basis {sk
i } such that the corresponding reconstruction operator

Ik :=
n∑

i=1

ak
i sk

i

has the following properties:
• Rk ◦ Ik = I, Ik is a right-inverse of Rk, (consistency property);
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• Ik ◦ Rk = I + O(hp), Ik is an approximate left-inverse of Rk, (approximation
property)

• dkIk = Ik+1δ, where dk represents the gradient (k = 0), curl (k = 1) or divergence
(k = 2), respectively, and δ the coboundary operator.

We define the k-cochain spectral basis functions by tensor products of one-dimensional ba-
sis functions. For brevity, we present the details in two-dimensions. In this case, construc-
tion of the spectral bases relies on two different types of one-dimensional basis functions.
We review these next.

4.1. One-dimensional spectral basis functions. Consider the partitioning of the one-
dimensional domain −1 = ξ0 < ξ1 < . . . < ξN−1 < ξN = 1 comprising N + 1 nodes, ξi and
N intervals (edges) [ξi−1, ξi]. We define two families of basis functions associated with the
nodes and the edges of the partition, respectively.

4.1.1. Nodal basis functions. Let f (ξ), ξ ∈ [−1, 1] be smooth function. The reduction of
f (ξ) to a 0-cochain on the mesh is given by

(30) R0( f ) = { f0, f1, . . . , fN} ,

where fi := f (ξi) are its nodal values. Consider the Lagrange polynomials `0
i (ξ) given by

`0
i (ξ) =

N∏
j=0
j,i

(
ξ − ξ j

ξi − ξ j

)
.

We recall that Lagrange polynomials satisfy

`0
i (ξ j) =

 1 if i = j

0 if i , j
and

N∑
i=0

`0
i (ξ) ≡ 1 .

The corresponding reconstruction of f (ξ) from the 0-cochain R0( f ) is given by

I0( fi)(ξ) =

N∑
i=0

fi`0
i (ξ) .

Reduction of this reconstruction gives the same discrete values

R0
(
I0( fi)(ξ)

)
=

N∑
j=0

f j`
0
j (ξi) = fi ,

and so, I0 satisfies the consistency property, R0 ◦ I0 = I. For suitably chosen nodes ξi and
sufficiently smooth f (ξ) one can show that I0 ◦ R0 = I + O(hp). Figure 3 illustrates this
property.

4.1.2. Edge basis functions. We consider again a smooth function f (ξ) but reduce it to a
1-cochain given by

(31) R1( f ) = { f1, . . . , fN} ,

where now the degrees of freedom

fi =

∫ ξi

ξi−1

f (ξ) , i = 1, . . . ,N .



12 PAVEL BOCHEV AND MARC GERRITSMA

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3. Nodal approximation (red curve) of f (ξ) = cos πξ(sin 5πξ +

0.25), (blue curve) for N = 4, 8, 16, 20.

are the edge integrals of f . Define the edge Lagrangian basis, `1
i (ξ) by [13, 21]

(32) `1
i (ξ) = −

d
dξ

i−1∑
k=0

`0
k (ξ), i = 1, . . . ,N .

From this definition of edge basis functions it follows that

(33) `1
0(ξ) = 0 and `1

N+1(ξ) = −
d
dξ

N∑
k=0

`0
k (ξ) = −

d
dξ

(1) = 0 .

The edge basis functions have the property that

(34)
∫ ξ j

ξ j−1

`1
i =

 1 if i = j

0 if i , j
, i, j = 1, . . . ,N .

The reconstruction of f (ξ) from the 1-cochain R1( f ) is given by

(35) I1( fi)(ξ) =

N∑
i=1

fi`1
i (ξ) .

The reduction of the reconstructed function gives

(36) R1
(
I1( fi)(ξ)

)
=

N∑
i=1

fi

∫ ξ j

ξ j−1

`1
i

(34)
= f j ,

which shows that consistency property, R1 ◦ I1 = I, is satisfied. Figure 4 shows that for
increasing N the accuracy of the reconstruction improves, I1 ◦R1 = I+O(hp). Figures 3–4
also clearly demonstrate the difference between I0, which matches the nodal values of a
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Figure 4. Edge basis approximation (red curve) of f (x) =

cos πξ(sin 5πξ + 0.25) (blue curve), for N = 4, 8, 16, 20.

function and I1 which matches the edge integrals of a function. In particular, I1( fi)(ξ)
does not pass through the nodal values fi, shown by red circles in the figure, i.e., this
reconstruction is not nodal.

Finally we need to show that the nodal reconstruction I0 and the edge reconstruction
I1 commute with differentiation at the continuous and discrete level. Let f (ξ) be a smooth
function with reduction given by (30):

R0( f ) = { f0, . . . , fN} .

The coboundary, δ applied to this 0-cochain gives

δR0( f ) = { f1 − f0, . . . , fN − fN−1} .

On the other hand, the reduction of its derivative d
dξ f (ξ) to a 1-cochain gives

(37) R1
(

d
dξ

f
)

=

∫ ξi

ξi−1

d
dξ

f (ξ) dξ = fi − fi−1 ,

which shows that δR0 = R1 d
dξ , see [5].

The reconstruction of the 1-cochain { f1 − f0, . . . , fN − fN−1} is given by

(38) I1(δ f )(ξ) =

N∑
i=1

( fi − fi−1)`1
i (ξ) .
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The reconstruction of the 0-cochain { f0, . . . , fN} is given by

I0( f )(ξ) =

N∑
i=0

fi`0
i (ξ) .

Differentiation of this reconstruction yields

d
dξ
I0( f )(ξ) =

d
dξ

N∑
i=0

fi`0
i (ξ) =

N∑
i=0

fi
d
dξ
`0

i (ξ)

(32)
= − f0`1

1(ξ) +

N−1∑
i=1

fi
[
`1

i (ξ) − `1
i+1(ξ)

]
+ fN`

1
N(ξ)

(33)
=

N∑
i=0

fi
[
`1

i (ξ) − `1
i+1(ξ)

]
=

N∑
i=1

( fi − fi−1)`1
i (ξ) .(39)

From (38) and (39) we see that the commuting property d
dξI

0 = I1δ holds.

4.2. Two-dimensional 0-cochain and 1-cochain spectral basis functions. Topological
discretization of the gradient equation v + ∇φ = 0 requires approximation of φ and v
by 0-cochains and 1-cochains, respectively. We use a tensor product structure to define
the corresponding spectral basis functions from the one-dimensional nodal and edge basis
functions as follows. Consider the unit square [−1, 1]2 ⊂ R2 with partitioning −1 = ξ0 <
. . . < ξN = 1 and −1 = η0 < . . . < ηM = 1. On this mesh we have two sets of nodal basis
functions given by the Lagrange polynomials

`0
i (ξ), i = 0, . . . ,N and `0

j (η), j = 0, . . . ,M ,

respectively, and two sets of edge basis functions given by

`1
i (ξ), i = 1, . . . ,N and `1

j (η), j = 1, . . . ,M ,

respectively.

The reduction of a smooth function φ(ξ, η) to a 0-cochain is given by

R0(φ) = {φi, j}
N,M
i=0, j=0 ,

where φi, j := φ(ξi, η j), i.e., it consists of sampling its values at the points (ξi, η j). The
corresponding reconstruction is then given by

(40) I0(φi, j)(ξ, η) =

N∑
i=0

M∑
j=0

φi, j`
0
i (ξ)`0

j (η) ,

and its gradient by

(41) ∇I0(φi, j)(ξ, η) =

N∑
i=1

M∑
j=0

(φi, j − φi−1, j)`1
i (ξ)`0

j (η) +

N∑
i=0

M∑
j=1

(φi, j − φi, j−1)`0
i (ξ)`1

j (η) .

The reduction of a smooth vector field v = (u, v) to a 1-cochain on this grid is given by

R1(v) := {ui, j, vl,l}
N,M,N,M
i=1, j=0,k=0,l=1 ,
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where

(42) ui, j =

∫ ξi

ξi−1

u|η=η j
=

∫ ξi

ξi−1

u(ξ, η j) dξ , i = 1, . . . ,N and j = 0, . . . ,M ,

and

(43) vi, j =

∫ η j

η j−1

v|ξ=ξi
=

∫ η j

η j−1

v(ξi, η) dη , i = 0, . . . ,N and j = 1, . . . ,M .

In words, we represent this vector field by using integrals of its tangential component on
the horizontal and vertical subedges of the element. The corresponding reconstruction is
then given by

(44) I1(vi, j)(ξ, η) =

N∑
i=1

M∑
j=0

ui, j `
1
i (ξ)`0

j (η) +

N∑
i=0

M∑
j=1

vi, j `
0
i (ξ)`1

j (η) .

The discrete analogue of the gradient relation v + ∇φ = 0 expressed in terms of the expan-
sions (41) and (44) then gives

I1(vi, j) + ∇I0(φi, j) =

N∑
i=1

N∑
j=0

ui, j`
1
i (ξ)`0

j (η) +

N∑
i=0

N∑
j=1

vi, j`
0
i (ξ)`1

j (η)

+

N∑
i=1

N∑
j=0

(φi, j − φi−1, j)`1
i (ξ)`0

j (η) +

N∑
i=0

N∑
j=1

(φi, j − φi, j−1)`0
i (ξ)`1

j (η)

=

N∑
i=1

N∑
j=0

(ui, j + φi, j − φi−1, j)`1
i (ξ)`0

j (η) +

N∑
i=0

N∑
j=1

(vi, j + φi, j − φi, j−1)`0
i (ξ)`1

j (η) = 0 .

Since the bases `1
i (ξ)`0

j (η) and `0
i (ξ)`1

j (η) are linearly independent, the above identity holds
if and only if all coefficients vanish, i.e.,

(45) ui, j + φi, j − φi−1, j = 0 and vi, j + φi, j − φi, j−1 = 0 .

This reduces the discretization of v +∇φ = 0 to a purely algebraic relation between the de-
grees of freedom that does not involve the basis functions themselves. Note that equations
(45) have the exact same structure as the equations we derived in (23).

4.3. Two-dimensional 2-cochain and 3-cochain spectral basis functions. These basis
functions are required for the topological discretization of the divergence equation ∇ ·
u + ψ = f . In the three-dimensional case the flux is given by u = (p, q, r), where the
coefficients p, q and r are functions of (ξ, η, ζ). In the two-dimensional case, we assume
that r = 0 and p(ξ, η) and q(ξ, η) only. The surface over which flux is evaluated is spanned
by a line segment in (ξ, η)-space and a unit distance in the ζ-direction.

In light of Remark 1 the grid for the discretization of this equation does not have to be
the same as for the gradient equation. To highlight this fact we consider a second two-
dimensional grid with partitioning −1 = ξ̃0 < . . . < ξ̃Ñ = 1 and −1 = η̃0 < . . . < η̃M̃ = 1.
To construct the spectral basis functions we will use again the one-dimensional nodal and
edge bases. However, to distinguish them from the ones used in Section 4.2 we write

˜̀0
i (ξ), i = 0, . . . , Ñ and ˜̀0

j (η), j = 0, . . . , M̃ ,

for the nodal functions, and
˜̀1
i (ξ), i = 1, . . . , Ñ and ˜̀1

j (η), j = 1, . . . , M̃ ,

for the edge functions.
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Let u = (p, q, 0) be a smooth vector field. In two-dimensions, reduction of this field to a
2-cochain corresponds to a representation of u by using integrals of its normal component
on the horizontal and vertical subfaces of the element. As a result, we have that

R2(u) := { p̃i, j, q̃k,l}
Ñ,M̃,Ñ,M̃
i=0, j=1,k=1,l=0 ,

where

(46) p̃i j =

∫ 1

0

∫ η̃ j

η̃ j−1

p|ξ=ξ̃i
dηdζ =

∫ η̃ j

η̃ j−1

p(ξ̃i, η) dη , i = 0, . . . , Ñ and j = 1, . . . , M̃ ,

and

(47) q̃i j =

∫ 1

0

∫ ξ̃i

ξ̃i−1

q|η=η̃ j
dξdζ =

∫ ξ̃i

ξ̃i−1

q(ξ, η̃ j) dξ , i = 1, . . . , Ñ and j = 0, . . . , M̃ .

The reconstruction of this field is then given by

(48) I2(ui, j)(ξ, η) =

Ñ∑
i=0

M̃∑
j=1

pi, j ˜̀0
i (ξ) ˜̀1

j (η) −
Ñ∑

i=1

M̃∑
j=0

qi, j ˜̀1
i (ξ) ˜̀0

j (η) .

It is easy to see using (39) that

(49) ∇ · I2(ui, j)(ξ, η) =

Ñ∑
i=1

M̃∑
j=1

(
pi, j − pi−1, j + qi, j − qi, j−1

)
˜̀1
i (ξ) ˜̀1

j (η) .

Formally, a 3-cochain is not defined in two-dimensions. To properly formulate the
reduction of a smooth scalar function required for the topological discretization of the
divergence equation we extend the two-dimensional element into a box of unit height but
do not subdivide the ζ-axis into subintervals as we did for the 2-cochain. Extrusion of
the two-dimensional mesh along the ζ-axis partitions the box into sub-boxes forming a
3-chain. We will use this 3-chain only to obtain a proper interpretation of a 3-cochain in
2-dimensions, in practical implementation such an extrusion is not necessary.

Since ψ does not depend on ζ, using this 3-chain for the reduction yields

R3(ψ) = {ψ̃i, j}
Ñ,M̃
i=1, j=1

where

(50) ψ̃i, j =

∫ ξ̃i

ξ̃i−1

∫ η̃ j

η̃ j−1

∫ 1

0
ψ(ξ, η) dξdηdζ =

∫ ξ̃i

ξ̃i−1

∫ η̃ j

η̃ j−1

ψ(ξ, η) dξdη

The corresponding reconstruction of ψ is then given by

(51) I3(ψ̃i, j)(ξ, η) =

Ñ∑
i=1

M̃∑
j=1

ψ̃i, j ˜̀1
i (ξ) ˜̀1

j (η) ,

The topological discretization of the divergence equation also requires reduction of the
data f to a 3-cochain. Using the same argument as for ψ we arrive at

(52) I3( f̃i, j)(ξ, η) =

Ñ∑
i=1

M̃∑
j=1

f̃i, j ˜̀1
i (ξ) ˜̀1

j (η) ,

with

(53) f̃i, j =

∫ ξ̃i

ξ̃i−1

∫ η̃ j

η̃ j−1

f .
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If we insert the finite dimensional approximations (49), (51) and (52) in the divergence
equation ∇ · u + ψ − f = 0, we obtain

∇ · I2(ui, j)+I3(ψ̃i, j) − I3( f̃i, j) =

Ñ∑
i=1

M̃∑
j=1

(
p̃i, j − p̃i−1, j + q̃i, j − q̃i, j−1 + ψ̃i, j − f̃i, j

)
˜̀1
i (ξ) ˜̀1

j (η) = 0 .

Since the basis ˜̀1
i (ξ) ˜̀1

j (η) is linearly independent, the only way in which we can satisfy this
equation is for

(54) p̃i, j − p̃i−1, j + q̃i, j − q̃i, j−1 + ψ̃i, j − f̃i, j = 0 , i = 1, . . . , Ñ, j = 1, . . . , M̃ .

We stress upon the fact that even though all variables are approximated by spectral ele-
ments, the discretizations of the gradient and divergence equations given by (45) and (54),
respectively are purely topological. In other words, they depend only on the mesh topol-
ogy but not on the size or shape of the individual elements. Compare this equation with
the relation obtained in (29).

5. Discretization of the constitutive relations

In Section 3 we developed topological discretizations of the differential equations in
(9), which only involve the discrete degrees of freedom. The resulting algebraic equations
are exact and depend only on the mesh topology but not on the reconstruction, i.e., on the
particular choice of basis functions as long as they satisfy the reconstruction properties
listed in Section 4.

Discretization of the constitutive laws

(55) u = Av and ψ = γφ .

presents an entirely different situation. Suppose for simplicity that A = I, γ = 1 and as
before, φ, v, u, and ψ are approximated by 0,1,2 and 3-cochains, respectively. Then, in
order for (55) to hold exactly we must have

(56) I2(u) = I1(v) and I3(ψ) = I0(φ) .

However, it is easy to see that relationships such as (56) may not even hold true if the same
function is reduced to different cochains and then reconstructed back, because reconstruc-
tion is only an approximate left inverse of the reduction. As a result, in general

Ik ◦ Rk( f ) , I(n−k) ◦ R(n−k)( f ) .

Approximation of the smooth function f (x) = cos πξ(sin 5πξ + 0.25) by node and edge
basis functions in Sections 4.1.1–4.1.2 provides a simple illustration of this fact. The
reconstruction from 0-cochains I0 ◦ R0( f ) is the Lagrange nodal interpolant of f (x), i.e.,
a polynomial that has the same nodal values on the mesh as f (x). On the other hand, the
reconstruction of the same function from 1-cochains, I1 ◦ R1( f ), matches the integral of
f (x) on every element but not its nodal values, i.e., I1 ◦R1( f ) , I0 ◦R0( f ). Figures 3 and
4 clearly show this distinction.

On the other hand, the material parameters in the constitutive laws are often determined
through field observations, which introduce experimental errors. As a result, satisfying
(55) exactly is not always of the same paramount importance as the exactness of the differ-
ential equations, which express fundamental physical laws. Or as Perot puts it: ”Consti-
tutive equations are physical approximations hypothesized by humans to represent certain
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macroscopic material states. It is therefore consistent to place all the numerical approxi-
mation in the same place as the physical approximation.”, [24]. The approach outlined in
Section 2 satisfies the conservation laws exactly, whereas (55) are imposed in a weak, least-
squares sense. Therefore, it is consistent with the relative importance of the two groups of
equations.

6. Transformation of discrete approximations

The finite dimensional representation in terms of tensor products is particularly well
suited for orthogonal grids on a unit square, but in more general geometries this can be
quite restrictive. In this section we will see how the various variables and equations behave
under mappings.

Suppose we represent the k-cochains on the unit square with an orthogonal Gauss-
Lobatto grid referred to as Ω0 with coordinates (ξ, η) as described in Sections 4.2 and
4.3. Consider the map Φ : Ω0 → Ω with coordinates (x, y) = Φ(ξ, η). This transformation
will map the point (ξi, η j) ∈ Ω0 onto Φ(ξi, η j) ∈ Ω and the line segment (ξ, η j) ∈ Ω0, for
ξ ∈ [ξi−1, ξi] onto Φ(ξ, η j) ∈ Ω and so on.

Since we employ geometrically localized degrees of freedom corresponding to integral
values, the geometric transformation Φ of the domain induces a transformation Φ∗ on
the cochains defined in Ω to transformed cochains defined in Ω0, which corresponds to a
change of variables for integration. In the 2-dimensional case we can write x = Φx(ξ, η)
and y = Φy(ξ, η). For the 0-cochains φi, j in Ω this means that

(57) φi, j := φ(xi, y j) = φ(Φx(ξi, η j),Φy(ξi, η j)) ,

where we consider the expression on the right hand side as a function of (ξ, η). For the
1-cochains consider the curve C = Φ(C0) in Ω with C0 a curve in Ω0, then the 1-cochain
along this curve is

vC =

∫
C

u(x, y) dx + v(x, y) dy =

∫
Φ(C0)

u(x, y) dx + v(x, y) dy

=

∫
C0

u(Φx(ξ, η),Φy(ξ, η))
(
∂Φx

∂ξ
dξ +

∂Φx

∂η
dη

)
+ v(Φx(ξ, η),Φy(ξ, η))

(
∂Φy

∂ξ
dξ +

∂Φy

∂η
dη

)
=

∫
C0

(
u
∂Φx

∂ξ
+ v

∂Φy

∂ξ

)
dξ +

(
u
∂Φx

∂η
+ v

∂Φy

∂η

)
dη ,

where we suppressed in the last line the dependence of the components u and v on ξ and η.
This holds for all curves, so locally we have

u(x, y) dx + v(x, y) dy =

(
u
∂Φx

∂ξ
+ v

∂Φy

∂ξ

)
dξ +

(
u
∂Φx

∂η
+ v

∂Φy

∂η

)
dη .

This equation allows us to evaluate the expression u dx + v dy in (ξ, η)-coordinates. What
we in fact want, is to have the expression in (ξ, η)-coordinates and bring it over to (x, y)-
coordinates, because it is in these coordinates that we want to satisfy the conservation laws
and the constitutive relations. Inverting this local relation gives

(58) u dξ + v dη =
1
J

[(
u
∂Φy

∂η
− v

∂Φy

∂ξ

)
dx +

(
−u

∂Φx

∂η
+ v

∂Φx

∂ξ

)
dy

]
,

where J = ∂Φx

∂ξ
∂Φy

∂η
− ∂Φx

∂η
∂Φy

∂ξ
. This inverse map allows us to evaluate the cochains on the

orthogonal grid and maps the result onto the curved coordinates (x, y).
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For the fluxes over a curve C, i.e. the 2-cochains form Section 4.3, we have that

uC =

∫
C

p(x, y) dy − q(x, y) dx =

∫
Φ(C0)

p(x, y) dy − q(x, y) dx

=

∫
C0

p
(
∂Φy

∂ξ
dξ +

∂Φy

∂η
dη

)
− q

(
∂Φx

∂ξ
dξ +

∂Φx

∂η
dη

)
=

∫
C0

(
p
∂Φy

∂ξ
− q

∂Φx

∂ξ

)
dξ +

(
p
∂Φy

∂η
− q

∂Φx

∂η

)
dη .

Locally this means that

p dy − q dx =

(
p
∂Φy

∂ξ
− q

∂Φx

∂ξ

)
dξ +

(
p
∂Φy

∂η
− q

∂Φx

∂η

)
dη .

This transformation takes takes the fluxes from (x, y)-coordinates to (ξ, η)-coordinates. The
inverse relation brings the fluxes defined in (ξ, η)-coordinates over to (x, y)-coordinates.

(59) p dη − q dξ =
1
J

[(
p
∂Φx

∂ξ
+ q

∂Φx

∂η

)
dy −

(
p
∂Φy

∂ξ
+ q

∂Φy

∂η

)
dx

]
.

We see that the fluxes through a line transform differently form velocities along a line.
This is another argument to use both v and u as separate variable in calculations.

Finally for the 3-cochain ψ we have the local relation

ψ dxdy = ψJ dξdη ,

with inverse relation

(60) ψ dξdη =
1
J
ψ dxdy .

We see that the nodal transformation of the 0-cochain φ, (57), transforms differently from
3-cochain, ψ, (60). Both variables are referred to as scalar variables, but the distinction
between scalars defined in a point and scalars per volume (densities) should be taken into
account in numerical calculations.

The gradient relation v+∇φ = 0 is integrated along a curve as u dξ+v dη+
∂φ
∂ξ

dξ+ ∂φ
∂η

dη =

0. Transforming to (x, y)-coordinates using (58) gives
(61)
1
J

[({
u +

∂φ

∂ξ

}
∂Φy

∂η
−

{
v +

∂φ

∂η

}
∂Φy

∂ξ

)
dx +

({
u +

∂φ

∂ξ

}
∂Φx

∂η
+

{
v +

∂φ

∂η

}
∂Φx

∂ξ

)
dy

]
= 0 .

We see from this equation that we can satisfy the gradient relation in (x, y)-coordinates if
we satisfy this relation on the orthogonal grid in (ξ, η)-coordinates. The gradient relation
is invariant under transformations. This is in agreement with the fact that this relation can
be satisfied regardless of the size and shape of the grid as we argued in Section 3.

A similar result holds for the divergence equation. Let ∇·u+ψ− f = 0 be integrated over
a 3-dimensional volume in (ξ, η)-coordinates2 with integrand (∇ · u + ψ − f ) dξdη, then in
Ω this becomes

(62)
1
J

(∇ · u + ψ − f ) dxdy = 0 ,

which can be satisfied when (∇ · u + ψ − f ) dξdη = 0. So, also the divergence relation is
invariant under transformations.

2We still assume unit distance in the ζ-direction and no dependence on ζ. See also remarks in Section 4.3
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The constitutive relations are not invariant under transformations. Take for example,
γ = 1 in the relation, then ψ = γφ becomes

(63)
1
J
ψ(ξ, η) = φ(ξ, η) ,

which explicitly depends on the determinant of the Jacobian J(ξ, η). Note that we can
interpret this transformed equation to the untransformed equation with γ(ξ, η) = J(ξ, η).
Similarly, for the equation u = Av with A = I we obtain

1
J

[(
p
∂Φx

∂ξ
+ q

∂Φx

∂η

)
dy −

(
p
∂Φy

∂ξ
+ q

∂Φy

∂η

)
dx

]
=

1
J

[(
u
∂Φy

∂η
− v

∂Φy

∂ξ

)
dy −

(
−u

∂Φx

∂η
+ v

∂Φx

∂ξ

)
dy

]
.(64)

If we replace dx = ∂Φx

∂ξ
dξ + ∂Φx

∂η
dη and dy = ∂Φy

∂ξ
dξ + ∂Φy

∂η
dη in this constitutive relation,

i.e. bringing the relation back from Ω to Ω0, then we obtain

−q dξ + p dη =
1
J

[
u
∂Φy

∂η

∂Φy

∂ξ
− v

∂Φy

∂ξ

∂Φy

∂ξ
+ u

∂Φx

∂η

∂Φx

∂ξ
− v

∂Φx

∂ξ

∂Φx

∂ξ

]
dξ+

1
J

[
u
∂Φy

∂η

∂Φy

∂η
− v

∂Φy

∂ξ

∂Φy

∂η
+ u

∂Φx

∂η

∂Φx

∂η
− v

∂Φx

∂ξ

∂Φx

∂η

]
dη .

in terms of the components p, q, u and v expressed in (ξ, η)-coordinates this states that(
p
q

)
=


(
∂Φy

∂η

)2
+

(
∂Φx

∂η

)2
− ∂Φy

∂ξ
∂Φy

∂η
− ∂Φx

∂ξ
∂Φx

∂η

− ∂Φy

∂ξ
∂Φy

∂η
− ∂Φx

∂ξ
∂Φx

∂η

(
∂Φx

∂ξ

)2
+

(
∂Φy

∂ξ

)2


(

u
v

)
.

So the isotropic relation in (x, y)-coordinates transforms to an anisotropic relation in (ξ, η)-
coordinates. The matrix is clearly symmetric and its determinant is equation to J, so in
order to have a positive definite tensor relating (p, q) and (u, v), we need to have transfor-
mations which preserves the orientation.

7. Results

In this section we want to illustrate the spectral mimetic least-squares method by means
of a test problem. We consider the problem with A = I and γ = 1,

−∇ · ∇φ + φ = f

with
f (x, y) = (2π2 + 1) sin(πx) sin(πy) and φ = 0 along ∂Ω ,

on the domain Ω = [−1, 1]2 with exact solution

φex(x, t) = sin(πx) sin(πy) .

Although the use of A = I and γ = 1 seems restrictive, the analysis in Section 6 revealed
that the approximation on deformed grids is equivalent to the use of non-trivial A and γ on
orthogonal grids.

In Section 7.1 we compare the results obtained from the four-field functional (19) with
the mimetic four-field functional (11). In Section 7.2 we investigate the use of different
polynomial representations on dual elements. Finally, we will assess the performance of
the mimetic least-squares formulation on highly deformed grids in Section 7.3.

The domain is divided in K × K elements. The solution is represented on the refer-
ence domain (ξ, η) ∈ Ωre f = [−1, 1]2 and mapped onto the respective elements in (x, y)-
coordinates using maps as discussed in Section 6. We will use the following polynomial
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expansions for φ, ψ, v and u on the reference domain with N = M, see Section 4.2 and
Ñ = M̃, see Section 4.3

φh(ξ, η) =

N∑
i=0

N∑
j=0

φi, j`
0
i (ξ)`0

j (η) ∈ PN,N

vh(ξ, η) =

N∑
i=1

N∑
j=0

ui, j`
1
i (ξ)`0

j (η) +

N∑
i=0

N∑
j=1

vi, j`
0
i (ξ)`1

j (η) ∈ PN−1,N × PN,N−1 ,

uh(ξ, η) =

Ñ∑
i=0

Ñ∑
j=1

pi, j ˜̀0
i (ξ) ˜̀1

j (η) −
Ñ∑

i=1

Ñ∑
j=0

qi, j ˜̀1
i (ξ) ˜̀0

j (η) ∈ PÑ,Ñ−1 × PÑ−1,Ñ ,

ψh(ξ, η) =

Ñ∑
i=1

Ñ∑
j=1

ψi, j ˜̀1
i (ξ) ˜̀1

j (η) ∈ PÑ−1,Ñ−1 ,

where N denotes the polynomial degree on the primal grid and Ñ denotes the polynomial
degree on the dual grid. In both cases the discrete degrees of freedom are the geometric
cochains representing integral values of over the associated geometric objects. These poly-
nomial spaces are compatible with the gradient on the primal grid and the divergence on
the dual grid, see also [11].

From interpolation theory we know that for sufficiently smooth exact solution the ex-
pected rates of convergence are εφ = O(hN+1), εv = O(hN), εu = O(hÑ) and εψ = O(hÑ−1).

With this polynomial reconstruction of the cochains, φh is globally C0, vh has tangential
continuity between elements, uh has normal continuity and ψh is discontinuous between
elements.

7.1. Least-squares and mimetic least-squares functional. We illustrate the difference
between the standard least-squares formulation for the four-field system (9) based on the
functional

(65)
J(u, v, φ, ψ; f ) :=

1
2

(
‖∇ · u + ψ − f ‖20 + ‖v + ∇φ‖20 + ‖A−1/2 (u + Av) ‖20 + ‖γ−1/2 (ψ − γφ) ‖20

)
,

and the mimetic least-squares formulation for the same problem based on the functional
(66)
J̃(u, v, φ, ψ; f ) :=

1
2

(
‖∇ · u + ψ − f ‖20 + ‖v + ∇φ‖20 + ‖A−1/2 (u + A∇φ) ‖20 + ‖γ−1/2 (∇ · u − γφ − f ) ‖20

)
.

In Figure 5 h-convergence for φ and v for the least-squares functionals (65) and (66) is
shown for the case N = Ñ. Only the mimetic least-squares formulations display optimal
convergence with h-refinement of O(hN+1) for φ and O(hN) for v. In Figure 6 h-convergence
on the dual complex for the variables u and ψ is displayed. Both formulation show optimal
convergence with h-refinement with O(hÑ) for both u and ψ. The black solid lines in these
figures indicate the observed rate of convergence.

The main difference in both least-squares formulations is shown in Figure 7. On page 6
it was argued that the mimetic least-squares formulation is not equivalent to the least-
squares formulation of the four-field problem (9). This is illustrated by the solid lines in
Figure 7. In Figure 7a we see that the constraint ∇× v = ∇×∇φ = 0 is only approximated.
For the case N = 1, the least-squares formulation based on (65) does not even converge.
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(b) h-convergence v

Figure 5. h-convergence for φ and v for various polynomial orders on a
uniform orthogonal grid for the conventional least-squares formulation
(solid lines) based on the functional (65) and the mimetic least-squares
functional (dotted lines) based on the functional (66). The observed rate
of convergence is indicated by the black slope lines.
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(b) h-convergence ψ

Figure 6. h-convergence for u and ψ for various polynomial orders on a
uniform orthogonal grid for the conventional least-squares formulation
(solid lines) based on the functional (65) and the mimetic least-squares
functional (dotted lines) based on the functional (66). The observed rate
of convergence is indicated by the black slope lines.

Figure 7b shows that the least-squares formulation based on the functional (65) only
approximates the relation ∇ · u + ψ − f , while the least-squares formulation based on (66)
satisfies this constraint up to machine accuracy.
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Figure 7. h-convergence for ∇ × v and ∇ · u + ψ − f in the ∞-norm
for various polynomial orders on a uniform orthogonal grid for the con-
ventional least-squares formulation (solid lines) based on the functional
(65) and the mimetic least-squares functional (dotted lines) based on the
functional (66)

On page 6 it was argued that the error in the conservation laws is proportional to the
error in the constitutive equations when the leats-squares functions (65) is used∫

Ω

(∇ · uh + ψh − f )ψ̃h dx =

∫
Ω

(
ψh − φh)ψ̃h dx ∀ψ̃ .

For the specific choice ψ̃h = ∇ · uh + ψh − f this gives

‖∇ · uh + ψh − f ‖2 =

∫
Ω

(∇ · uh + ψh − f )2 dx

=

∫
Ω

(
ψh − φh)(∇ · uh + ψh − f ) dx

≤ ‖∇ · uh + ψh − f ‖ · ‖ψh − φh‖ .

This implies that
‖∇ · uh + ψh − f ‖ ≤ ‖ψh − φh‖ .

Similarly, we have that
‖vh − ∇φh‖ ≤ ‖uh − vh‖ .

These observations are corroborated in Figure 8, where in Figure 8a both ‖vh − ∇φh‖ and
‖uh − vh‖ are plotted. In Figure 8b ‖∇ · uh + ψh − f ‖ and ‖ψh − φh‖ are plotted for var-
ious polynomial order. The plots in Figure 8 confirm that the error in the approximated
conservation relations is bounded by the error in constitutive relations.

7.2. Different polynomial representations on dual elements. In Remarks 1 and 2 it was
pointed out that for a mimetic least-squares formulation it is not necessary to have a strict
one-to-one relation between dual variables. In Section 7.1 results were presented on the
same grid, i.e. N = Ñ, which violates this one-to-one correspondence. In this section we
will show that we can use different polynomial degrees on dual elements. In Figures 9, 10
and 11 results are presented for the case N = Ñ + 1, which also violates strict duality. All
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Figure 8. h-convergence for (A) v − ∇φ (solid line) and ‖u − v‖ (dotted
line), and (B) ∇ · u + ψ − f (solid line) and ‖φ − ψ‖ (dotted line) in the
L2-norm for various polynomial orders on a uniform orthogonal grid for
the conventional least-squares formulation based on the functional (65)
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(b) h-convergence v

Figure 9. h-convergence for φ and v for various polynomial orders on a
uniform orthogonal grid for the mimetic least-squares functional based
on the functional (66) for the case N = Ñ + 1. The observed rate of
convergence is indicated by the black slope lines.

variables converge optimally with h-refinement as shown in Figures 9 and 10, except for
φ when N = 2 and Ñ = 1 where the observed rate of convergence is one order less than
expected from interpolation theory. The conservation laws are still satisfied up to machine
precision as shown in Figure 11, which was to be expected since the conservation laws are
represented on one mesh only and are completely insensitive to the representation of the
dual variables.
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Figure 10. h-convergence for u and ψ for various polynomial orders on
a uniform orthogonal grid for the mimetic least-squares functional based
on the functional (66) for the case N = Ñ + 1. The observed rate of
convergence is indicated by the black slope lines.
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Figure 11. h-convergence for ∇× v and ∇ ·u +ψ− f for various polyno-
mial orders on a uniform orthogonal grid for the mimetic least-squares
functional based on the functional (66) for the case N = Ñ + 1.

In Figures 12, 13 and 14 results are presented for the case N = Ñ − 1. In this partic-
ular case the polynomial expansions for φh and ψh have the same polynomial degree and
therefore strict duality for these variables hold. All variables converge optimally with h-
refinement as shown in Figures 9 and 10. The conservation laws are still satisfied up to
machine precision as shown in Figure 11.
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Figure 12. h-convergence for φ and v for various polynomial orders on
a uniform orthogonal grid for the mimetic least-squares functional based
on the functional (66) for the case N = Ñ − 1. The observed rate of
convergence is indicated by the black slope lines.
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Figure 13. h-convergence for u and ψ for various polynomial orders on
a uniform orthogonal grid for the mimetic least-squares functional based
on the functional (66) for the case N = Ñ − 1. The observed rate of
convergence is indicated by the black slope lines.

The fact that we can use different polynomial approximations for the primal and dual
variables and still obtain optimal convergence rates is a direct consequence of Proposi-
tion 2, Theorem 2 and Corollary 1, i.e. the fact that we have a conforming discrete repre-
sentation which satisfies the DeRham sequence.

7.3. Mimetic least-squares on deformed grids. The previous results were all obtained
on uniform orthogonal grids. The performance of the method on more general grids is
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Figure 14. h-convergence for ∇× v and ∇ ·u +ψ− f for various polyno-
mial orders on a uniform orthogonal grid for the mimetic least-squares
functional based on the functional (66) for the case N = Ñ − 1.

(a) 5 × 5 grid (b) 10 × 10 grid (c) 15 × 15 grid (d) 20 × 20 grid

Figure 15. Several randomly perturbed grids, where the grid points are
perturbed by a uniform distribution [−h/2, h/2].

presented in this section. The grids that were used in these computations are the randomly
perturbed grids, some of which shown in Figure 15. These grids are obtained by randomly
perturbing the grid points of the uniform grid by adding an offset of [−h/2, h/2] in both
the x- and y-component. These grids contain degenerate cubes like triangles and even
non-convex quadrilaterals.

Figures 16 and 17 show the convergence of the primal and the dual variables, respec-
tively. As emphasized in Sections 3 and 6 the conservation laws are insensitive to the
particular size and shape of the grid, which is illustrated in Figure 18. Both the gradient
relation and the divergence equation are still satisfied up to machine precision.
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Figure 16. h-convergence for φ and v for various polynomial orders on
on the randomly perturbed grids shown in Figure 15 for Np = Nd. The
optimal rate of convergence is indicated by the black slope lines
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Figure 17. h-convergence for u and ψ for various polynomial orders on
on the randomly perturbed grids shown in Figure 15 for Np = Nd. The
optimal rate of convergence is indicated by the black slope lines

8. Conclusions

In this paper a spectral mimetic least-squares formulation is presented for reaction-
diffusion problems. Topological operations like the gradient, curl and divergence can be
satisfied up to machine precision in this formulation. We conclude that two requirements
are necessary for a mimetic least-squares formulation:

(1) The discrete space should allow for a discrete representation for the topological
operators, see Section 4;

(2) The least-squares functional should decouple the topological relations from the
metric-dependent relations, see page 6.
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Figure 18. h-convergence for ∇ × v and ∇ · u + ψ − f in the∞-norm for
various polynomial orders on on the randomly perturbed grids shown in
Figure 15 for Np = Nd. The optimal rate of convergence is indicated by
the black slope lines

The mimetic least-squares method still leads to a positive definite system. We do not need
to satisfy an inf-sup condition. The use of standard C0-elements needs to be abandoned in
favor of basis functions which preserve the geometric degrees of freedom.

These conclusions are confirmed by numerical results presented in Section 7.
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