
METHODS FOR MULTISWEEP AUTOMATION

Jason Shepherd1, Scott A. Mitchell1,
Patrick Knupp1, and David White1

Sandia National Laboratories, Albuquerque, NM, U.S.A.
jfsheph@sandia.gov, samitch@sandia.gov,

pknupp@sandia.gov, and drwhite@sandia.gov

ABSTRACT

Sweeping has become the workhorse algorithm for creating conforming hexahedral meshes of complex models. This paper
describes progress on the automatic, robust generation of MultiSwept meshes in CUBIT. MultiSweeping extends the class of
volumes that may be swept to include those with multiple source and multiple target surfaces. While not yet perfect, CUBIT’s
MultiSweeping has recently become more reliable, and been extended to assemblies of volumes. Sweep Forging automates the
process of making a volume (multi) sweepable: Sweep Verification takes the given source and target surfaces, and automatically
classifies curve and vertex types so that sweep layers are well formed and progress from sources to targets.

Keywords: hexahedral mesh generation, sweeping, and automation.

1 Patrick Knupp and Scott A. Mitchell were supported by the Mathematical, Information and Computational Sciences Division of
the U.S. Department of Energy, Office of Energy Research. All of the authors work at Sandia National Laboratories, a
multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL8500.

1 INTRODUCTION

Sweeping has become the workhorse algorithm for creating
conforming hexahedral meshes of complex models for
Finite Element Analysis. Incarnations of sweeping include
CooperTool,[1] BMSweep,[2] and CUBIT’s Sweep[3] [11]
and MultiSweep.[4] In this progress report, we address
some of the outstanding limitations of CUBIT’s Sweep and
MultiSweep: we increase automation and extend the class
of (multi) sweepable geometries. (CUBIT is a finite
element mesh generation toolkit researched and developed
at Sandia National Laboratories, focussed on reducing the
(user) time to mesh, scalability, componentization.[5])

Many complex CAD assemblies must be manipulated in
some way before they are meshable. CUBIT contains
manual and feature-based geometric decomposition tools
for subdividing and reshaping volumes so that they are
sweepable. CUBIT also contains automatic volume scheme
selection, which automatically sets surface schemes, then
detects when volumes are subsequently sweepable. If a
volume is not automatically sweepable, the user must either
perform geometric operations, or set many parameters and
force a sweep. The goal of geometric operations is to divide

the volume into simpler or more blocky parts that are
sweepable.

In some cases, the volume is not (many-to-one) sweepable
because there are multiple source and multiple target
surfaces. In this case, the volume can be meshed without
further decomposition by MultiSweep; see also the
CooperTool.[1]

Previous versions of CUBIT’s MultiSweep [4] had
robustness problems. As this paper explains, we have
redesigned and re-implemented many of the fundamental
MultiSweep operations, making them more reliable and
general. MultiSweep remains built on the many to one
CUBIT Sweeping algorithm, which has not changed except
for the addition of logic to handle multiple targets.
MultiSweeping is now more reliable, but still cannot mesh
certain classes of geometry. As another improvement, we
have taken steps to extend MultiSweeping to assemblies of
volumes.

MultiSweep can dramatically reduce the time to mesh.
Obviously, if the user knows this tool is available, he will
initially have to perform fewer manual geometric
decompositions. The time saved can be significant, as
models with more volumes are more difficult to visualize,
manipulate, and regroup for analysis boundary conditions.

Also, if the user misses an initial decomposition during the
geometry modification phase, adding that decomposition at
the end of the meshing process can mean redoing much of
the meshing process.

In some cases, a volume is not (multi) sweepable because it
is not blocky enough. For example, the edges and corners
of a cube may be rounded off in the CAD model. This
shape detail may be unimportant for the analysis, in which
case the user may add material to remake a square cube.
However, sometimes changing the geometry would result
in a long delay: meshing parameters may need to be
tediously reset after the geometry change. Also, the user
may have to return to the native CAD modeling package, or
wait for a support person to return to the CAD modeling
package. In addition to rounded geometry, many times a
volume is not (multi) sweepable because some of the
linking surfaces are not perfect rectilinear shapes, and are
not automatically selected as SubMappable.[6] (For the
purposes of this paper, SubMapping is a 2D surface
mesher, which creates quadrilateral meshes that are a
contiguous collection of structured mxn rectangles.)

Often the user wishes to (multi) sweep the volume anyway,
perhaps because he knows that the sweep smoothing
algorithm[11] will create a high quality mesh, or because
he is willing to accept a lower quality mesh in that volume
in return for conforming sweep directions for the entire
assembly. If he wishes to sweep the volume, he must
specify the source and target surfaces of the MultiSweep. In
the past, he had to also specify other meshing parameters at
the curve and vertex level. This paper describes Sweep
Verification, a new tool that takes the given source and
target surfaces, and sets curve types and linking surface
schemes and vertex types so that the volume is sweepable.
This tool can dramatically reduce the time to mesh:
manually setting the curve and vertex types so that a
volume is sweepable is a tedious and error prone process.
Even a small volume might have 50 vertices, each of
which, on average, might be in three surfaces. To set them
all, a user must click 150 times in the graphics window of
CUBIT’s GUI, in addition to pulling down and selecting
menu options.

Sweep Verification is a tool in the general category of
Sweep Forging. The term “Sweep Forging” is a double
entendre, implying either hammering the geometric and
topological features of a volume into a sweepable shape, or
falsifying the nature of the geometry and topology so that
other algorithms think the volume is sweepable.

2 SWEEP FORGING

This section describes sweep forging, the process of taking
a model that is not already sweepable, and modifying the
topology or classification of topology, in order to make the
volume sweepable. The geometry is not decomposed or
reshaped, but is re-classified as if it were a different shape.
E.g. two curves that meet at a 180 degree angle may be
classified as meeting at a 90 degree angle.

2.1 Definitions, Vertex and Curve Types

Vertex Type. The type of a vertex of a surface is the
number of quadrilaterals in the structured mesh of that
surface that contain (or will contain) that vertex; see Figure
1. For example, a mapping surface has four type 1 vertices;
any other vertices are type 2. A vertex has a distinct type
for each surface containing it. Reversals are rare, except for
models with thin partial cuts.

Figure 1. Vertex types.

Curve Type. The type of a curve of a volume is the
number of hexahedra in the mesh of the volume that
contain (or will contain) each mesh edge of the curve.
Figure 2 illustrates the four curve types, which are
analogous to the four vertex types.

Figure 2. Curve types.

Firmness. Curve and Vertex types, and mesh schemes,
have a firmness, which measures whether other tools can
modify it. User-set types are hard-set, meaning that no
automatic tool will change them. Automatically set types
are usually soft-set, and unset types are default-set.

Additional Sweeping Terms. A swept volume has a set of
source and target surfaces, which may have unstructured
meshes. All other surfaces are linking surfaces, and have a
structured map or SubMapped mesh. A swept mesh of a
volume consists of a topological projection of the source
and target meshes, along a sweep path, in conforming
layers of hexes. See reference[7] for a precise definition of
sweeping.

2.2 Sweep Verification

In this section we describe Sweep Verification, the process
of setting surface schemes, and classifying the types of
curves and vertices in order to force a volume to be
sweepable. Since the vertex types on non-linking (source
and target) surfaces are irrelevant for sweeping, they are
ignored throughout this section.

Consider the example in Figure 3. Automatic volume
scheme selection will not choose to sweep this volume,
since the desired linking surfaces do not admit a good
enough structured mesh. Nonetheless, suppose we want to
sweep it anyway. In order to do so, we need to specify the
source and target surfaces. From there, Sweep Verification
will automatically assign a mapping or SubMapping
scheme to the linking surfaces, set the curve types so that
the source surfaces form a right angle with the linking
surfaces, and set the vertex types of the linking surfaces so
that the sweep layers will proceed from the source surfaces
to the target surfaces.

Our Sweep Verification algorithm does not always produce
the correct curve and vertex types to ensure sweepability.
(As a backup, we propose casting the constraints as an
integer linear program, and sacrificing some solution
quality; see Section 6, Future Directions.) However, our
current algorithm does automatically handle many simple
examples, relieving the user from tediously becoming
familiar with all of the curves and vertices in a given model
and setting their type.

For example, the simple example in Figure 3 takes 2
minutes to setup and mesh in CUBIT’s GUI with Sweep
Verification. Without Sweep Verification, setting curve and
vertex types in CUBIT’s GUI increases the time to 5
minutes, assuming that the user realizes that curve and
vertex types need to be set. Often, it is not obvious why a
given volume will not automatically sweep. Diagnosing
and fixing a similar problem in a production model last
year took a sophisticated user two hours.

Figure 3. Sweep Verification saves a significant
amount of time, even on simple examples.

When Sweep Verification does fail, the user can seed the
process by manually adding a little bit of information, i.e.
by manually setting a few curve or vertex types. When
Sweep Verification is re-run, the user-set classifications are
taken as fixed, and the algorithm has to adjust only the
remaining classifications, and has a greater chance of

success. Hence even when the process is not fully
automatic, it is still faster for the user. Also, Sweep
Verification’s running time is fast, due to its serial nature.

2.2.1 Sweep Verification Algorithm

The main algorithmic steps of Sweep Verification are the
following:

1. Set source and target surfaces.

2. Set curve types based on dihedral angle and
adjoining surface classification

3. Set vertex types based on single surface criteria.

4. For each vertex, compute the desired sum of
types over all linking surfaces based on adjoining
curve types, surface classifications, and fuzzy
angle criteria.

5. Adjust the vertex types so that the goal sum is
met, using a pigeonhole algorithm.

In step 1, source and target surfaces are set either using
CUBIT’s automatic volume scheme selection,[7] or
manually by the user. Later steps take this surface
classification as fixed. Also, linking surfaces are given
structured meshing schemes, i.e. map or submap, in this
step. Currently, sources and targets are automatically
selected successfully only when step 5 is not needed. In
future work, we plan to extend automatic volume scheme
selection to take advantage of Sweep Verification; see
Section 6, Future Directions.

In step 2, curve types are set. A curve adjacent to two
source or two target surfaces must by of type 2. A curve
adjacent to one source surface and one target surface must
be of type 4, which is rare. Otherwise, geometric tests are
necessary. Between a non-linking and a linking surface, if
the interior dihedral angle is less than 180 degrees, then the
curve type is 1; otherwise it is 3. The type between two
linking surfaces matters only in so far as it determines
whether a curve is a reversal that should be treated as a
degenerate source/target surface. If the interior angle is less
than or equal to 315 degrees, then the curve is treated as
type 2. (The actual number of hexes attached is arbitrary
and doesn’t affect Sweep Verification.) If the interior angle
is greater than 315 degrees, then the curve is a reversal. The
consequences of linking surface reversals are described in
step 4. The curve types set in step 2 can be incorrect, since
the criteria are purely local.

In step 3, vertex types are set for each linking surface
independently, so that each linking surface may be meshed
according to its structured meshing scheme. The algorithm
described in “Choosing corners of rectangles for mapped
meshing” [8] sets the vertex types for mapping surfaces.

We have a new algorithm for setting vertex types for
SubMapping surfaces that works very well in practice when
coupled with step 5. First, vertex types are set based on
computing the interior angle (with respect to the local
surface normal) between the two curves containing the
vertex, and rounding to an integer multiple of 90 degrees.

Vertex types are converted to turning types, by subtracting
2. For an exterior loop the sum of turning types should be
–4; for an interior loop the sum should be +4; and for a flat
loop, such as the two loops of a cylindrical surface, the sum
should be 0. A surface may have one exterior loop or two
flat loops, and any number of interior loops. Once the
desired turning sum for a particular loop is decided, the
types are adjusted to get that sum, as illustrated by the
following example. Suppose that the sum is 2 and a sum of
4 is desired. To decide which vertex types to change, we
consider the fuzziness of the current type, defined by

angletypevertexupfuzzy −+= 90*)1_(_ .

We increase the type of the two vertices with the smallest
fuzzy_up values by 1 each. As in other steps, types that
have been explicitly set by the user are taken as fixed and
not adjusted.

The algorithms of step 3 are used as subroutines for step 5.

In step 4, for each vertex, we compute the desired sum of
vertex types. The main observation is that the sum of vertex
types, over all linking surfaces that contain the vertex,
must be a particular value depending on adjoining curve
type and surface classifications. (Recall that vertex types on
non-linking surfaces are irrelevant.)

If there are no reversal curve types adjoining a vertex, we
can make the following observations. For a vertex whose
adjoining surfaces are all linking surfaces, the sum of
vertex types must be 4. For a vertex with adjoining linking
and non-linking surfaces, the sum of vertex types over all
linking surfaces must be either 2 or 4. The sum must be 2 if
there is only one adjoining linking surface or if adjoining
curves between linking and non-linking surfaces are all
type 1 or all type 3; see Figure 4 and Figure 5. Otherwise,
there are curves between linking and non-linking surfaces
of both type 1 and type 3, and the sum should be 4; see
Figure 6.

We use will this curve type test in the linear program
formulation mentioned in Section 6, Future Directions.
However, the curve types are not always set correctly, e.g.,
when a linking surface is tangent to a source surface. So, in
the current implementation, where we do not adjust curve
types after step 2, we use a different test. We desire a
vertex type sum of 4 only if the initial vertex type sum is at
least 3 and the sum of interior vertex angles is at least 270
degrees.

Figure 4. If there is a single linking surface, the
vertex type on it must be 2.

Figure 5. If between linking and source/target
surfaces all curves are type 1 (or all are type 3)

then the sum of types must be 2.

Figure 6. If between linking and source/target
surfaces there are curve types of both 1 and 3,

then the sum of linking surface vertex types must
be 4.

If there are reversal curve types, then we enumerate some
common cases, but do not enumerate all possible cases. We
have reversal type curves perpendicular to the sweep
direction, between two linking surfaces. Such a curve

linking surface

source surface

curve type 1

curve type 3

source surface

source surface

should be treated as a degenerate source/target surface; see
Figure 7. To catch this case, we check if there is a single
reversal, it is between two linking surfaces, and there are no
adjoining source/target surfaces. In this case the desired
vertex type sum is 6.

Figure 7. The curve at the bottom of the “V” is
treated as a degenerate source surface during

sweeping. It is a reversal curve. At the near
vertex, the sum of vertex types is 6: two inside the

“V” plus four on the near face.

We also check for the case of a reversal curve whose
tangent is in the direction of the sweep, and which is
adjacent to some source/target surfaces. This curve is not a
degenerate source/target of the sweep, so the desired vertex
type sum is 2 or 4 as before. Most other cases we handle
implicitly by simply requiring that the sum of the vertex
types must be the current sum and giving hints to the user if
the types cannot be automatically adjusted; this allows the
user to fix problems by explicitly setting the vertex and
curve types. In all explicit and implicit cases, we require
that the sum of types must be even. The evenness criterion
comes from the fact that each hex containing a vertex has
two faces containing that vertex parallel to the sweep
direction. These faces are either on a linking surface, or are
interior to the volume and paired with another hex
containing the vertex.

In step 5, once the desired sum at each vertex is known, we
attempt to adjust the vertex types in order to meet that
desired sum and maintain the mappablity/submappability of
linking surfaces. The order in which types are adjusted is
important. Once a vertex type is adjusted, it is considered
fixed and is not changed later in the process. The process is
successful more often if the vertices where there is the least
freedom are adjusted first. We have a verification loop,
which proceeds until all vertex types are fixed. Within the
verification loop, we have two loops.

The first loop is over surfaces of the volume. If all of the
unfixed vertex types of a surface must be certain values in
order to mesh the surface, those vertex types are fixed. For
example, if all of the vertex types except the four ends are
already fixed on a mapping surface, the remaining four are
fixed.

The second loop is over vertices of the volume. If, over all
surfaces of a particular vertex, the vertex types must be a
certain values in order to sum up to the correct goal sum,
all vertex types at that vertex are fixed. For example,
suppose the goal sum is 4, and three surfaces meet at a
vertex, and one of the vertex types is already fixed at type
2. Then the two other vertex types are fixed at type 1. It
may be that at no vertex the types are completely fixed. In
that case the algorithm makes a choice, adjusting the types
at a vertex where there is the least freedom, in order to
make progress. Suppose the current type sum is too small
by 1, then the type of one of the vertex types for the vertex
must be increased. We consider candidate vertex types in
order of their fuzziness values. We change the most fuzzy
vertex type, treat it as fixed, and use step 3 as a subroutine
to check if the other vertex types on the corresponding
surface can be changed so that a structured mesh is again
possible. If a structured mesh is not possible, then we try
the next most fuzzy vertex type, and so on.

This pigeonhole process works for many volumes.
However, there are cases where the algorithm will fail,
since we are not solving the global problem for all vertices
and surfaces simultaneously. However, after telling the user
which vertices the adjustment failed on, it is usually easy
for him set the correct curve or vertex types by hand in the
(small) problem area and re-run Sweep Verification. This
still meets our goal of reducing the time to mesh by
alleviating the user’s need to touch all of the curves and
vertices of the volume.

3 MULTISWEEPING

Having described our advances in automating the process
of setting up sweeping parameters, we now focus on our
advances in MultiSweep robustness. The procedure used in
most sweeping methods is to identify a set of topologically
equivalent source and target surfaces. The source surfaces
are meshed, and then copied a single layer at a time through
the volume until reaching the target surface.[2] [3] Each
layer of mesh within the volume, then, is a projected copy
of the mesh on the source surfaces.

Sweeping has become reasonably robust for volumes which
contain one or many source surfaces and only a single
target surface. Meshing volumes with many sources and
many targets is a significant extension of the current
sweeping algorithms. This is due to the fact that any mesh
that is placed on a source surface must eventually ‘match
up’ with the geometric features found on the target
surfaces. To overcome the potential conflicts between the
mesh on the source surfaces and the topology on the target
surfaces, several algorithms have been designed to resolve
potential conflicts by either decomposing the volume
further or imprinting the source surfaces with the

appropriate geometric features from the target surfaces.[1]
[9] [10] Figure 8 shows an example of a volume which is
considered multi-sweepable. Notice that the mesh on the
source surfaces could not be projected correctly onto the
target surfaces because of mesh-topology conflicts.

Figure 8. A MultiSweepable volume with potential
mesh topology conflicts between the source and

target surfaces.

3.1 The MultiSweep Algorithm

The key difficulty in extending sweeping to MultiSweeping
is ensuring that the meshes of the source surfaces respect
the topologies of the target surfaces. The current method
used in CUBIT is based on the loop dragging framework
designed by Lai Mingwu at Brigham Young University as
part of his doctoral work.[9] We have revised the
implementation of these steps since first publication, in
order to make the method reliable. Each of the meshed
loops of the unmeshed target surfaces are dragged up to the
source surfaces, one layer at a time, using the layers
specified by the linking surface meshes. Any potential
mesh and topology conflicts are resolved by imprinting the
source surfaces with the loops from the target surfaces.

The MultiSweep method involves four major steps.
1. Setup a mesh layering system for the volume, and

mesh the linking surfaces and source/target loops
(only).

2. Drag the meshed loops from the target surface layers
up to the source surface layers. Combine the source
surface topology and geometry with the dragged target
loops to created additional source surface loops.

3. Partition the source surfaces based on the new loops,
using virtual geometry.

4. Mesh the source surfaces. Mesh the volume using a
combination of (many to one) sweeps: each target
surface loop is swept to from its projected source
surface loops.

The following subsections describe our new procedures for
step 2 in detail. The other steps are straightforward or have
been already described in other work. [3, 11, 12]

3.1.1 Projecting nodes and smoothing

To determine the location of source imprints, the meshed
target loops are dragged (projected) one mesh layer at a

time until the source surfaces are reached. The nodes of the
intermediate loops are called curtain nodes: connecting the
layers together forms a curtain partitioning the volume into
the inside of the loop and the outside. The placement of
curtain nodes in physical space determines the placement of
the source imprints. Ideally, we desire that source imprint
locations correspond (in some geometrically meaningful
way) to the locations of the target imprint curves. If this is
not the case, seaming operations may fail to create
desirable source imprints, leading to poor mesh quality. In
extreme cases, poor placement of the curtain nodes may
cause seaming to fail, in which case no swept mesh can be
created.

The algorithm proceeds through the sweep layers in an
iterative fashion, projecting the current curtain node layer
to the next layer. The user may set a sweep imprint
smoothing flag, in which case each layer is smoothed after
it is projected. As a preliminary step, the boundary of the
current and next mesh layer, as defined by linking surfaces,
are each assembled into a doubly-linked node list.

We first consider the case of no sweep imprint smoothing.
Given the current curtain node, the two lists are used to
construct a matrix that, when applied to the current node
position, yields the position of the next curtain node; see
Figure 9. The details of this method are described in full in
reference [3]. The procedure is initialized using target
imprint nodes and target bounding node loops. The matrix
method is adequate when the curtain nodes can be
satisfactorily placed via an affine transformation (e.g.,
translation, rotation, and scaling).

For more complex or warped geometries involving more
general transformations between the current and next loops,
we rely on sweep imprint smoothing. This smoother
works similar to the one devised for the Cubit SweepTool
algorithm, [11] which uses a weighted Winslow smoother
for 2D unstructured meshes. The weighted Winslow
smoother is, in turn, based on an unweighted Winslow
smoother for 2D unstructured meshes.[12] In the sweep
imprint smoothing method, the nodes surrounding the
current curtain node are gathered. These neighbor nodes
are used to determine smoothing weights, which are
derived from expressions involving projections of the
Winslow operator (evaluated in a Taylor Series expansion)
onto the tangent plane. The weights are then used to
“morph” the current node’s position into the next node’s
position, using the positions of the next node’s neighbors.
Derivatives needed in the weighted Winslow smoother are
again computed via a Taylor series expansion using the
positions of the next node’s neighbors.

Sweep imprint smoothing is a very effctive tool. When it
was first introduced, the number of cases in the
MultiSweep test suite that meshed successfully increased
by 25%. Even with the subsequent improvements to loop
imprinting, the sweep imprint smoother remains an
essential part of the multi-sweep algorithm because it
improves overall mesh quality.

Figure 9. Left shows the geometry of the
boundary of the current layer. Right shows the

boundary of the next mesh layer. The geometric
relationship between the current curtain node and
the layer boundary is preserved in the next layer

through a matrix transformation. When necessary,
an additional step preserves the geometric

relationship between the current curtain node and
its neighbors in the next layer through sweep

imprint smoothing.

3.1.2 Seaming

As the nodes from the target loops reach the source surface
levels, some loops from below will inevitably ‘line up’ with
loops on the source surfaces. Whenever the loops line up, a
seaming operation is used to simplify the loops and
combine nodes between loops where possible.

Two types of seaming operations can be performed,
‘proximity’ seaming and ‘smart’ seaming. Proximity
seaming operations occur based on geometric proximity to
other nodes. From a node in one loop, the closest node in a
boundary loop is found and the proximity to the first node
is determined. If the two nodes were within a quarter of a
mesh edge length between each other, the nodes were
combined into a single node. This process was continued
for each node in the first list, combining the nodes in the
two loops, where possible.

‘Smart seaming’ has been added to supplement the
proximity checks. Smart seaming starts at a common node
between two loops and looks at the next nodes of both
loops. If the angle between the two next nodes and the
common node is less than forty-five degrees, is within
reasonable geometric proximity, and the nodes can be
combined without affecting quality or producing inverted
elements, then the nodes are combined. Smart seaming has
greater flexibility in combining nodes than the proximity
checks alone, and reduces the number of small or sliver
surfaces that may be generated during partitioning.

In addition to smart seaming, numerous checks are made to
ensure that any nodes being seamed will not reduce the
quality of the resulting mesh. In particular, the nodes are
checked to ensure that any merging completed between the
nodes will not produce poor quality or inverted elements,
and that nodes on the geometric curves of the volume are
not seamed together. Figure 10 shows an example of a
seaming procedure.

Figure 10. Loop seaming prior to imprinting on a
source surface.

3.1.3 Loop Boolean Operations

As the loops are brought up from the target surfaces to the
source surfaces, the loops need to be broken up into new
loops and correctly assigned to the source surfaces.
Breaking the loops into smaller loops based on the
interaction with the other loops belonging to the source
surfaces is accomplished by using loop Boolean operations:
union, intersection, and subtraction.

When creating the new loops on the source surfaces, the
most important constraint to remember is that to produce an
all-quad mesh, the number of nodes in a loop must be even.
Therefore when combining nodes, care must be taken to
ensure that the new, simpler loops contain an even number
of nodes. It is also important to realize that this procedure
for combining nodes can affect the ability to successfully
produce an even numbered loop in subsequent Boolean
operations with other loops. Figure 11 shows an example
of combining nodes to form odd and even loops.

current
curtain
node

next
curtain
node

Figure 11. Combining nodes to form odd and even
loops.

The current procedure for generating the simplest set of
loops on a source surface is to first generate a set of loops
that lie completely on the source surface, i.e. a set of loops
that do not overlap any loop of the source surface and do
not lie outside the source surface. This is accomplished by
taking the target loops from below and using the
subtraction Boolean with the source surface boundary
loops, taking care that resulting loops have an even number
of nodes. Once the overlap has been resolved, the
remaining loops on the source surface then go through a
series of subtraction and intersection Booleans to form the
simplest loops on the source surface. Each of the simple
loops corresponds to either a new source surface, or a hole
within a pre-existing surface.

3.2 Multi-volume MultiSweeping

Another way in which we have extended the usefulness of
MultiSweeping is extending it to meshing assemblies, or
groups, of volumes. This presents some new challenges. A
single volume in the group may be meshable using one-to-
one, or many-to-one, sweeping techniques; however, the
collection taken together may require MultiSweeping
before the collection will be meshable. A simple example
of this with three cylinders is shown in the series of Figure
12, Figure 13, Figure 14, and Figure 15. Individually, all of
the cylinders are sweepable with many-to-one, or one-to-
one sweeping techniques. However, meshing the parts
singly would probably result in a non-contiguous mesh at
the inter-volume surfaces.

Figure 12. Three stacked cylinders that are
individually many-to-one or one-to-one

sweepable. The collection taken together is only
meshable with MultiSweeping.

Figure 13. Three stacked cylinders after the target
surfaces have been imprinted with the source

surface topology.

Figure 14. Three stacked cylinders after the
source surfaces have been imprinted with the

target surface topology.

Figure 15. Completed mesh of the three cylinders.

In order to get a contiguous mesh, we must drag imprints
across multiple volumes in a particular order. We are able
to do this automatically using a slight modification to the
sweep grouping techniques discussed by White and
Tautges [7] and the MultiSweep loop imprinting algorithms
described in Section 3.1.

The first step is to align the source and target lists on the
volumes, such that each target surface corresponds to a
source surface on the next volume. Once the volumes have
been ordered from the uppermost source surface down to
the lowest target surface, the MultiSweep algorithm is
applied to the volumes in order, imprinting the source
surface topologies onto the corresponding target surfaces.
When all volumes have been imprinted from source to
target, the order is reversed and the topology from the
target surfaces is imprinted onto the source surfaces. The
imprinting of source surfaces to target surfaces and then
back from target surfaces to source surfaces guarantees
contiguity between the meshes. Each volume is then
meshed, in the previously determined order, using
sweeping.

4 EXAMPLES

Figure 16 and Figure 17 are examples where Sweep
Verification is necessary.

The relatively poor quality in Figure 16 was nonetheless
sufficient for the desired analysis. In the future, for Sweep
Forging we propose to explore methods for automatically
improving mesh quality and connectivity, similar to
Pillowing[13] and Grafting[14].

Figure 16. Sweep Verification forced a surface
tangency to be treated as a 90 degree angle.

Figure 17. Sweep Verification forced the corners
of the curved linking surface to be correct for

sweeping the entire volume.

The following examples in Figure 18, Figure 19, Figure 20,
and Figure 21 did not reliably MultiSweep before
implementing the improved dragging, imprinting, and
seaming operations described in this paper.

Figure 18. A MultiSwept gear (courtesy of
Caterpillar).

Figure 19. A MultiSwept volume requiring sweep
smoothing (courtesy of Caterpillar).

Figure 20. To fully automate the meshing of this
volume, interval assignment needs to be run after

imprinting (courtesy of Caterpillar).

Figure 21. In this MultiSwept example, loops are
picked up and lost during the sweep.

5 CONCLUSIONS

In summary, in this progress report we have shown that the
time to create hexahedral meshes can be reduced by
extending sweeping to reliable multiple source, multiple
target sweeping of assemblies. Also, the process of setting up
a MultiSweep can be sped up through automatically
classifying surface, curve and vertex parameters with Sweep
Verification.

6 FUTURE DIRECTIONS

Currently, CUBIT’s automatic volume scheme selection
algorithm only works if the vertex types chosen on local
surface criteria make the linking surfaces form valid chains,
i.e., if the vertex types chosen by step 3 of Sweep
Verification are correct and do not need to be adjusted by
step 5. In future work, we intend to modify Sweep
Verification to return a measure of how much the curve and
vertex types needed to be adjusted, so that automatic volume
scheme selection can use that measure to select sources and
targets. This is analogous to how corner picking is used by
automatic surface scheme selection in CUBIT; see references
[7][8].

Also, Sweep Verification may be recast as an integer linear
program, provided certain desires and constraints are relaxed.
This would serve as a useful backup algorithm when the
existing algorithm does not find a feasible set of vertex types.

MultiSweeping is also in the process of being extended. One
extension that will make the algorithm much more flexible is
to have an interval assignment phase after imprinting. (The
loop imprinting should still be done using a nodal
representation; the mesh density affects the result of
Booleans, and this is a desirable feature.) There are two main
motivations. The first motivation is that often times loops are
totally coincident in the seaming process, but are not directly
connected by linking surfaces, such as the top and bottom
loops in Figure 20. In this case, the intervals are not forced to
be the same before the imprinting phase, but after imprinting
we know the loops correspond, and should have equal
intervals. The second motivation is that sometimes intervals

should be adjusted slightly in order to make features match
up better. For example, sometimes nodes are seamed which
are far apart, in order to ensure that resulting loops are even.
Sometimes loop Boolean operations fail or result in excess
mesh skew, again because loops must remain even.

REFERENCES

[1] T. Blacker, “The Cooper Tool,” Proc. 5th International
Meshing Roundtable, pp. 13-29, 1996.

[2] M. L. Staten, S. A. Canann, and S. J. Owen,
"BMsweep: Locating Interior Nodes During
Sweeping," Proceedings 7th International Meshing
Roundtable, Sandia National Laboratories, pp. 7-18,
1998.

[3] P. Knupp, "Next-Generation Sweep Tool: A Method
for Generation All-Hex Meshes on Two-and-One-Half
Dimensional Geometries," Proc.7th International
Meshing Roundtable, Sandia National Laboratories,
pp. 505-513, 1998.

[4] L. Mingwu, S. Benzley and D. R. White, “Automated
Hexahedral Mesh Generation by Generalized Multiple
Source to Multiple Target Sweeping,” Proc. 5th U.S.
National Congress on Computational Mechanics, pp.
94, 1999.

[5] CUBIT homepage, http://endo.sandia.gov/cubit.

[6] D. White, Automatic, “Quadrilateral and Hexahedral
Meshing of Pseudo-Cartesian Geometries Using
Virtual Subdivision,” Published Masters Thesis at
Brigham Young University, 1996.

[7] D. R. White and T. J. Tautges, “Automatic Scheme
Selection for Toolkit Hex Meshing,” Proc. 5th U.S.
National Congress on Computational Mechanics, pp.
90, 1999. To appear in IJNME, Sept. 2000.

[8] S. A. Mitchell, "Choosing corners of rectangles for
mapped meshing," Proc. Thirteenth Annual
Symposium on Computational Geometry, pp. 87-93,
1997.

[9] L. Mingwu, “Automatic Hexahedral Mesh Generation
by Generalized Multiple Source to Multiple Target
Sweeping,” Published Doctoral Dissertation at
Brigham Young University, 1998.

[10] S.-S. Liu, and R. Gadh, “Automatic Hexahedral Mesh
Generation by Recursive Convex and Swept Volume
Decomposition,” Proceedings 6th International
Meshing Roundtable, Sandia National Laboratories,
pp. 217-231, 1997.

[11] P. Knupp, “Applications of Mesh Smoothing: Copy,
Morph, and Sweep on Unstructured Quadrilateral
Meshes,” Intl. J. for Num. Meth. Engr., Volume 45,
Issue 1, pp. 37-45, 1999.

[12] P. Knupp, “Winslow Smoothing on Two-Dimensional
Unstructured Meshes”, Engr. With Computers, 15:
263-268, 1999.

[13] S. A. Mitchell, T. J. Tautges. “Pillowing doublets:
refining a mesh to ensure that faces share at most one
edge,” Proc. 4th International Meshing Roundtable, pp.
231-240, 1995.

[14] S. R. Jankovich, S. E. Benzley, J. F. Shepherd, and S.
A. Mitchell, “The Graft Tool: an all-hexahedral
transition algorithm for creating a multi-directional
swept volume mesh,” Proc. 8th International Meshing
Roundtable, pp. 387-392, 1999.

