
Page Migration Support for Disaggregated Non-Volatile
Memories

Vamsee Reddy Kommareddy
University of Central Florida

Orlando, Florida, USA
vamseereddy8@knights.ucf.edu

Simon David Hammond
Sandia National Labs
New Mexico, USA

sdhammo@sandia.gov

Clayton Hughes
Sandia National Labs
New Mexico, USA

chughes@sandia.gov

Ahmad Samih
Intel Corporation
Austin, Texas, USA

ahmad.a.samih@intel.com

Amro Awad
University of Central Florida

Orlando, Florida, USA
amro.awad@ucf.edu

ABSTRACT
As demands for memory-intensive applications continue to grow,
the memory capacity of each computing node is expected to grow
at a similar pace. In high-performance computing (HPC) systems,
the memory capacity per compute node is decided upon the most
demanding application that would likely run on such system, and
hence the average capacity per node in future HPC systems is ex-
pected to grow significantly. However, since HPC systems runmany
applications with different capacity demands, a large percentage of
the overall memory capacity will likely be underutilized; memory
modules can be thought of as private memory for its correspond-
ing computing node. Thus, as HPC systems are moving towards
the exascale era, a better utilization of memory is strongly desired.
Moreover, upgrading memory system requires significant efforts.
Fortunately, disaggregated memory systems promise better utiliza-
tion by defining regions of global memory, typically referred to as
memory blades, which can be accessed by all computing nodes in
the system, thus achieving much better utilization.

Disaggregated memory systems are expected to be built using
dense, power-efficient memory technologies. Thus, emerging non-
volatile memories (NVMs) are placing themselves as the main build-
ing blocks for such systems. However, NVMs are slower thanDRAM.
Therefore, it is expected that each computing node would have a
small local memory that is based on either HBM or DRAM, whereas
a large shared NVMmemory would be accessible by all nodes. Man-
aging such system with global and local memory requires a novel
hardware/software co-design to initiate page migration between
global and local memory to maximize performance while enabling
access to huge shared memory. In this paper we provide support to
migrate pages, investigate such memory management aspects and
the major system-level aspects that can affect design decisions in
disaggregated NVM systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MEMSYS ’19, Sept 30 - Oct 3, Washington DC
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

CCS CONCEPTS
•Computer systems organization→Heterogeneous (hybrid)
systems.

ACM Reference Format:
Vamsee Reddy Kommareddy, Simon David Hammond, Clayton Hughes,
Ahmad Samih, and Amro Awad. 2019. Page Migration Support for Disaggre-
gated Non-Volatile Memories. In MEMSYS ’19: The International Symposium
on Memory Systems, Sept 30–Oct 03, 2019, Washington DC. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Computing systems with disaggregated memories are being ex-
plored as a promising research direction for building future exascale-
class computing systems, The Machine project by HP Labs [9, 19].
As many modern applications require large memory allocations in
addition to large data sets, scaling memory capacities is becoming
a progressively more challenging design requirement. Meanwhile,
DRAM technology is proving challenging to scale to a level that
copes with the large capacity demands. Moreover, the high idle-
power of DRAM requires an expensive cooling infrastructure and
excessive operational costs (electric bills). Thus, deploying DRAM
in orders of terabytes or petabytes for data centers incurs significant
power and cooling costs. Thus, emerging non-volatile memories
(NVMs), e.g., Intel’s and Micron’s 3D X-Point [17], are expected
to be the main building block for such systems due to their low
idle-power, high speed and scalability.

Memory

Node

Memory

Node

(a) Conventional systems.

Disaggregated
MemoryNode

Node

Node

Node

Network

(b) Disaggregated memory systems.

Figure 1: Comparison between accessingmemory in conven-
tional and disaggregated memory systems.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

MEMSYS ’19, Sept 30 - Oct 3, Washington DC Vamsee Reddy Kommareddy et al.

Disaggregated memory systems differ from conventional com-
puting systems in that memory modules are no longer closely
coupled with computing nodes [6, 31], Figure 1. In current High-
Performance Computing (HPC) systems, each computing node has
a memory module attached to the processor socket directly within
the same blade [25], Figure 1a. The major issue of such conventional
schemes is that memory modules are only utilized by the co-located
computing node, which can leave large percentage of memory un-
derutilized; each node is agnostic to the rest of the system, and thus
its memory cannot be utilized efficiently by other nodes [24]. In
contrast, disaggregated memory enables fluid division of the shared
memory resource among all nodes resulting in a highly scalable
system, yet cost efficient, Figure 1b. Finally, upgrading and migrat-
ing the memory system would require much less efforts when all
memory modules are placed in one central blade, typically called
memory blade, as in disaggregated memory systems.

The key enablers for disaggregated memory systems are fast in-
terconnecting interfaces and technologies, e.g., GenZ [11] and CCIX
[10], in addition to scalable, dense and ultra-low power memory de-
vices such as emerging NVMs. However, given the contention that
results from memory sharing among nodes, proper management of
the shared memory resource is a key design requirement. Moreover,
since NVM is generally slower than DRAM, it is critical to iden-
tify which pages to migrate and when to migrate pages from the
shared memory pool to the fast, but small, local memory (typically
made out of DRAM). Thus, in this paper we focus on innovating
mechanisms that enable efficient memory management scheme in
disaggregated memory systems.

Managing disaggregated memory systems is particularly chal-
lenging due to the limited number of memory accesses visible to
each node. Thus, a centralized scheme in the shared memory re-
source is more suitable. However, monitoring memory accesses at
the shared memory level would require careful design and imple-
mentation due to its direct impact on overall system performance.
Second, triggering page migrations between shared memory and
local memory would require special handling to ensure invalidating
the affected and possibly cached memory mappings on each node.
Moreover, identifying when and how often to migrate pages from
global memory to local memory is challenging due to many aspects:
temporal reuse of page, cost of page migration, network latency
and shared memory latency. All of these aspects together should
be considered to determine if page migration is useful.

Unfortunately, the current literature lacks any detailed study
that investigates the system-level aspects and memory manage-
ment impact on disaggregated memory systems. A large body of
research on memory management techniques focuses on a single
node with different levels of memory technologies, with advance-
ments in the memory controller for dynamic remapping for hot
pages [34]. Other work focuses on hardware/software co-design
aspects for enabling monitoring the popularity or “hotness” of each
page through TLB structures augmented with counters [30]. Recent
work investigates how to manage NVM when used as a swap space,
i.e., memory extension [4]. The major difference between prior
work and our work is that in disaggregated memory systems, mem-
ory management decisions should occur at the system level and
account for network latency, global memory contentions, global
memory latency and the necessary updates of system-level memory

mappings. Such considerations pose a challenge on where and how
to implement the memory management. For instance, should mem-
ory placement be handled by a global memory controller? How
aggressively should we perform page migrations? Howmany pages
should be migrated during each epoch, and, what page migration
costs would still render page migration useful? While the objective
is the same in any heterogeneous memory system work: migrate
hot pages to the faster memory, the design aspects and usefulness of
page migration strictly depend on the system architecture, memory
architecture and memory technologies. Thus, designing and imple-
menting memory management in disaggregated memory systems
has its own unique challenges, conclusions and design guidelines.
Moreover, most of the prior work either conclude their results based
on trace-driven or analytical models [3, 30], or use real-system pro-
filing where additional latency is added on each page fault [4], and,
hence, are inapplicable to systems where global memory is directly
accessible, i.e., not like a swap device. In contrast, in this paper, we
use and provide a detailed cycle-level simulation model, which has
been integrated with a best-of-class open-source simulation frame-
work and is able to replicate the significant detail associated with
the major system-level aspects that affect memory-management
decisions.

In this paper, we systematically analyze the impact of various
memory management aspects including TLB shootdowns, page
migration latencies, page migration frequency and initiation mech-
anisms, and global memory latency, on the overall system perfor-
mance for several applications. We identify what system configu-
rations and parameters would make page migration more useful.
Finally, we propose a novel page migration mechanism that relies
on minimal hardware changes to track hot pages at the global mem-
ory, where such information can be periodically accessed by system
software to initiate page migrations at defined epoch boundaries.

To evaluate our proposed memory management scheme, we use
the Structural Simulation Toolkit (SST), a cycle-level architectural
simulator that is widely used, based on open-source licensing and
is publicly available. We use SST to model in detail page migration
overhead, TLB shootdown latency, shared external interconnects,
and global NVM memory. We simulate a prototype configuration
of eight computing nodes that share a global memory. While disag-
gregated memory systems are expected to have hundreds of com-
puting nodes, given the shared memory resource, simulating such
large system can lead to many serialized events and hence will pro-
duce intractable simulation times. However, since memory-centric
systems are likely to have groups of memory modules connected
through high-speed memory networks, our simulation model cap-
tures instances where the computing node to memory module ratio
would still be maintained throughout the system, e.g., 128 nodes
would share 16 memory modules (8:1 ratio). Therefore, the same
conclusions and insights would still apply. The only exception is
for applications that actually share large percentages of data in the
global memory, e.g., data analytics, where network contentions and
hot spots can largely affect system performance. However, since
our focus in this work is on HPC applications, where data sharing is
limited, our conclusions still apply. Simulating hundreds (or maybe
thousands) of nodes with a shared memory is likely impractical
with the current state of detailed simulation models and beyond

Page Migration Support for Disaggregated Non-Volatile Memories MEMSYS ’19, Sept 30 - Oct 3, Washington DC

the scope of this paper although we hope to return to extensions in
this area in future work.

Our evaluation results reveal that for a system with unoptimized
TLB shootdown costs, page migration latency, and memory-centric
latency, applications do not benefits from page migration, since
migrating pages to the relatively fast local memories is amortized
by the costs of page migration and TLB shootdown. To mitigate this,
we first investigate the impact of optimized TLB shootdown latency
to understand to what level TLB shootdown cost is acceptable
in disaggregated memory systems, i.e., the point on which such
migrations no longer burden memory management. Later, we vary
page migration latency and global memory latency to understand
their impact on the effectiveness of memory management. Based on
these investigations, we propose a novel mechanism that removes
much of these overheads from the critical path. In summary, this
paper makes the following contributions:

• We propose and discuss a novel memory management frame-
work to enable direct-access for disaggregated memory sys-
tems. We discuss several hardware/software co-design as-
pects to enable our support.

• We thoroughly analyze the different system-level aspects
that affect memory management decisions, and identify the
bottlenecks and future opportunities.

• We thoroughly analyze counter-intuitive observations and
discuss the pitfalls of common assumptions about memory
management in disaggregated memory systems.

• We provide to the public a cycle-level simulation model
that facilitates exploring memory management aspects in
disaggregated memory systems.

The remainder of the paper is organized as follows: Section 2
presents the background; Section 3 and Section 4 discuss the design
and evaluation of our implementation and we conclude the paper
in Section 5.

2 BACKGROUND AND MOTIVATION
Since the topic of this paper focuses on disaggregated memory
systems, in this section we briefly define our approach to building
them. Later, we describe the process of page migration, a common
memory management operation in heterogeneous memory sys-
tems. Finally, we discuss and motivate our paper by discussing the
importance of analyzing disaggreageted memory systems.

2.1 Disaggregated Memory Systems
Disaggregated memory systems are increasingly perceived as one
of the most suitable design options for future HPC systems. In disag-
gregated memory systems, compute resources are decoupled from
memory modules, i.e., some of the memory modules are removed
from each compute node and then grouped together in memory
blade(s) on a high-performance system-scale interconnect. Many
users typically refer this fabric attached memory as a kind of global
memory available to compute nodes running their application. As
such, theoretically, compute nodes can access any memory location
in such global/centralized memory blade(s), which enables efficient
data sharing and better utilization of memory capacity. Moreover,
such decoupling of memory modules from memory nodes, and re-
lying on standard interconnect interfaces instead, can enable more

flexible integration of heterogeneous compute nodes and units,
e.g., accelerators and specialized compute units. In addition, new
compute resources can be more flexibly added or removed as an
organization’s workloads grow and flow over time.

Since disaggregated memory systems are most suitable for large
memory capacities, dense non-volatile memories (NVMs) are gen-
erally assumed as the main building blocks of such memory sys-
tems. Unlike conventional DRAM, NVMs do not require frequent
refresh operations, and hence have ultra-low idle power require-
ments [12, 13, 20, 27, 29, 39]. Moreover, NVMs enable persistent
storage of files and data, and thus are more applicable for systems
with a high degree of data sharing as in data analytics. Generally
speaking, disaggregated memory systems are expected to have both
global memory (which can be based on relatively slow NVM), and
much smaller local memory (based on DRAM) which is coupled
with each compute node.

While the benefits of disaggregated memory systems are typi-
cally presumed as directly applicable to HPC systems, we are not
aware of any study on the impact of such a design when used in
HPC environment. Features such as flexible upgrade, better utiliza-
tion and easier system integration are generally obvious, however,
the impact of memory contentions and memory management in
such systems are unclear. In particular, some of the most press-
ing questions are when and how to migrate pages from and to
global memory, and, when to perform TLB shootdown operations
which is a costly process that is required to maintain consistency of
cached page table entries.. Therefore, this paper serves as a detailed
study that demonstrates the effects of such system aspects and thor-
oughly investigates novel mechanisms and memory management
techniques to further improve the performance.

2.2 Page Migration
Moving frequently accessed pages from global memory to local
memory would benefit both node and system overall performance,
due to the reduced contention at the global memory and the fast
response time of local memory. However, as system-level man-
agement deals with each node’s physical page mappings, it is an
obvious task for system-level management to dynamically migrate
hot pages to the local memories accessing them more frequently.
While naively we can assume such pages can be identified at the
start time of application and then migrated to local memory, the
reality is that many challenges and application behaviors typically
render such simple solutions ineffective. In particular, the dynamic
nature and time-variable pages popularity (access frequency) render
static solutions irrelevant. Moreover, given the limited capacity of
local memory, an accurate and dynamic profiling of page behavior
is needed, otherwise more popular pages may get evicted from local
memory.

2.3 Translation Look-Aside Buffer (TLB)
Shootdown:

TLBs are fast caches that hold page table translations within each
core. However, TLB coherence with the full system page table
must be maintained explicitly through inter-core interrupts and
explicit invalidation commands. When performing page migration,
processor cores have to be stalled to invalidate page table entries in

MEMSYS ’19, Sept 30 - Oct 3, Washington DC Vamsee Reddy Kommareddy et al.

respective TLB structures [1, 2]. The process of clearing stable page
entries is called TLB shootdown [3] and can become an expensive
operation.

Centralized
memory
manager

Core

Core

Core

Core

TLB

TLB

TLB

TLB

Page Table
Entry (PTE)

21

34

5

6

Figure 2: TLB shootdown process

Figure 2 shows the process of TLB shootdown in disaggregated
memory systems. The core, which invalidates the addresses, will
update the page table entry (PTE) (1) and send a TLB shootdown re-
quest to the centralized memory manager (2). Centralized memory
manager stalls all the other cores (3) and the stalled cores invalidate
the copies of page table entry in their respective TLBs (4). After
invalidating the TLB entries, the stalled cores send an acknowl-
edgement request to the centralized memory manager and resume
(5). When the centralized memory manager receives shootdown
acknowledgements from all the cores, it resumes the shootdown
of the initiating core (6). The entire TLB shootdown procedure
consumes around 8us, on an average, in 8 core computing system
[36].

2.4 Motivation
To understand the impact of disaggregated memory systems on
performance, we need to analyze instructions per cycle (IPC) when
varying the number of compute nodes. Since it is expected to have
a fixed compute node to memory module ratio, we vary such ratio
to understand the severeness of possible contentions and the design
space ranges that are possible. Note that within each memory blade,
it is expected to deploy very fast on-node networks between groups
of memory groups, and, as such memory networks are likely to
feature relatively high on-node bandwidths. However, since our
focus on this paper aims to understand the contention for specific
memory sharing levels, we vary the number of nodes sharing global
memory modules, selecting from 1, 2, 4 and 8 nodes per memory
module. Such ratios reflect different workloads and allocation poli-
cies of a larger systems; a specific module in a larger system would
likely have multiple nodes that access it frequently, however, a
system memory allocation policy would try to limit such number
of sharers by dividing global memory into memory pools where
each pool corresponds to specific nodes.

Figure 3 shows performance of individual nodes in disaggre-
gated memory systems and traditional systems, with NVM as mem-
ory for a range of HPC-relevant benchmarks (see Section 4 for
additional discussion). As the number of nodes accessing global
memory increase, the performance of the applications decreases
due to more contention at global memory. We consider perfor-
mance when global memory is not shared among multiple nodes
(Disag-NVM-N1) as the optimal case (no contention) in disaggre-
gated systems. As expected, the performance worsens when the

number of nodes sharing global memory increases, e.g., 4 and 8
nodes. For instance, for a memory intensive workload like Lulesh,
we can notice a decrease in the performance by 83.8% with 8 nodes
normalized to no contention case. Meanwhile, some other work-
loads, which are less memory sensitive, e.g., NAS IS, encounter
39% slowdown when moving from 1 node to 8 nodes sharing the
same memory module. As shown in Figure 3, the memory response
time increases differently for each workload, mainly due to the vari-
able levels of memory request rate and contention. Since memory

 0

 0.5

 1

 1.5

 2

MiniFE SimpleMoC Lulesh Pennant NAS:IS

In
st

ru
ct

io
ns

 p
er

 C
yc

le
 (

IP
C

)

Traditional
Disag-NVM-N1
Disag-NVM-N2
Disag-NVM-N4
Disag-NVM-N8

Figure 3: Delay per request in accessing memory for tradi-
tional and disaggregated memory systems

access delays can be significant when multiple nodes access the
global memory concurrently, effectively reducing such delays is
a key design requirement for disaggregated memory systems. To
reduce the memory access latency, pages can be migrated to the
local memory when necessary, which can effectively reduce the
contention as well. In this paper, we devise and analyze a memory
management support which relies on dynamic page profiling and
migration between global memory and local memory, and hence
effectively improve overall system performance.

3 MEMORY MANAGEMENT SUPPORT
In this section, we discuss our proposed memory management
support for disaggregated NVM memory systems. Our scheme
relies on page migration as a mechanism to enable more efficient
page locality and data proximity to their most-accessing compute
nodes. To design our memory management support, we start with
identifying the answers for the following questions: (1) Which
pages to migrate to local memory? (2) Which pages to select as
victim pages, i.e., be evicted from local memory?

3.1 Detecting Hot and Victim Pages
Pages that needs to be migrated between the two levels of memory
should be chosen carefully. Wrong selection of pages would degrade
the performance of the application intensely. For instance, if a page
in the local memory is accessed frequently and is migrated to the
global memory, during the page migration process, the number of
cycles to fetch the data of that page would be more. Apart from
increasing the number of cycles to access frequently accessed data,
a number of cycles would be wasted due to TLB shootdown. Hence

Page Migration Support for Disaggregated Non-Volatile Memories MEMSYS ’19, Sept 30 - Oct 3, Washington DC

efficient page selection algorithms to migrate pages are required
to improve the overall performance of the system. For detecting
hot pages, we leverage a counter-based scheme, however, we use
clock-based replacement policy to select victim pages, as discussed
below.
Page Insertion: Page insertion techniques are used to detect hot
pages in the global memory and migrate them to the local memory.
We leverage on counter-based scheme to select the pages to insert
in the local memory since counter based scheme is simple and accu-
rate. In this scheme every page access is accounted and during the
process of page migration, the page counters are traversed to find
out the most frequently accessed pages. Page accesses are stored
in page access count table (PACT) as shown in Figure 4. This pol-
icy, as it seems, is simple, but there are two important overheads
that should be considered. Hardware Requirements: As each page
requires a separate counter, the number of counters needed would
be more for systems that has significant amount of memory, specif-
ically in disaggregated memory systems. This needs tremendous
amount of additional hardware. A solution to overcome this is to
maintain a cache of counters in the global memory controller and
a counter is fetched from the memory during the cache miss. Tra-
versal Delay: The page counters, either maintained as hardware
counters or as a cache has to be traversed to find out the most and
least frequently accessed pages. The number of entries in PACT
will be significantly high for the systems with huge memory and
a moderate page size (4KB). If the number of entries in PACT is
huge, it takes a while to traverse the table to find out the most
frequently accessed pages. Although page accounting and page se-
lection process for migration can be performed at the background,
while the data is fetched from the memory, eventually it is a costly
operation to traverse PACT. We address these two concerns by
fixing the PACT size and replacing the least frequently accessed
page with in PACT to make space for the new page and storing the
least frequently accessed page counter data in the memory. This
eliminates huge hardware requirements and reduces the delay in
traversing PACT.

In disaggregated memory systems, multiple nodes access the
global memory. Hence global memory should have the ability to
distinguish requests from different nodes. The memory controller
achieves this by extracting the node number from the request packet.
In Figure 4, B is termed as hot page detector. Hot page detection
is performed in three steps: 1) During serving a request the page
number is extracted from the base address and the page count is
incremented in PACT if the page entry is found. If the page entry
is not found in PACT, an entry is created and is then incremented.
2) If the page counter is higher than the page migration threshold
limit the page is copied to the pages to be migrated table per node
(PMTn). Global memory controller has to maintain PMT for every
node since each node will have different pages to migrate.
Page Eviction: Page eviction technique is used to detect victim
pages to be migrated to the global memory from the local memory.
Counter based eviction policy is widely used as a page replacement
policy to migrate pages between main memory and the secondary
memory. Least recently used pages are selected and are moved
to the secondary memory. We extend this scheme for selecting
least recently used local pages (victim pages) to be migrated to the
global memory. In clock based page selection policy each page is

referenced, A in Figure 4. But unlike counter based method, this
policy maintains per page reference bit in the page table rather than
a counter which requires 32 or 64 bits per page. If the reference bit
of the page is set then it is considered as a page which is accessed
recently and vise verse. Initially all the page references are reset
and for every page access the reference bit is set to indicate that it
is accessed recently. A reference pointer is utilized to traverse the
page table to select the victim pages by verifying the page reference
bit. The reference pointer traverses the page reference table until
it finds a page that is not accessed recently. While traversing the
page table, the page reference which is set is reset by the reference
pointer and the traversal continues. To lessen the delay in finding
out the victim page the page table is traversed until specific entries
(200 in our case) and once it is reached, the victim page is chosen as
the page pointed out by the reference pointer by default. Selecting
victim pages is triggered by victim page eviction handler, D from
Figure 4, during page migration epoch.

3.2 Performing Page Migration:
Centralized memory manager is required to maintain and allocate
decoupled centralized memory. We used Opal [23] from SST[35] as
a centralized memory manager. Opal is responsible for allocating
memory to all the nodes without any conflicts. We extend Opal
to perform page migration. For every page_migration_epoch, Opal
communicates with the global memory controller and individual
nodes to fetch pages that needs to migrate. Hot page insertion
handler, C in Figure 4, fetches addresses of hot pages from the
global memory controller. The global memory controller which
already segregated pages to be migrated during hot page detection,
sends the respective page addresses (page numbers), if any, to Opal
after sorting the PMTn table tomigrate themost frequently accessed
pages first and then clears PACT and PMT to collect page counts
for the next epoch interval. Victim page eviction handler, D from
Figure 4, fetches local memory pages to be moved to the global
memory, with the help of clock based eviction method. Once both
hot and victim pages are fetched by Opal, TLB invalidation and
TLB shootdown events along with pages addresses to be remapped
are sent to the respective nodes involved in page migration, E from
Figure 4. Nodes which does not have any pages to migrate are not
interrupted. The page contents are swapped by Direct Memory
Access (DMA), F from Figure 4, during TLB shootdown.

3.3 Sequence of Events:
The sequence of events are as follows: a) For every memory re-
quest pages are referenced at either the local node or at the global
memory controller. If the memory request is to the local memory
then the respective page is referenced in the page table of the local
memory manager (A from Figure 4). If the memory request is to
the global memory then the page access is counted at the global
memory controller and hot pages are detected and stored in PMTn
(B from Figure 4). b) Centralized memory manager, Opal, for every
specific time interval, for instance 1M clock cycles, triggers the
global memory and individual nodes to fetch hot and cold pages
(C and D from Figure 4). c) Once Opal receives page addresses that
has to be migrated, it triggers DMA to swap pages between global
and local memory while TLB shootdown and TLB invalidation

MEMSYS ’19, Sept 30 - Oct 3, Washington DC Vamsee Reddy Kommareddy et al.

Node n Local Page Table
RefPTE

Centralized Memory Manager

Local Page Table

Node 0

Page Migration Epoch

Page No

0

n

Shared Memory Controller
Request
Queue

NVM
Memory

B

Network

PMT
PMT

PMT
PMTn

Count
PACTRefPTE

Node n

A

C

D E

LM

LM

F

A: Page referencing
B: Hot page detector
C: Hot page insertion handler
D: Victim page eviction handler
E: TLB shootdown
F: Page swapping

Figure 4: Page migration in disaggregated memory systems.
LM: Local Memory, PMTn: Pages to Migrate Table per node,
PACT: Page Access Count Table

events are initiated to only those nodes which are involved in page
migration (E and F from Figure 4).

3.4 Discussion:
Page migration does not always better the system. This depends on
factors like frequency of pagemigration, number of pages migrating
at a time, page migration threshold, TLB shootdown latency and
page swapping delay.

It is also crucial to interpret at what frequency the pagemigration
process should be performed. If the page migration is performed
too often then most of the cycles would be wasted in migrating
pages and TLB shootdowns. If the page migration is performed
rarely then the advantage in migrating pages is lost since most
frequently accessed pageswould bemigrated to local memory rarely
during the lifetime of the application. Conventionally, various page
migration schemes for different architectures talk about migrating
one page during page migration process, while it is possible to
migrate multiple pages at a time. The delay in migrating multiple
pages is less compared to migrating single page. For instance, if we
consider a 1us delay to swap contents of one page and if we assume
a delay of 8us to invalidate TLB entries and update page table entry,
the total delay to migrate one page is 9us . If pages are migrated one
at a time then every time a single page is migrated, the computing
units have to wait for 9us . If more pages are migrated at a time then
only the page swapping delay (1us) per page will be added, which
is effective. Page migration threshold is an other factor which has
an impact on pages to migrate. If the migration threshold is less
then the pages with very less accesses to global memory would be
eligible to migrate. Also if the migration threshold is pretty high
then the pages with very high accesses to global memory would not
be eligible to migrate, which results in less page migrations. During
TLB shootdown and page swapping, computing units are stalled
and are not allowed to proceed util all the pages are swapped and
all the TLB levels are invalidated. Hence it must be understood that
it is vital to study the impact of these factors on page migration in
disaggregated memory systems.

3.5 Overhead:
There are mainly three overheads associated with our design: 1)
Hardware overhead: Global memory controller requires additional

hardware for PACT and PMT. This overhead is minimal since PACT
and PMT are fixed based on the number of pages to migrate. If
we assume 100 pages to migrate at a time then each PMT (PMTn)
should have a minimum of 100 entries and PACT should store a
minimum of 800 entries, considering 8 nodes system. 2) Account-
ing overhead: Each page has to be accounted at the global memory
whenever the page is accessed, which is in the critical path. This can
be avoided from the critical path by performing such accounting in
the background. 3) Page address transfer overhead: During the page
migration, metadata like page addresses, are exchanged between
centralized memory manager and global memory controller or local
memory management units. This overhead is minimal since statis-
tical data transfer would happen only during the page migration
epoch and if the page migration epoch interval is high then the
statistical data transfer would be minimum.

4 EVALUATION
To study page migration aspects in disaggregated memory, we used
a model of a disaggregated system developed in the Structural
Simulation Toolkit (SST) [35]. SST has been proven to be one of
the most reliable simulators for large-scale systems due to the
scalability and modular design of its components. SST includes
multiple (swappable) simulation modules for various components.
A module called Opal [23] has been developed in SST to simulate
centralized memory manager for disaggregated memory model.

Table 1: Simulation Parameters

Element Parameters
CPU 2 Out-of-Order cores, 2GHz, 2 issues/cycles, 32

max. outstanding requests
L1 private, 64B blocks, 32KB, LRU
L2 private, 64B blocks, 256KB, LRU
L3 shared, 64B blocks ,16MB, LRU
Local memory 256MB, DDR4-based DRAM
Global memory 16GB, NVM-based DIMM (PCM), 128 max. out-

standing requests, 16 banks
300ns Read Latency, 1000ns Write Latency

External net-
work latency

40ns

Table 2: Applications

Application Value
Lulesh [22] -s 120
SimpleMoC [15] -t 2 -s
Pennant [14] leblancbig.pnt
miniFE [18] -nx 140 -ny 140 -nz 140
NAS:IS [5] class C

We simulated disaggregated memory system with 8 nodes. All
the nodes run simultaneously with each node hosting a benchmark.
Simulation parameters of our simulation environment are shown
in Table 1. According to the table, 2 cores are used for each node
and each core can serve up to 2 instructions per cycle. The clock

Page Migration Support for Disaggregated Non-Volatile Memories MEMSYS ’19, Sept 30 - Oct 3, Washington DC

frequency of the cores is 2GHz, with each core configured to serve
up to 100 million instructions of application execution during its
HPC-relevant kernels. Three levels of cache are used, L1, L2, and
L3, with sizes 32KB, 256KB and 16MB respectively and cache type
is non-inclusive. Local memory is 256MB of DRAM memory on
each node. Centralized memory is of an NVM type and configured
to be 16GB, based on density compared to DRAM and number of
nodes. Network latency is critical in disaggregated memory system.
External network latency is 40ns , which has been modelled after
public projections for a GenZ-enabled network.

Since our focus is on HPC applications we evaluated our design
using 5HPC-relevantmini-applications and benchmarks. Lulesh [22],
a mini-app for unstructured hydrodynamics, Pennant [14] is an
unstructured mesh physics mini-app designed for advanced archi-
tecture research, SimpleMoC [15] is a mini-app to demonstrate the
performance characteristics and viability of the Method of Charac-
teristics (MOC) in 3D neutron transport calculations in the context
of full scale light water reactor simulation. The IS benchmark from
the NASA Parallel Benchmark collection [5] is an integer sort ker-
nel which performs efficient large-scale sorting operations. Finally,
MiniFE [18] is a proxy application for unstructured implicit finite
element codes. Applications along with their parameters are shown
in Table 2. We decided upon these specific applications as these
are known to provide memory accesses that are characteristic of
larger codes. In most cases, their access patterns are memory-access
intensive although the range of these accesses which is satisfied
by caching, or accesses to memory, will vary by each kernel. Note
that for our discussion of the following experiments, N indicates
number of compute nodes.

4.1 Effect of Page Migration Parameters
We modelled a combination of a threshold based method and clock
based approach to migrate pages from between centralized and
private memory. As mentioned in Section 3, performance gains of
using page migration is dependent on migration frequency (page
migration epoch), the number of pages to migrate at a time and page
migration threshold to detect a page requiring migration. Hence we
vary these parameters and study the effect of them. Figure 5 shows
normalized performance (IPC) results with respect to disaggregated
memory system without page migration. The x-axis of each sub-
graph indicates PMT at global memory which decides if the page
is a hot page or not. For instance, an x-axis of 50 in each graph
indicates that when a shared page is accessed more than 50 times
in the current epoch, then that specific page is marked as a page
to be migrated to the private memory and might get migrated to
the local memory during the migration interval. We varied PMT
from 10 to 100 accesses. Graphs in each row show results for a
specific migration epoch. For example, the migration interval of
graphs in each column of row 1 is 10K cycles. While rows 2, 3,
4 and 5 indicate results for migration epoch of 100K, 1M, 10M,
100M cycles respectively. Each column represents the maximum
pages that can be migrated. For instance, results in column 1 are
configured to migrate a maximum of 1 page for every migration
epoch and columns 2, 3, 4 and 5 migrate a maximum of 10, 50, 100,
500 pages per epoch respectively. The top most frequently accessed

pages are chosen if the number of pages to be migrated exceeded
maximum pages to be migrated per epoch.

Wemake the following observations by varying these parameters
from Figure 5. If PMT is high, pages should be accessed frequently
to count them as hot pages. On the other side if PMT is low, most
of the pages would be counted as hot pages and there would be a
pool of hot pages to choose from for migrating to local memory.
Hence PMT decides the hotness of the pages. Therefore we divide
our explanation into two parts: (1) High PMT (Pages are counted
as hot pages if the frequency of page accesses is very high), and, (2)
Low PMT (Pages are counted as hot pages if they are accessed less
number of times).

High PMT: If PMT is high, a page should be accessed frequently
to be counted as a hot page. In our results we observed that when
the epoch size is small, 10K and 100K cycles (row 1 and 2), all the
applications that we simulated, do not improve the performance
when the page migration threshold is set to 50 accesses or beyond.
This is because when the epoch length is small, the number of global
memory pages getting accessed more than 50 times in that epoch is
very narrow and hence none of the pages would reach the required
PMT, resulting in no page migration. Hence when the epoch size is
small, 50 accesses is defined as high PMT irrespective of the number
of maximum pages to migrate. When the epoch size is larger – 1M
and 10M cycles – MiniFE benefits from page migration even if the
PMT is beyond 50 accesses (1.46x, 1.33x, 1.45x and 1.44x for 10,
50, 100 and 500 maximum pages to migrate respectively with a
migration epoch of 1M cycles). And the performance is normalized
to 1 when PMT is set at 100 accesses. Therefore for MiniFE, a high
PMT is defined as 50 accesses if epoch size is less and 100 accesses
if epoch size is more.

Low PMT: If PMT is low, most of the pages, if accessed regu-
larly, are eligible to be counted as hot pages, hence many hot pages
would be moved to local memory and improve the performance. It
can be seen that apart from when only 1 page is allowed to migrate
per epoch and when epoch interval is too high (100M cycles), we
can observe performance improvement. If only one page is allowed
to migrate per epoch, the cost of page migration, explained in 4.2,
outweighs the benefits. Also if page migration epoch interval is too
high, page migration frequency is very low which leads to no page
migration. Hence there is no improvement in performance (row
5). There is improvement if the number of pages to migrate is 500,
since even though the frequency is less, there are a higher number
of pages able to be migrated. Although migrating 500 pages at a
time is not practical, or at least is likely to present a significant
migration cost, we show these results to see the variation in perfor-
mance improvement. When the migration epoch size is less, 10K
and 100K cycles, the benefits of page migration is nullified by page
migration cost (row 1). Hence there is no improvement in perfor-
mance for MiniFE. But for SimpleMoC and Pennant applications,
the improvement is around 1.4x, 1.3x for 10, 50, 100 and 500 pages to
migrate at maximum per epoch and is around 1.85x and 1.58x more
for 10, 50, 100 and 500 pages to migrate at maximum per epoch
with PMT of 10 and migration epoch of 10K and 100K cycles. For
applications like NAS-IS the impact of page migration cost severely
affects the performance. Performance degrades by 30% and 28%
when PMT is at 10 and 30 accesses. As the epoch size increases
from 10K to 100M the effect of page migration costs decreases as the

MEMSYS ’19, Sept 30 - Oct 3, Washington DC Vamsee Reddy Kommareddy et al.

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ●

● ●

MPM: 1 pages
MEI: 10K cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ●

● ●

MPM: 10 pages
MEI: 10K cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ●

● ●

MPM: 50 pages
MEI: 10K cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ●

● ●

MPM: 100 pages
MEI: 10K cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ●

● ●

MPM: 500 pages
MEI: 10K cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 1 pages
MEI: 100K cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 10 pages
MEI: 100K cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 50 pages
MEI: 100K cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 100 pages
MEI: 100K cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 500 pages
MEI: 100K cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 1 pages
MEI: 1M cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 10 pages
MEI: 1M cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 50 pages
MEI: 1M cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 100 pages
MEI: 1M cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 500 pages
MEI: 1M cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 1 pages
MEI: 10M cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 10 pages
MEI: 10M cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 50 pages
MEI: 10M cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 100 pages
MEI: 10M cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ●
●

MPM: 500 pages
MEI: 10M cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 1 pages
MEI: 100M cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 10 pages
MEI: 100M cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 50 pages
MEI: 100M cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 100 pages
MEI: 100M cycles

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

● ● ● ●

MPM: 500 pages
MEI: 100M cycles

●SimpleMoC NAS:IS Pennant MiniFE Lulesh

Page Migration Threshold (# of pages)

P
er

fo
rm

an
ce

 N
or

m
al

iz
ed

 to
 N

o
P

ag
e

M
ig

ra
tio

n

Figure 5: Performance improvement (normalized to no pagemigration) in disaggregatedmemory systemwhen pagemigration
parameters migration epoch length, number of pages to migrate and page migration threshold are varied. Shootdown latency
is maintained at 8us and per page migration delay(cost) is 1us. MPM indicates Maximum pages to Migrate per epoch. MEI
indicates Migration Epoch Interval

frequency at which page migrations are performed is less. Hence
the performance of the NAS-IS application is normalized to 1. As
the epoch size is more 1M and 10M cycles the performance gain
for SimpleMoC and Pennant applications diminishes. SimpleMoC
achieves peak performance improvement of 2.08x, when migration
epoch is 1M cycles and a maximum of 50 pages to migrate with
a PMT of 10. MiniFE also benefits from page migration if the mi-
gration epoch is maintained at 1M and 10M cycles (1.4x more with
PMT of 10, 30 and 50). The peak performance improvement can
be noted when epoch interval is 10M cycles and a maximum of
500 pages to migrate with a PMT of either 10, 30 or 50 accesses

(1.6x) but migrating 500 pages at once is not advisable. Due to space
constraints, moving forward, we will only show the best possible
cases for all the applications- PMT of 10 (low), 50 pages to migrate
and the migration epoch interval of 10K, 100K and 1M cycles.

4.2 Page Migrations Costs
From the above observations it should be understood that intensive
page migration leads to severe page migration costs. Page migra-
tion costs can be classified into three categories: (a) Invalidating
TLB units - TLB shootdown latency: TLB shootdown latency can be

Page Migration Support for Disaggregated Non-Volatile Memories MEMSYS ’19, Sept 30 - Oct 3, Washington DC

0.5

1.0

1.5

2.0

2.5

●

●

●

Migration Epoch: 10K cycles

0.5

1.0

1.5

2.0

2.5

●
● ●

Migration Epoch: 100K cycles

1000 2000 3000 4000 5000 6000 7000 8000
0.5

1.0

1.5

2.0

2.5

● ● ●

Migration Epoch: 1M cycles

●SimpleMoC Nas:IS Pennant miniFE Lulesh

Shootdowm latency (ns)

P
er

fo
rm

an
ce

 N
or

m
al

iz
ed

 to
 n

o
P

ag
e

M
ig

ra
tio

n

Figure 6: Performance improvement (normalized to no page
migration) in disaggregated memory system with best pos-
sible cases. Migration epoch interval is 10K, 100K and 1M
cycles with PMT of 10 accesses, 8us TLB shootdown latency,
a maximum of 50 pages to migrate per epoch and per page
migration delay(cost) of 1us per page.

reduced by using schemes like self-invalidating TLB’s [3]. (b) Swap-
ping page content delay: While the pages are undergoing swapping,
computing units might operate on yet to be swapped page. Since a
batch of pages are undergoing swapping computing units which
operate on these pages should halt. We call this page swapping
delay. Usually pages are swapped with the help of DMA engines.
To account for page swapping operation, we add an additional
1us latency in our experiments. Accordingly, page swapping cost
increases by 1us for every page that gets migrated from central
memory to local memory. If there are 50 pages to migrate then page
swapping cost is 50us. This can be reduced by intuitively recording
pending pages that will undergo swapping and performing page
swapping atomically. That is, MMU units of each node decides if
the address translation should proceed or not by checking if the
page associated with the address is marked as a pending pages to
swap. If the page is not marked, MMU would proceed with the ad-
dress translation. If the page is marked and if the status of the page
indicates that the page is undergoing swapping, the MMU waits
till the swapping is done. If the page is not undergoing swapping
but in the pending pages to be swapped list, MMU would proceed
with the addresses translation without waiting. With this approach
and with the help of atomic page swapping, page swapping delay
can be completely nullified. (c) Cost to find pages to migrate: This is
minimal since most of the work has been done while accounting
for the page accesses in the background.

Leveraging on reducing page migration cost schemes, we intu-
itively evaluated page migration in disaggregated memory systems
by varying TLB shootdown latency. Figure 6 shows the results for
the best case configuration according to Figure 5, column with
maximum number of page migrations at a time is 50 (column 3)
and a PMT of 10 accesses, with varying TLB shootdown latency
(8us to 1us) as shown on the x-axis. We optimistically choose a
batch of 50 page to migrate at a time and nullified page swapping

0.5

1.0

1.5

2.0

2.5

(r:100,w:200) (r:200,w:400) (r:300,w:600) (r:400,w:800) (r:500,w:1000)

● ● ● ● ●

●SimpleMoC Nas:IS Pennant miniFE Lulesh

NVM Read/Write Latency (ns)

P
er

fo
rm

an
ce

 N
or

m
al

iz
ed

 to
 N

o
P

ag
e

M
ig

ra
tio

n

Figure 7: Performance improvement in disaggregated mem-
ory system with respect to conventional memory system
with different NVM read/write latency. PMT is 10 accesses
with a maximum of 50 pages to migrate, TLB shootdown la-
tency of 8us and per page migration delay(cost) is 1us per
page. Page migration is performed for every 1M cycles.

cost, since we believe that during TLB shootdown, DMA engine
would have swapped 50 pages between global and local memory.
With low TLB shootdown cost (1us), applications like NAS:IS whose
performance was degrading with TLB shootdown cost of 8us, 0.8x,
could improve its performance by 1.52x (with migration epoch of
10K). As the epoch size increases, the improvement due to page
migration is reduced. 1.05x and 1.0x for NAS:IS application when
TLB shootdwon delay is 1us with 100K and 1M migration epoch
intervals. For Lulesh application the improvement is 1.75x, 1.7x and
1.61x for 1us, 4us and 8us TLB shootdown delay respectively. For
other applications the improvement is marginal.

4.3 Sensitivity to NVM’s Read/Write Latency
Centralized memory in disaggregated memory systems must meet
several requirements. One of them is the ability to allocate memory
to all nodes accessing it. NVM memory technology is a perfect
candidate to fullfil such requirement as the density of NVM is much
higher than DRAM [16]. On the other hand, NVMs are notorious
for the high write latency compared to DRAM. And although that
NVM’s read latency is much better than its write latency coun-
terpart, it is still slower than the read latency of a typical DDR
generation. We believe that read/write latency are crucial in the
migration of pages to/from centralized memory. To this end, we
studied page migration benefits by varying NVM read/write latency.
We categorize NVM into 5 categories - very fast (read and write
latency is 100 and 200ns), fast (read and write latency is 200 and
400ns), moderate (read and write latency is 300 and 600ns), slow
(read and write latency is 400 and 800ns) and very slow (read and
write latency is 500 and 1000ns).

We can intuitively expect that if the global memory is "fast",
then baseline scheme would perform just well without any page
migration. On the other hand, if the global memory is "slow", we
expect page migration to optimize performance significantly versus

MEMSYS ’19, Sept 30 - Oct 3, Washington DC Vamsee Reddy Kommareddy et al.

the baseline of no pagemigration, as we reduce the number of "slow"
memory accesses. To showcase this, and since the improvement
due to page migration is evident for all applications when pages
are migrated every 1M cycles, we use this as our migration epoch.

In Figure 7, ’r’ indicates read latency and ’w’ indicates write
latency. For example (r:100,w:200) indicates NVM read latency of
100ns and write latency of 200ns. As the type of the NVM varies
from very fast to very slow, the benefits of page migration is more
clear. For instance performance gains due to page migration for
SimpleMoC with very fast global memory is 1.78x and with very
slow global memory the performance gain is 2.3x. For MiniFE and
Pennant the improvement is around 1.25x to 1.48x when the global
memory is varied from very fast to very slow. The improvement
due to page migration for Lulesh application with very fast NVM
as global memory is hardly 3%, however, when the global memory
is very slow the performance gain reaches up to 18%

5 RELATEDWORK
A large body of prior art has investigated page migration in hybrid
memory systems which proposes efficient way to migrate pages.
Ramos et al. [34] proposed a multi-queue based approach to define
the hotness and coldness of the pages. Wang [38] managed NVM
at a super-page granularity by using a lightweight page migration.
Wang also considered the utility of the migrating page. Yoon et
al. [40] devised a policy that enables DRAM to cache pages which
has high frequency of row buffer misses in NVM memory. CAMEO
[8], PoM [37], Mempod [33] and BATMAN [7] discuses about the
granularity and relaxations possible while swapping pages to maxi-
mize overall memory bandwidth. Other approaches [21, 28] involve
both hardware and software. OS is utilized to identify hotness of
the page. Page migration is explored in NUMA architectures [32].
These approaches depend on either compiler support or Linux ker-
nel and leverage on counters for number of pages accesses. Lim et
al. [26] proposed software-based prototype by extending the Xen
hypervisor to emulate a disaggregated memory design wherein
remote pages are swapped with local memory on-demand upon
access, first touch policy. They also explored round-robin, clock
and content based page placement policies to effectively manage
the memory. Specifically content-based approach can be effectively
utilized for page sharing.

Most of the previous schemes perform page swapping at a prede-
fined time intervals and does not take time interval variation into
consideration. Also Lim et al. [25, 26] implemented disaggregated
memory design on Xen hypervisor. In this paper, we study and
analyze different factors that impact the page migration benefits in
disaggregeted memory model using cycle-based simulation envi-
ronment, SST. We introduce a new memory management scheme
that leverages a combination of replacement policies, clock and
counter based, to perform page migration. We understand that the
page migration benefits are dependent on factors like PMT, migra-
tion interval, maximum number of pages to migrate per epoch, TLB
shootdown and page swap delay. We vary these factors and study
the effect of these parameters on the overall performance of the
system. Also, we found that the type of memory used as global
memory has an effect on page migration. Hence we analyzed page
migration aspects under different global memory speeds.

6 CONCLUSION
Disaggregated memory systems is a promising future architecture
which has the ability to impact future systems design. These mem-
ory architectures provide a path to solve current memory concerns
in scalability, with the sharing of huge data sets such as social
graphs, as well as complex scientific data-sets in HPC. The chal-
lenge associated with their design in an HPC context, is how to
best utilize the resources of the system and balance these against
the ever increasing demands to achieve better performance.

To this end, we have proposed a novel memory management
scheme for disaggregated memory systems. As disaggregated mem-
ory systems support both local and shared memory, we identify hot
pages in global memory and provide migration capabilities to local
memory using a combination of threshold based and clock based
policies. We provide insights into the impact of migrating pages
at regular intervals, showing that the benefit of page migration is
dependent on factors like page migration epoch, the maximum of
number of pages to migrate at each epoch, whether a page migra-
tion threshold can be used to differentiate hot and cold pages as well
as the costs associated with TLB shootdowns and page swapping
delays. We evaluated 5 HPC-relevant applications and benchmarks
to study the effect of these factors on page migration. We showed
that Non-volatile Memory (NVM) is a feasible memory type to
construct disaggregated memory model, and hence we studied the
effect of NVM read/write latency on page migration in disaggre-
gated memory systems. We show the best case improvement of up
to 2.3x when page migration is applied on a disaggregated memory
system with slow NVM as main memory.

7 ACKNOWLEDGMENTS
This work has been funded through Sandia National Labora-tories
(Contract Number 1844457) Sandia National Laboratories is a multi-
mission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned sub-
sidiary of Honeywell International,Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract
DE-NA0003525.

REFERENCES
[1] Nadav Amit. 2017. Optimizing the TLB shootdown algorithm with page access

tracking. In Proc. USENIX Ann. Conf. 27–39.
[2] A. Arpaci-Dusseau. 2000. Translation Lookaside Buffers (TLBs). http://pages.cs.

wisc.edu/~eli/537/lectures/TLB.2x2.pdf
[3] Amro Awad, Arkaprava Basu, Sergey Blagodurov, Yan Solihin, and Gabriel H

Loh. 2017. Avoiding TLB Shootdowns Through Self-Invalidating TLB Entries. In
Parallel Architectures and Compilation Techniques (PACT), 2017 26th International
Conference on. IEEE, 273–287.

[4] Amro Awad, Sergey Blagodurov, and Yan Solihin. 2016. Write-aware manage-
ment of NVM-based memory extensions. In Proceedings of the 2016 International
Conference on Supercomputing. ACM, 9.

[5] David H Bailey. 2011. Nas parallel benchmarks. In Encyclopedia of Parallel
Computing. Springer, 1254–1259.

[6] Daniel Turull Chakri Padala and Vinay Yadav. 2017. Time for memory disag-
gregation? Ericsson Research Blog. Online]. https://www.ericsson.com/research-
blog/time-memory-disaggregation/ (may 2017).

[7] Chiachen Chou, Aamer Jaleel, and Moinuddin Qureshi. 2017. BATMAN: tech-
niques for maximizing system bandwidth of memory systems with stacked-
DRAM. In Proceedings of the International Symposium on Memory Systems. ACM,
268–280.

[8] Chiachen Chou, Aamer Jaleel, and Moinuddin K Qureshi. 2014. Cameo: A two-
level memory organization with capacity of main memory and flexibility of
hardware-managed cache. In Proceedings of the 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. IEEE Computer Society, 1–12.

http://pages.cs.wisc.edu/~eli/537/lectures/TLB.2x2.pdf
http://pages.cs.wisc.edu/~eli/537/lectures/TLB.2x2.pdf

Page Migration Support for Disaggregated Non-Volatile Memories MEMSYS ’19, Sept 30 - Oct 3, Washington DC

[9] Dan Comperchio and Jason Stevens. 2014. Emerging Computing Technologies:
Hewlett-PackardâĂŹs âĂĲThe MachineâĂİ Project. In HP Discover 2014 confer-
ence held in Las Vegas June 10-12. Willdan Energy Solutions, 1–4.

[10] CCIX Consortium. 2017. Online]. https://www.ccixconsortium.com/ (2017).
[11] GenZ Consortium. 2017. GenZ Core Specification. Online].

https://www.ericsson.com/research-blog/time-memory-disaggregation/ (May
2017).

[12] Howard David, Chris Fallin, Eugene Gorbatov, Ulf R Hanebutte, and Onur Mutlu.
2011. Memory power management via dynamic voltage/frequency scaling. In
Proceedings of the 8th ACM international conference on Autonomic computing.
ACM, 31–40.

[13] Qingyuan Deng, David Meisner, Luiz Ramos, Thomas F Wenisch, and Ricardo
Bianchini. 2011. Memscale: active low-power modes for main memory. In ACM
SIGPLAN Notices, Vol. 46. ACM, 225–238.

[14] Charles R Ferenbaugh. 2015. PENNANT: an unstructured mesh mini-app for
advanced architecture research. Concurrency and Computation: Practice and
Experience 27, 17 (2015), 4555–4572.

[15] Geoffrey Gunow, John Tramm, Benoit Forget, Kord Smith, and Tim He. 2015.
Simplemoc-a performance abstraction for 3d moc. (2015).

[16] J. Cao H.-Y. Chen S. B. Eryilmaz S. W. Fong J. A. Incorvia Z. Jiang H. Li C.
Neumann K. Okabe S. Qin J. Sohn Y. Wu S. Yu X. Zheng H.-S. P. Wong, C. Ahn.
[n. d.]. Stanford Memory Trends. Retrieved February 1, 2019 from https:
//nano.stanford.edu/stanford-memory-trends

[17] Jim Handy. 2015. Understanding the Intel/Micron 3D XPoint memory. In Proc.
SDC.

[18] Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring,
H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K Thorn-
quist, and RobertWNumrich. 2009. Improving performance viamini-applications.
Sandia National Laboratories, Tech. Rep. SAND2009-5574 3 (2009).

[19] Forbes Technology Council Jai Menon. 2018. The Rise Of Memory-Centric Archi-
tectures. Online]. https://www.forbes.com/sites/forbestechcouncil/2018/11/16/the-
rise-of-memory-centric-architectures/ (November 2018).

[20] Brian G Johnson and Charles H Dennison. 2004. Phase change memory. US
Patent 6,791,102.

[21] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan. 2017.
Heteroos: Os design for heterogeneous memory management in datacenter. In
ACM SIGARCH Computer Architecture News, Vol. 45. ACM, 521–534.

[22] Ian Karlin, Jeff Keasler, and JR Neely. 2013. Lulesh 2.0 updates and changes.
Technical Report. Lawrence Livermore National Laboratory (LLNL), Livermore,
CA.

[23] VR Kommareddy, A Awad, C Hughes, and SD Hammond. [n. d.]. Opal: A Cen-
tralized Memory Manager for Investigating Disaggregated Memory Systems. ([n.
d.]).

[24] Shuang Liang, Ranjit Noronha, and Dhabaleswar K Panda. 2005. Swapping to
remote memory over infiniband: An approach using a high performance network
block device. In 2005 IEEE International Conference on Cluster Computing. IEEE,
1–10.

[25] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K
Reinhardt, and Thomas F Wenisch. 2009. Disaggregated memory for expansion
and sharing in blade servers. In ACM SIGARCH Computer Architecture News,
Vol. 37. ACM, 267–278.

[26] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan Chang,
Parthasarathy Ranganathan, and Thomas F Wenisch. 2012. System-level impli-
cations of disaggregated memory. In High Performance Computer Architecture
(HPCA), 2012 IEEE 18th International Symposium on. IEEE, 1–12.

[27] Chung-Hsiang Lin, Chia-Lin Yang, and Ku-Jei King. 2009. PPT: joint perfor-
mance/power/thermal management of DRAM memory for multi-core systems.
In Proceedings of the 2009 ACM/IEEE international symposium on Low power
electronics and design. ACM, 93–98.

[28] Felix Xiaozhu Lin and Xu Liu. 2016. Memif: Towards programming heterogeneous
memory asynchronously. ACM SIGARCH Computer Architecture News 44, 2 (2016),
369–383.

[29] Song Liu, Brian Leung, Alexander Neckar, Seda Ogrenci Memik, Gokhan Memik,
and Nikos Hardavellas. 2011. Hardware/software techniques for DRAM thermal
management. (2011).

[30] Mitesh R Meswani, Sergey Blagodurov, David Roberts, John Slice, Mike Igna-
towski, and Gabriel H Loh. 2015. Heterogeneous memory architectures: A
HW/SW approach for mixing die-stacked and off-package memories. In High Per-
formance Computer Architecture (HPCA), 2015 IEEE 21st International Symposium
on. IEEE, 126–136.

[31] Hugo Meyer, Jose Carlos Sancho, Josue V Quiroga, Ferad Zyulkyarov, Damian
Roca, and Mario Nemirovsky. 2017. Disaggregated computing. an evaluation of
current trends for datacentres. Procedia Computer Science 108 (2017), 685–694.

[32] Guilherme Piccoli, Henrique N Santos, Raphael E Rodrigues, Christiane Pousa, Ed-
son Borin, and Fernando M Quintão Pereira. 2014. Compiler support for selective
page migration in NUMA architectures. In Proceedings of the 23rd international
conference on Parallel architectures and compilation. ACM, 369–380.

[33] Andreas Prodromou, MiteshMeswani, Nuwan Jayasena, Gabriel Loh, and DeanM
Tullsen. 2017. MemPod: A clustered architecture for efficient and scalable migra-
tion in flat address space multi-level memories. In High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on. IEEE, 433–444.

[34] Luiz E Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page placement
in hybrid memory systems. In Proceedings of the international conference on
Supercomputing. ACM, 85–95.

[35] Arun F Rodrigues, K Scott Hemmert, Brian W Barrett, Chad Kersey, Ron Oldfield,
MarloWeston, Rolf Risen, Jeanine Cook, Paul Rosenfeld, E CooperBalls, et al. 2011.
The structural simulation toolkit. ACM SIGMETRICS Performance Evaluation
Review 38, 4 (2011), 37–42.

[36] Bogdan F Romanescu, Alvin R Lebeck, Daniel J Sorin, and Anne Bracy. 2010.
UNified instruction/translation/data (UNITD) coherence: One protocol to rule
them all. In Proceedings-International Symposium on High-Performance Computer
Architecture.

[37] Jaewoong Sim, Alaa R Alameldeen, Zeshan Chishti, Chris Wilkerson, and Hye-
soon Kim. 2014. Transparent hardware management of stacked dram as part of
memory. In Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE Computer Society, 13–24.

[38] Xiaoyuan Wang. 2018. Supporting Superpages and Lightweight Page Migration
in Hybrid Memory Systems. arXiv preprint arXiv:1806.00776 (2018).

[39] H-S Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P Reifenberg,
Bipin Rajendran, Mehdi Asheghi, and Kenneth E Goodson. 2010. Phase change
memory. Proc. IEEE 98, 12 (2010), 2201–2227.

[40] HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael A Harding, and
OnurMutlu. 2012. Row buffer locality aware caching policies for hybridmemories.
In Computer Design (ICCD), 2012 IEEE 30th International Conference on. IEEE,
337–344.

https://nano.stanford.edu/stanford-memory-trends
https://nano.stanford.edu/stanford-memory-trends

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Disaggregated Memory Systems
	2.2 Page Migration
	2.3 Translation Look-Aside Buffer (TLB) Shootdown:
	2.4 Motivation

	3 Memory Management Support
	3.1 Detecting Hot and Victim Pages
	3.2 Performing Page Migration:
	3.3 Sequence of Events:
	3.4 Discussion:
	3.5 Overhead:

	4 Evaluation
	4.1 Effect of Page Migration Parameters
	4.2 Page Migrations Costs
	4.3 Sensitivity to NVM's Read/Write Latency

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

