
Fast optimization-based conservative remap of scalar fields through
aggregate mass transfer

Pavel Bochev1,∗

Numerical Analysis and Applications, Sandia National Laboratories, MS-1320, Albuquerque, NM 87185-1320, USA

Denis Ridzal1

Optimization and Uncertainty Quantification, Sandia National Laboratories, MS-1320, Albuquerque, NM 87185-1320, USA

Mikhail Shashkov2

XCP-4, Methods and Algorithms, Los Alamos National Laboratory, MS-F644, Los Alamos, NM 87545, USA

Abstract

We develop a fast, efficient and accurate optimization-based algorithm for the high-order conservative and
bound-preserving remap (constrained interpolation) of a scalar conserved quantity between two close meshes
with the same connectivity. The new formulation is as robust and accurate as the flux-variable flux-target
optimization-based remap (FVFT-OBR) [1, 2] yet has the computational efficiency of an explicit remapper.
The coupled system of linear inequality constraints, resulting from the flux form of remap, is the main
efficiency bottleneck in FVFT-OBR. While conventional remappers use the flux form to directly enforce
mass conservation, the optimization setting allows us to treat mass conservation as one of the constraints. To
take advantage of this fact, we consider an alternative mass-variable mass-target (MVMT-OBR) formulation
in which the optimization variables are the net mass updates per cell and a single linear constraint enforces
the conservation of mass. In so doing we change the structure of the OBR problem from a global linear-
inequality constrained QP to a singly linearly constrained QP with simple bounds. Using the structure
of the MVMT-OBR problem, and the fact that in remap the old and new grids are close, we are able to
develop a simple, efficient and easily parallelizable optimization algorithm for the primal MVMT-OBR QP.
Numerical studies confirm that MVMT-OBR is as accurate and robust as FVFT-OBR, but has the same
computational cost as the explicit, state-of-the-art FCR.

Keywords: constrained interpolation, remap, flux-corrected remap, FCT, optimization-based remap,
quadratic programming

1. Introduction

We develop a fast, efficient and accurate optimization-based algorithm for the high-order conservative
and bound-preserving remap (constrained interpolation) of a scalar conserved quantity between two close
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meshes with the same connectivity. This task originates in Arbitrary Lagrangian-Eulerian (ALE) methods
[3], which are the main motivation for our work. In the ALE context we are given the mean value of the
primitive variable (an unknown positive scalar function, such as density) on each cell of the old (Lagrangian)
mesh. The conserved variable, such as mass, is the product of this mean value and the cell volume. The
objective is to find an accurate approximation of the mass on the new (rezoned) mesh. The remapped
cell mass divided by the volume of the new cell approximates the density, which must satisfy physically
motivated bounds.

The paper continues the development and study of the optimization-based remap (OBR) approach
initiated in [1, 2]. There we rephrase remap as a global inequality-constrained quadratic program (QP) for
the mass fluxes exchanged between neighboring cells. The objective is to minimize the distance between
these fluxes and some given target fluxes subject to constraints that enforce physically motivated local
bounds on the primitive variable (density). The resulting flux-variable flux-target (FVFT) OBR has valuable
theoretical and computational properties, which set it apart from advection-based [4, 5, 6], mass “repair”
[7, 8], or flux-correction motivated [9] algorithms.

In a nutshell, these methods invoke local “worst-case” scenarios to preserve the local bounds through
monotone reconstruction, mass redistribution, or convex combinations of low and high-order fluxes. This
entangles accuracy considerations with the enforcement of the bounds, which tends to obscure the sources
of discretization errors and complicates the analysis of the algorithms.

In contrast, the OBR strategy completely separates accuracy from the enforcement of the physically
motivated local bounds. The latter define a feasible set for the QP, whereas the minimization of the
objective function enforces the former. As a result, FVFT-OBR always finds a globally optimal, i.e., the
best possible, with respect to the target fluxes, remapped mass that also satisfies these bounds. The linear
constraints that express the local bounds are completely impervious to cell shape and so, OBR is applicable
to arbitrary grids, including polygonal and polyhedral grids.

Thorough convergence studies in [1] confirm that the FVFT-OBR formulation is as accurate as the state-
of-the-art Flux-Corrected Remap (FCR) [9] for a collection of classical remap test cases. However, a series
of “torture” tests in one and two dimensions demonstrate that FVFT-OBR is significantly more robust
than FCR and the representative advection-based remappers. The dual QP provides a convenient structure-
exploiting setting for the effective solution of FVFT-OBR by the reflective Newton method [10]. Numerical
studies in [1] indicate that the computational cost of FVFT-OBR is proportional, up to a constant, to the
cost of an explicit remapper such as FCR. The proportionality constant observed in [1] varies between 1.8
and 3.2.

These figures do not count potential gains from the increased robustness of FVFT-OBR, which enables
larger displacements between the old and new mesh. Nonetheless, further efficiency gains in OBR are
desirable to enhance its standing as a viable competitor to explicit remappers. Accordingly, the main focus
of this paper is on improving the computational efficiency of OBR. Our principal goal is to develop an
OBR formulation that fully retains the robustness and accuracy of FVFT-OBR, yet has the computational
efficiency of the explicit, state-of-the-art FCR.

The main efficiency bottleneck in FVFT-OBR is the coupled system of linear inequality constraints. The
coupling of the variables stems from writing the new cell masses in flux form, which automatically conserves
the total mass. While the flux form is needed for conventional remappers, it is arguably less instrumental
in an optimization setting where conservation of mass can be treated as an explicit constraint. To take
advantage of this fact, we consider an alternative mass-variable mass-target OBR (MVMT-OBR) formulation
in which the optimization variables are the net mass updates per cell. While this formulation introduces a
single global equality constraint to conserve mass, it completely decouples the inequality constraints because
there is only one variable per cell. As a result, by switching to these new variables we change the structure
of the OBR problem from a global linear-inequality constrained QP to a singly linearly constrained QP with
simple bounds.

Of course, trading automatic mass conservation for an explicit constraint only makes sense if the resulting
QP can be solved more efficiently. Using the structure of the MVMT-OBR problem, and the fact that in
remap the old and the new grids are close, we are able to develop a simple, efficient and easily parallelizable
algorithm for the primal MVMT-OBR QP. Preliminary studies of the computational cost suggest that this
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algorithm is as efficient as the explicit FCR. This makes the new formulation fully competitive in terms of
speed with any conventional remapper. At the same time, thorough computational studies confirm that the
MVMT-OBR formulation retains the accuracy and robustness of FVFT-OBR.

The use of the fully decoupled net mass update variables instead of the coupled flux variables opens
up an additional possibility to simplify and improve MVMT-OBR by discarding the variables associated
with static cells, i.e., the cells that do not move during the rezone step. Since the net mass update on a
static cell equals zero, we can increase the efficiency of MVMT-OBR by not computing the variables whose
values are known to be zero. This modification could bring about significant additional performance gains
in applications such as propagation of waves, in which there are large numbers of static cells. We show that
skipping the static cels in the MVMT-OBR formulation does not lead to a loss of key theoretical properties
such as existence of optimal solutions and preservation of linearity.

The remainder of this section introduces the relevant notation. Section 2 presents the MVMT-OBR
formulation. There we also prove that MVMT-OBR is well-posed and preserves linear functions. The
section closes with a discussion of the swept region implementation of MVMT-OBR. Section 3 develops the
optimization algorithm for the solution of the MVMT-OBR QP. Numerical studies in Section 4 focus on the
accuracy, robustness and efficiency of MVMT-OBR. We summarize our conclusions and map directions for
future work in Section 5.

1.1. Notation

The computational domain Ω is a bounded subset of Rd, d = 1, 2, 3. The old (Lagrangian) grid Kh(Ω)
is a conforming partition of Ω into cells κi, i = 1, . . . ,K. The total numbers of vertices, edges and sides
in the mesh are V , E and S, respectively. The sets of all vertices, sides and cells in an entity Ξ are V (Ξ),
S(Ξ), and C(Ξ), respectively. For instance, S(Kh) are the sides in the old mesh and V (κi) are the vertices
of cell κi.

When two cells κi and κj have a common side we label it by sij . Because sij and sji represent the same
entity in the mesh, to avoid ambiguity we adopt the convention i < j. For instance, referring to the cartoon
in Figure 1, we label the side between κ5 and κ2 by s25, the side between κ5 and κ6 by s56 and so on. This
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Figure 1: Illustration of the naming and the orientation conventions for cell sides in two dimensions. The sides are sij with
i < j. The unit normal nij on sij points away from cell κi. The unit tangent tij is such that the pair (tij ,nij) is positively
oriented. The blue circles are the signs of the non-zero entries in the row of the side-to-cell incidence matrix corresponding to
κ5.

rule induces the orientation of sij by selecting the unit normal on the side that points towards the cell with
the larger number. Returning to the example in Figure 1, we orient s25 using the unit normal that points
into κ5, while for s56 we use the unit normal that points towards κ6. The side-to-cell incidence matrix D is
a K × S matrix with entries di,kl such that di,kl = 0 if skl is not a side of κi, di,kl = 1 if the unit normal to
the side skl matches the direction of the outer unit normal to the boundary of κi, and di,kl = −1 otherwise.
Succinctly,

di,kl =


0 if skl /∈ S(κi)

1 if skl ∈ S(κi) and i = k

−1 if skl ∈ S(κi) and i = l

. (1.1)
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The blue ovals in Figure 1 illustrate this rule.
In two dimensions we also need to select a unit tangent on each side. We follow the rule that the unit

tangent tij on sij is such that the pair (tij ,nij) has positive orientation, i.e., det([tij nij ]) = 1.

The new (rezoned) grid K̃h(Ω) is another conforming partition of Ω into cells κ̃i, i = 1, . . . , K̃. In this
paper we restrict attention to pairs of new and old grids having the same connectivity. Therefore, Kh(Ω)

and K̃h(Ω) have the same numbers of vertices, sides and cells, i.e., Ṽ = V , S̃ = S and K̃ = K. Without

loss of generality we assume that the vertices ṽi, the sides s̃kl and the cells κ̃j in K̃h(Ω) are numbered by
the same numbers as in Kh(Ω), i.e., their Lagrangian prototypes are vi, skl and κj , respectively.

The quantities and the entities on the new grid will have the tilde accent, e.g. f̃ , whereas the quantities
and the entities on Kh(Ω) will have no accent. For instance,

µi =

∫
κi

dV and b̃j =

∫
κ̃j

x dV

µ̃j
, (1.2)

are the unsigned measure of the old cell κi and the barycenter of the new cell κ̃j , respectively. The signed
measure3 of a set γ is µ?(γ).

!i! !i! !i! !i!

N(κi) N ′(κi) NS(κi) NV (κi)

Figure 2: Lagrangian cell κi and its neighborhoods.

The neighborhood N(κi) of κi includes the cell κi itself and all cells that share a vertex (in 1D), vertex
or side (in 2D) and vertex, edge or side (in 3D) with κi. The strict neighborhood of κi is defined by
N ′(κi) = N(κi) \ κi. The side neighborhood NS(κi) comprises of all cells in N(κi) which share a side with
κi. The subset of cells in N(κi) that share an edge but not a side with with κi is the edge neighborhood
NE(κi) and the subset of cells that shares a vertex but not an edge or a side with κi is the vertex neighborhood
NV (κi). The strict versions N ′S(κi), N

′
E(κi) and N ′V (κi) of these neighborhoods do not include κi. Figure

2 gives an example of N(κi), N
′(κi), NS(κi) and NV (κi) in two dimensions.

We assume that K̃h(Ω) satisfies the locality condition

κ̃i ⊂ N(κi), for all i = 1, . . . ,K , (1.3)

which makes precise the assumption that Kh(Ω) and K̃h(Ω) are “close”.

Suppose that F and F̃ are some collections of old and new cells, respectively. The notation i ∈ F ,

i ∈ F̃ means that the index i runs over the indices of the cells in F , resp. F̃ . For instance, j ∈ N(κi)
means that j loops over the indices of the cells in the neighborhood of κi.

Remark 1.1. Because a side is shared by at most two cells, dimension of NS(κi) for interior cells is exactly
the number of sides in κi plus one. In contrast, more than two cells can share an edge in 3D and a vertex
in 2D and 3D. As a result, the dimensions of NE(κi) (in 3D) and NV (κi) (in 2D and 3D) can be arbitrary.
Figure 2 shows an example where the number of cells from NV (κi) attached to each of the nodes of κi ranges
from 0 to 2.

3Reduction of the volume integral to a surface integral and taking into account the surface orientation defines the signed
measure of a domain.
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2. Formulation of the optimization-based remap through aggregate mass transfer

We begin with a formal statement of the mass-density remap problem. Then we review the flux-variable
flux-target OBR (FVFT-OBR) and proceed to define the mass-variable mass-target OBR (MVMT-OBR).
We show that MVMT-OBR is well-posed and preserves linear densities. Discussion of implementation using
swept region approximation completes the section.

2.1. Statement of the mass-density remap problem

The statement of the mass-density remap problem [11, 9] requires additional notation. The primitive
variable (density) is a scalar function ρ(x) > 0 on Ω. The conserved variable is the total mass

M =

∫
Ω

ρ(x)dV =

K∑
i=1

mi =

K∑
i=1

ρiµi

where

ρi =

∫
κi

ρ(x)dV

µi
=
mi

µi
and mi =

∫
κi

ρ(x)dV = ρiµi , i = 1, 2, . . . ,K , (2.1)

are the mean densities and cell masses on the old mesh, respectively. For every old cell κi define

ρmin
i =


min

j∈N(κi)
{ρj} if κi ∩ ∂Ω = ∅

min

{
min

j∈N(κi)
{ρj}, min

x∈N(κi)∩∂Ω
ρ(x)

}
if κi ∩ ∂Ω 6= ∅

, (2.2)

ρmax
i =


max

j∈N(κi)
{ρj} if κi ∩ ∂Ω = ∅

max

{
max

j∈N(κi)
{ρj}, max

x∈N(κi)∩∂Ω
ρ(x)

}
if κi ∩ ∂Ω 6= ∅ .

(2.3)

It is straightforward to check that the mean density trivially satisfies the local bounds

ρmin
i ≤ ρi ≤ ρmax

i , i = 1, . . . ,K . (2.4)

The inequalities (2.4) together with (2.1) imply that cell masses satisfy similar local bounds:

mmin
i := ρmin

i µi ≤ mi ≤ ρmax
i µi =: mmax

i , i = 1, . . . ,K . (2.5)

In the mass-density remap problem we assume that we know the mean density values ρi on the old grid
cells κi, and the boundary values of ρ(x) on ∂Ω. Given this information, we seek accurate approximations
m̃i for the masses of the new cells κ̃i,

m̃i ≈ m̃ex
i =

∫
κ̃i

ρ(x)dV , i = 1, . . . ,K , (2.6)

such that the following conditions hold:

C1. The total mass is conserved:
K∑
i=1

m̃i =

K∑
i=1

mi = M .

C2. If ρ(x) is a global linear function on Ω, then the remapped masses are exact:

m̃i = m̃ex
i =

∫
κ̃i

ρ(x)dV , i = 1, . . . ,K . (2.7)
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C3. The approximation of the mean density on the new cells

ρ̃i =
m̃i

µ̃i
(2.8)

satisfies the local bounds
ρmin
i ≤ ρ̃i ≤ ρmax

i ; i = 1, . . . ,K , (2.9)

where (2.2)–(2.3) define ρmin
i and ρmax

i . Equivalently, the following local mass bounds hold:

m̃min
i := ρmin

i µ̃i ≤ m̃i ≤ ρmax
i µ̃i =: m̃max

i . (2.10)

2

2.2. Flux-variable flux-target optimization-based remap

Recall the strict neighborhood N ′(κi) = N(κi) \ κi. The flux-form formula [11]

m̃ex
i = mi +

∑
j∈N ′(κi)

F ex
ij , (2.11)

where

F ex
ij =

∫
κ̃i∩κj

ρ(x)dV −
∫
κi∩κ̃j

ρ(x)dV j ∈ N ′(κi), , (2.12)

are the exact mass fluxes, holds on any two grids that satisfy (1.3). The substitution of the exact fluxes
{F ex

ij } in (2.11) with antisymmetric approximations {Fij}, Fij = −Fji yields the mass-conserving flux-form
formula

m̃i = mi +
∑

j∈N ′(κi)

Fij (2.13)

for the approximation of the new masses. The discrete fluxes {Fij} are the variables in the FVFT-OBR
formulation and the constraints are (i) the antisymmetry Fij = −Fji of the discrete fluxes and (ii) the local
mass bounds (2.10). We enforce antisymmetry directly by using only fluxes Fij with i < j and writing the
flux sum in (2.13) as ∑

j∈N ′(κi)

Fij =
∑

j∈N′(κi)
i<j

Fij −
∑

j∈N′(κi)
i>j

Fji .

The FVFT-OBR solution minimizes the Euclidean distance between Fij and some suitable target fluxes FTij ,
i < j, subject to (2.10). Concisely, the FVFT-OBR formulation is the following global inequality-constrained
QP [1]: 

min
Fij

K∑
i=1

∑
j∈N′(κi)
i<j

(Fij − FTij )2 subject to

δm̃min
i ≤

∑
j∈N′(κi)
i<j

Fij −
∑

j∈N′(κi)
i>j

Fji ≤ δm̃max
i , i = 1, . . . ,K ,

(2.14)

where
δm̃min = m̃min

i −mi and δm̃max = m̃max
i −mi . (2.15)

A density reconstruction ρh(x) on Kh(Ω) that is exact for linear functions defines the target fluxes in (2.14):

FTij :=

∫
κ̃i∩κj

ρhj (x)dV −
∫
κi∩κ̃j

ρhi (x)dV i < j . (2.16)
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Because our goal is to preserve linear densities, in this paper we restrict attention to piecewise linear density
reconstructions, i.e., functions ρh(x) whose restriction ρhi (x) = ρh(x)|κi to cell κi is linear for all i = 1, . . . ,K.

By construction, any optimal solution of QP (2.14) satisfies the local mass bounds (2.10) and conserves
the total mass. Because (2.10) and (2.9) are equivalent, the FVFT-OBR solution fulfills C1 and C3 in
Section 2.1. In [1] we prove that FVFT-OBR preserves linear densities by showing that if ρ(x) is linear,
then {FTij } are feasible and Fij = FTij is optimal solution of (2.14). As a result, whenever ρ(x) is linear,

m̃i = mi +
∑

j∈N ′(κi)

FTij = mi +
∑

j∈N ′(κi)

F ex
ij = mex

i , i = 1, . . . ,K . (2.17)

Therefore, FVFT-OBR satisfies requirement C2 in §2.1.

2.3. Mass-variable mass-target optimization-based remap

Using the flux form (2.13) with antisymmetric discrete fluxes automatically conserves the mass in QP
(2.14). Yet, the flux form yields a system of globally coupled inequality constraints. This coupling compli-
cates the solution and creates a performance bottleneck. While the flux form is imperative for conventional
remappers, its importance diminishes in the optimization setting, where conservation becomes one of the
many possible physically motivated constraints. We take advantage of this fact to replace (2.14) with a QP
whose structure is more amenable to fast, parallelizable solution.

In a nutshell, we trade the automatic conservation of mass in (2.13) for a simpler set of box constraints
plus a single linear constraint to enforce the conservation of mass explicitly. To this end, instead of (2.13)
we start with the mass-form representation of the new cell masses

m̃ex
i = mi + δmex

i , (2.18)

where

δmex
i =

∫
κ̃i

ρ(x)dV −
∫
κi

ρ(x)dV (2.19)

is the mass update between κi and κ̃i. The substitution of δmex
i in (2.19) by an approximation δmi yields

the mass-form formula for the approximate masses on the new cells:

m̃i = mi + δmi . (2.20)

The approximate mass updates δmi are the variables in the mass-target mass-variable optimization-based
remap (MVMT-OBR). The constraints on these variables are the linear equality constraint

K∑
i=1

δmi = 0 , (2.21)

which is necessary and sufficient for (2.20) to conserve the total mass and the box constraints

δm̃min
i ≤ δmi ≤ δm̃max

i , i = 1, . . . ,K , (2.22)

which follow from inserting (2.20) into (2.10) and using (2.15).

Remark 2.1. The equality constraint (2.21) holds for the exact mass updates:

K∑
i=1

δmex
i =

K∑
i=1

∫
κ̃i

ρ(x)dV −
K∑
i=1

∫
κi

ρ(x)dV =

∫
Ω

ρ(x)dV −
∫

Ω

ρ(x)dV = 0 . (2.23)

Using (2.19) in conjunction with a piecewise linear density reconstruction ρh(x) on the old grid defines
the mass update targets for the MVMT-OBR formulation:

δmT
i =

∫
κ̃i

ρh(x)dV −
∫
κi

ρh(x)dV . (2.24)

7



Suppose that (2.16) defines FTij . It is easy to see that∑
j∈N ′(κi)

FTij =
∑

j∈N ′(κi)

(∫
κ̃i∩κj

ρhj (x)dV −
∫
κi∩κ̃j

ρhi (x)dV

)

=

( ∑
j∈N ′(κi)

∫
κ̃i∩κj

ρhj (x)dV +

∫
κ̃i∩κi

ρhi (x)dV

)
−
( ∑
j∈N ′(κi)

∫
κi∩κ̃j

ρhi (x)dV +

∫
κ̃i∩κi

ρhi (x)dV

)

=

∫
κ̃i

ρh(x)dV −
∫
κi

ρh(x)dV = δmT
i .

In other words, the target mass update on cell κi is the sum of the target mass fluxes corresponding to the
cells in N ′(κi):

δmT
i =

∑
j∈N ′(κi)

FTij . (2.25)

To sum it up, the MVMT-OBR solution minimizes the Euclidean distance between {δmi} and the targets
{δmT

i }, subject to the linear constraint (2.21) and the box constraints (2.22):
min
δmi

K∑
i=1

(δmi − δmT
i )2 subject to

K∑
i=1

δmi = 0 and δm̃min
i ≤ δmi ≤ δm̃max

i , i = 1, . . . ,K .

(2.26)

Problem (2.26) is a singly linearly constrained QP with simple bounds. In contrast to (2.14) the new
formulation requires an additional linear equality constraint to conserve the mass, but completely decouples
the inequality constraints. In Section 3 we take advantage of this structure and the locality assumption
(1.3) to develop fast, efficient and parallelizable optimization algorithm for (2.26).

2.4. Properties of MVMT-OBR

We first establish that (2.26) is a well-posed optimization problem. Then we prove that MVMT-OBR
preserves globally linear densities.

Theorem 2.1. Assume that the locality condition (1.3) holds for Kh(Ω) and K̃h(Ω) and that {ρi} are
nonnegative real numbers that specify the mean density on the Lagrangian mesh. Then the QP (2.26) has a
unique optimal solution.

Proof. Because (2.26) has a strictly convex objective function, it suffices to show that (2.26) has a non-
empty feasible set, i.e., that there is at least one set of values δm = (δm1, . . . , δmK), which satisfy the linear
constraint (2.21) and the box constraints (2.22). Let

δmi =
∑

j∈N ′(κi)

(
ρjµ(κ̃i ∩ κj)− ρiµ(κi ∩ κ̃j)

)
, i = 1, . . . ,K . (2.27)

We prove that δm is feasible. To show (2.21) we break the equality constraint into two parts:

K∑
i=1

δmi =

K∑
i=1

∑
j∈N ′(κi)

ρjµ(κ̃i ∩ κj)−
K∑
i=1

∑
j∈N ′(κi)

ρiµ(κi ∩ κ̃j) = A−B .

After changing the order of summation in the first part and collecting the like terms we get

A =

K∑
j=1

ρj

( ∑
i∈N ′(κj)

µ(κ̃i ∩ κj)
)

=

K∑
j=1

ρj

( ∑
i∈N ′(κj)

µ(κ̃i ∩ κj)± µ(κ̃j ∩ κj)
)

=

K∑
j=1

ρj
(
µ(κj)− µ(κ̃j ∩ κj)

)
,
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while collecting the like terms in the second part yields

B =

K∑
i=1

ρi

( ∑
j∈N ′(κi)

µ(κi ∩ κ̃j)
)

=

K∑
i=1

ρi

( ∑
j∈N ′(κi)

µ(κi ∩ κ̃j)± µ(κ̃i ∩ κi)
)

=

K∑
i=1

ρi
(
µ(κi)− µ(κ̃i ∩ κi)

)
.

Therefore, A = B, which proves that δm satisfies the linear equality constraint. To show that δm also
satisfies the box constraints, note that (2.27) and mi = ρiµ(κi) imply

mi + δmi = ρi

(
µ(κi)−

∑
j∈N ′(κi)

µ(κi ∩ κ̃j)
)

+
∑

j∈N ′(κi)

ρjµ(κ̃i ∩ κj) .

The term in the parenthesis equals µ(κi ∩ κ̃i) and so,

mi + δmi = ρiµ(κi ∩ κ̃i) +
∑

j∈N ′(κi)

ρjµ(κ̃i ∩ κj) =
∑

j∈N(κi)

ρjµ(κ̃i ∩ κj) .

On the other hand, (2.2)–(2.3) guarantee that ρmin
i ≤ ρj ≤ ρmax

i for all cells in N(κi). As a result,

mi + δmi =
∑

j∈N(κi)

ρjµ(κ̃i ∩ κj) ≤ ρmax
i

∑
j∈N(κi)

µ(κ̃i ∩ κj) = ρmax
i µ̃i ;

mi + δmi =
∑

j∈N(κi)

ρjµ(κ̃i ∩ κj) ≥ ρmin
i

∑
j∈N(κi)

µ(κ̃i ∩ κj) = ρmin
i µ̃i .

Because the box constraints (2.22) are equivalent to

ρmin
i µ̃i ≤ mi + δmi ≤ ρmax

i µ̃i , i = 1, . . . ,K ,

this proves the theorem.

Suppose that the exact density is a globally linear function. The following theorem specializes a result
from [1] and establishes sufficient conditions for the QP (2.26) to preserve linear densities.

Theorem 2.2. Let ρ(x) = c0 + cTx. Assume that Kh(Ω) and K̃h(Ω) satisfy the locality condition (1.3),
the density reconstruction ρh(x) is exact for linear functions, and (2.24) defines the target mass updates
{δmT

i }. Let Bi denote the set of barycenters of the Lagrangian cells in N(κi),

Bi = {bj | j ∈ N(κi)},

and let b̃i be the barycenter of the rezoned cell κ̃i. The conditions

b̃i ∈H (Bi) if κi ∩ ∂Ω = ∅, (2.28)

b̃i ∈H (Bi ∪ (N(κi) ∩ ∂Ω)) if κi ∩ ∂Ω 6= ∅, (2.29)

where H (·) denotes the convex hull, are sufficient for the remapped masses to be exact, i.e., for m̃i = m̃ex
i

on every rezoned cell κ̃i.

Proof. By assumption ρh(x) is exact for linear functions and so, on every Lagrangian cell ρh(x) = ρ(x) =
c0 + cTx. As a result, δmT

i = δmex
i and

mi + δmT
i = m̃ex

i .

Therefore, to prove m̃i = m̃ex
i it suffices to show that the targets {δmex

i } are feasible for QP (2.26).
Equation (2.23) in Remark 2.1 confirms that the exact mass updates satisfy the equality constraint

(2.21). On the other hand, the bounds (2.22) for {δmex
i } are equivalent to the bounds on the cell masses

ρmin
i µ̃i ≤ m̃ex

i ≤ ρmax
i µ̃i .

Assuming that (2.28)–(2.29) hold, these bounds follows from [1, Theorem 2.2].
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2.5. Active cell option

We call a new cell κ̃i static if κ̃i = κi. A cell that is not static is active. In the context of ALE methods
static cells arise when the rezoning algorithm, which aims to reduce the grid distortion accrued during the
Lagrangian phase, skips cells that it deems to be of a sufficiently high “quality”. There are many practically
important applications in which large numbers of cells in Ω remain static. A shock or a wave propagating
through a domain is one such example. As a rule, the cells outside of a small region where the solution
features reside remain static throughout the rezone phase.

Because the mass and the mean density do not change on static cells, that is, ρ̃i = ρi and m̃i = mi, it
follows that the net mass update per static cell is zero, i.e., δmi = 0 whenever κ̃i = κi. On the other hand,
(2.26) is a global optimization problem whose solution may not yield zero mass updates on the static cells.
We can improve both the efficiency of MVMT-OBR and the physical quality of its solution by skipping the
mass update computations for all static cells. Such a modification is consistent with the notion of remap as
a constrained interpolation between two grids: on static cells the field representation does not change and
so there is “nothing to interpolate”.

Let Ka denote the number of active cells in Kh(Ω). Without loss of generality assume that the active
cells are the first Ka cells in the mesh. The mass-variable mass-target formulation with an active cell
option, MVMT(a)-OBR, restricts the optimization in (2.26) to the net mass updates on the active cells
only. Specifically, we set the net mass updates to zero on all static cells, that is,

δmi = 0 , i = Ka + 1, . . . ,K ,

and solve a QP for the net updates on the active cells only:
min
δmi

Ka∑
i=1

(δmi − δmT
i )2 subject to

Ka∑
i=1

δmi = 0 and δm̃min
i ≤ δmi ≤ δm̃max

i , i = 1, . . . ,Ka .

(2.30)

The active cell option does not change the key properties of MVMT-OBR, i.e., the conclusions of Theorem 2.1
and Theorem 2.2 remain in full force for MVMT(a)-OBR.

Let us first confirm that Theorem 2.1 continues to hold for (2.30). Removing the terms that correspond
to the static cells from the objective function in (2.26) does not change its strict convexity. Consequently,
as before, it suffices to show that MVMT(a)-OBR has a non-empty feasible set. In particular, we will show
that (2.27) defines δm that is also feasible for the MVMT(a)-OBR. Suppose that κi is a static cell. Since
κ̃i = κi it follows that

µ(κ̃i ∩ κj) = µ(κi ∩ κj) = 0 and µ(κi ∩ κ̃j) = µ(κ̃i ∩ κ̃j) = 0 .

As a result, formula (2.27) yields

δmi =
∑

j∈N ′(κi)

(
ρjµ(κ̃i ∩ κj)− ρiµ(κi ∩ κ̃j)

)
= 0

for all δmi corresponding to static cells and so, δm = (δm1, . . . , δmKa , 0, . . . , 0). Theorem 2.1 implies that
δm̃min

i ≤ δmi ≤ δm̃max
i for i = 1, . . . ,Ka, i.e., δm is feasible for MVMT(a)-OBR.

To show that MVMT(a)-OBR preserves linear densities, note that for static cells∑
j∈N ′(κi)

FTij =
∑

j∈N ′(κi)

(∫
κ̃i∩κj

ρhj (x)dV −
∫
κi∩κ̃j

ρhi (x)dV

)
=

∑
j∈N ′(κi)

(∫
κi∩κj

ρhj (x)dV −
∫
κ̃i∩κ̃j

ρhi (x)dV

)
= 0 ,
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and so, (2.25) implies that δmT = 0 whenever κ̃i = κi. Therefore, the proof of linearity preservation in
Theorem 2.2 trivially specializes to MVMT(a)-OBR.

Because MVMT-OBR and MVMT(a)-OBR have identical theoretical properties and differ only in the
number of variables, in what follows we write both methods as the QP

min
δmi

K′∑
i=1

(δmi − δmT
i )2 subject to

K′∑
i=1

δmi = 0 and δm̃min
i ≤ δmi ≤ δm̃max

i , i = 1, . . . ,K ′ ,

(2.31)

where K ′ = K for MVMT-OBR, K ′ = Ka – the number of active cells, for MVMT(a)-OBR. The last K−K ′
variables are set to zero:

δmi = 0 , i = K ′ + 1, . . . ,K .

2.6. Swept region approximation

Recall that ρh(x) is a piecewise linear function defined with respect to the old mesh. As a result,

δmT
i =

∫
κ̃i

ρh(x)dV −
∫
κi

ρh(x)dV =
∑

j∈N ′(κi)

∫
κ̃i∩κj

ρhj (x)dV −
∫
κi

ρhi (x)dV , (2.32)

where ρhi (x) is the restriction of ρh(x) to the Lagrangian cell κi. An implementation of formula (2.32)
requires the computation of the intersections between the new and old cells. While software tools for this
task exist, the swept region approach [11, §4] offers a simpler and more efficient alternative, especially
in three dimensions. Swept regions are defined by the movement of the sides of the old cells into a new
configuration. As a result, swept regions are completely determined by the coordinates of the old and new
cell vertices.

For simplicity, we explain the swept region approach in two dimensions. The sketch in Figure 3 uses the
cell numbering from Figure 1 and shows the swept regions resulting from connecting the side vertices of κ̃5

and its Lagrangian prototype κ5. Each swept region σij corresponds to a side sij in the old mesh. The unit
tangent tij to that side induces orientation on σij . Because swept regions are associated with the sides of
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Figure 3: Swept region nomenclature in two dimensions. Cell and side numbers follow the example in Figure 1. The unit face
tangent tij indicates the orientation of the swept region σij . The blue ovals indicate the signs of the entries in the side-to-cell
incidence matrix (1.1).

the cells, their use with the flux form (2.13) of the new masses is natural. Specifically, to develop the swept
region approximation of FVFT-OBR we restrict the summation in (2.13) to the side neighborhood of κi:

m̃i = mi +
∑

j∈N ′
S(κi)

Fij (2.33)
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µ?(σij)di,ij < 0 µ?(σij)di,ij > 0 µ?(σij)di,ij > 0 µ?(σij)di,ij < 0

Figure 4: The grey color indicates the Lagrangian cell, which provides the reconstruction component of ρh for the computation
of the target flux in (2.34). Cell numbering follows the example from Fig. 1.

The optimization variables Fij are mass fluxes associated with the swept regions. To define the targets for
these variables we consider integration of a piecewise linear density reconstruction ρh on σij . As before, ρhi
is the linear restriction of ρh to the old cell κi.

Note that a swept region σij can intersect more than one cell. Consequently, exact integration of ρh on
σij would also require intersections between the swept region and the old cells. To avoid the computation of
these intersections we approximate

∫
σij

ρhdV using either ρhi or ρhj to compute the target flux for Fij . The

choice of the two possible restrictions of ρh depends on (i) the signed area µ?(σij) of the swept region, and
(ii) the orientation of sij encoded in the side-to-cell incidence matrix D. Specifically, instead of (2.16) we
define the target fluxes according to the following formula:

FTSij =


∫
σij

ρhi (x)dV if µ?(σij)di,ij < 0∫
σij

ρhj (x)dV if µ?(σij)di,ij > 0
. (2.34)

Figure 4 illustrates the choice of the reconstruction component as a function of the signed area and the
side orientation. The swept region approximation (2.34) is exact for linear functions [12]. As a result, all
theoretical conclusions about FVFT-OBR continue to hold when the approximate target fluxes (2.34) are
used in lieu of the “true” targets (2.16); see [1].

We now proceed to motivate the swept region approximation for the MVMT-OBR formulation. Accord-
ing to (2.25), when using exact cell intersections the target mass update δmT

i on κi equals the sum of the
target mass fluxes for that cell. This relationship prompts the approximation

δmTS
i =

∑
j∈N ′

S(κi)

FTSij , (2.35)

where (2.34) defines the target fluxes FTSij .
It is easy to see that the swept region approximation does not change the theoretical properties of the

MVMT-OBR formulation. Theorem 2.1 does not depend on the choice of the targets and so it remains in
full force. In contrast, Theorem 2.2 does depend on the target selection. However, because the swept region
approximation is exact for linear densities, it follows that formula (2.35) is also exact for such densities, i.e.,
there holds δmTS

i = δmex
i , whenever ρ is linear. This is sufficient to carry out the proof of the theorem in

the case when (2.35) defines the targets.

2.7. Flux-variable mass-target formulation

In this section we briefly mention an alternative QP formulation of remap, which combines the features
of FVFT-OBR and MVMT-OBR. We explain why this formulation is less attractive for the development of
an optimization-based remap algorithm.

12



The FVFT-OBR objective minimizes the Euclidean distance between the flux variables and the target
fluxes. We can define another optimization objective by combining the flux variables that contribute to
the same cell. The resulting QP minimizes the Euclidean distance between the sums of the mass fluxes
exchanged between new and old cells and the sums of the corresponding target fluxes, subject to the same
bounds on the flux variables as in (2.14):

min
Fij

K∑
i=1

( ∑
j∈N′(κi)
i<j

Fij −
∑

j∈N′(κi)
i<j

FTij

)2

subject to

δm̃min
i ≤

∑
j∈N′(κi)
i<j

Fij −
∑

j∈N′(κi)
i>j

Fji ≤ δm̃max
i i = 1, . . . ,K .

(2.36)

From (2.25) we know that the sum of the target fluxes in the objective function of (2.36) gives the mass
target δmT

i of the MVMT-OBR formulation. Furthermore, the sum of the flux variables is effectively a mass
update

δmi :=
∑

j∈N′(κi)
i<j

Fij

for cell κ̃i. As a result, we can write (2.36) in the following flux-variable mass-target (FVMT) form:
min
Fij

K∑
i=1

(
δmi − δmT

i

)2
subject to

δm̃min
i ≤

∑
j∈N′(κi)
i<j

Fij −
∑

j∈N′(κi)
i>j

Fji ≤ δm̃max
i i = 1, . . . ,K .

(2.37)

The FVMT-OBR formulation combines the flux variables of FVFT-OBR with the objective function of
MVMT-OBR. Compared to MVMT-OBR this formulation suffers from two key drawbacks. First, since
(2.36) uses flux variables, it inherits the coupled system of linear inequality constraints from FVFT-OBR,
which is the main efficiency bottleneck of the FVFT-OBR algorithm. Second, one can show that the
objective function of (2.36) has a large null space. Therefore, the FVMT-OBR formulation is not strictly
convex and the optimal solution of (2.36) is not unique. This complicates the efficient numerical solution of
FVMT-OBR. For these reasons we do not pursue FVMT-OBR in this paper.

3. Optimization Algorithm

In this section we discuss the solution of the optimization problem (2.31), which we restate for ease of
reference: 

min
δmi

K′∑
i=1

(δmi − δmT
i )2 subject to

K′∑
i=1

δmi = 0 and δm̃min
i ≤ δmi ≤ δm̃max

i , i = 1, . . . ,K ′

We remind that K ′ = K – the number of all cells, in the case of MVMT-OBR, K ′ = Ka – the number of
active cells, in the case of MVMT(a)-OBR and the last K −K ′ variables are set to zero:

δmi = 0 ; i = K ′ + 1, . . . ,K .

Optimization problems of this type are known in the optimization literature as the singly linearly con-
strained quadratic programs with simple bounds. A recent publication with new techniques for their solution
is [13], where the authors propose an algorithm that runs in expected linear time and is directly applicable
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to (2.31). While the algorithm proposed here is motivated by [13], it is considerably simpler due to several
features of (2.31) that are unique to the context of remap.

A key observation in developing an algorithm for (2.31) is that the related optimization problem without

the mass conservation constraint,
∑K′

i=1 δmi = 0, is fully separable. This problem can be solved by indepen-
dently solving K ′ one-dimensional quadratic programs with simple bounds, i.e., its solution cost is O(K ′).

Thus, our goal is to satisfy the remaining constraint
∑K′

i=1 δmi = 0 in a few iterations of cost O(K ′) each.
We solve (2.31) by a direct application of the Karush-Kuhn-Tucker (KKT) theory, see, e.g., [14, Ch.12].

We define the Lagrangian functional L : IRK′
× IR× IRK′

× IRK′
→ IR,

L (δm, λ, µ1, µ2) =
1

2

K′∑
i=1

(δmi − δmT
i )2 − λ

K′∑
i=1

δmi −
K′∑
i=1

µ1,i

(
δmi − δ̃m

min

i

)
−

K′∑
i=1

µ2,i

(
δ̃m

max

i − δmi

)
,

where δm ∈ IRK′
, with (δm)i = δmi, is the vector of primal optimization variables, and λ ∈ IR, µ1 ∈ IRK′

,

with (µ1)i = µ1,i, and µ2 ∈ IRK′
, with (µ2)i = µ2,i, are the Lagrange multipliers. The gradient of the

Lagrangian with respect to the primal variables is given by

∂

∂ δmi
L(δm, λ, µ1, µ2) = δmi − δmT

i − λ− µ1,i + µ2,i , for i = 1, . . . ,K ′ .

As shown in Section 2, δm̃min
i and δm̃max

i are such that the constraints in (2.31) are consistent, i.e., the
optimization problem has a solution. Furthermore, strict convexity yields a unique global minimizer. The
necessary and sufficient optimality conditions for (2.31) are:

δmi = δmT
i + λ+ µ1,i − µ2,i i = 1, . . . ,K ′ (3.1a)

δ̃m
min

i ≤ δmi ≤ δ̃m
max

i i = 1, . . . ,K ′ (3.1b)

µ1,i ≥ 0 , µ2,i ≥ 0 i = 1, . . . ,K ′ (3.1c)

µ1,i

(
δmi − δ̃m

min

i

)
= 0 , µ2,i

(
−δmi + δ̃m

max

i

)
= 0 i = 1, . . . ,K ′ (3.1d)

K′∑
i=1

δmi = 0 . (3.1e)

We solve the conditions (3.1) directly. First, we focus on the conditions (3.1a)-(3.1d), which are separable
in the index i. For any fixed value of λ a solution to (3.1a)-(3.1d) is given by

δmi = δmT
i + λ; µ1,i = µ2,i = 0 if δ̃m

min

i ≤ δmT
i + λ ≤ δ̃m

max

i

δmi = δ̃m
min

i ; µ2,i = 0, µ1,i = δmi − δmT
i − λ if δmT

i + λ < δ̃m
min

i

δmi = δ̃m
max

i ; µ1,i = 0, µ2,i = δmT
i − δmi + λ if δmT

i + λ > δ̃m
max

i ,

(3.2)

for all i = 1, . . . ,K ′. Ignoring the Lagrange multipliers µ1 and µ2 and treating δmi as a function of λ yields

δmi(λ) = median(δ̃m
min

i , δmT
i + λ, δ̃m

max

i ) , i = 1, . . . ,K ′ , (3.3)

where we note that this is an O(K ′) computation.

Second, we adjust λ in an outer iteration in order to satisfy the constraint
∑K′

i=1 δmi(λ) = 0. When

we find the λ∗ such that
∑K′

i=1 δmi(λ
∗) = 0 holds, we will have solved the optimality conditions (3.1).

From (3.3) it is clear that
∑K′

i=1 δmi(λ) is a piecewise linear, monotonically increasing function of a single
scalar variable λ. Therefore, a secant method can be efficiently employed as the outer iteration.
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A basic secant approach, such as the one described in [15, p.28-31], typically requires modifications to
ensure fast global convergence. The algorithm outlined in [13] tailors such modifications to the context of
secant methods applied to general singly linearly constrained QPs with simple bounds. However, in the
context of MVMT-OBR it turns out that globalization is unnecessary. This is primarily a consequence of
the strict convexity of (2.31) and the quality of the initial guess λ0 = 0. Substituting λ0 = 0 into (3.3) yields

δmi(λ0) = median(δ̃m
min

i , δmT
i , δ̃m

max

i ), for i = 1, . . . ,K ′, in other words the solution of the optimization

problem (2.31) without the constraint
∑K′

i=1 δmi = 0. In Section 4 we demonstrate on several examples that
δmi(λ0), i = 1, . . . ,K ′, violate the mass conservation constraint very slightly. This can be traced back to

the locality assumption (1.3). In summary, at each remap step we have |
∑K′

i=1 δmi(λ0)| ≈ 0, so only a few
(1-5) iterations of the basic secant method are needed to achieve full feasibility. We also note that since∑K′

i=1 δmi(λ) is a piecewise linear function, the secant method always gives a solution that is accurate to
machine precision for our choice of stopping tolerances. The complete algorithm is stated below.

Algorithm 1 [Secant method for solving the MVMT-OBR problem, (2.31)]

1. Initialization: Set λ0 ← 0, η ← 10−12 and ∆λFD ← 10−8.

2. Finite difference step:

(a) Compute δmi(λ0)← median(δ̃m
min

i , δmT
i + λ0, δ̃m

max

i ) for i = 1, . . . ,K ′.

Compute residual rp ←
∑K′

i=1 δmi(λ0).

If |rp| < η, then return δmi(λ0) for i = 1, . . . ,K ′ and stop.

(b) Compute δmi(λ0 + ∆λFD)← median(δ̃m
min

i , δmT
i + λ0 + ∆λFD, δ̃m

max

i ) for i = 1, . . . ,K ′.

Compute residual rc ←
∑K′

i=1 δmi(λ0 + ∆λFD).

(c) Set α← ∆λFD/(rc − rp).

(d) Set λp ← λ0. Set λc ← λp − αrp.

3. While |rc| > η (Secant Iteration)

(a) Compute δmi(λc)← median(δ̃m
min

i , δmT
i + λc, δ̃m

max

i ) for i = 1, . . . ,K ′.

Compute residual rc ←
∑K′

i=1 δmi(λc).

(b) Set α← (λp − λc)/(rp − rc). Set rp ← rc.

(c) Set λp ← λc. Set λc ← λc − αrc.
End While

4. Return δmi(λc) and stop.

4. Computational studies

4.1. Preservation of shape, monotonicity and linearity

In this section we present numerical examples that demonstrate that FVFT-OBR and MVMT-OBR
give virtually identical results when subjected to the “torture” tests developed in [1]. The overall purpose
of these tests is to numerically confirm the theoretical properties of the methods in extreme scenarios.
For completeness we include the results of the same studies performed with a flux-corrected remap (FCR)
algorithm. For all algorithms we use swept regions for the target flux reconstruction.

The first test examines the ability of the algorithms to preserve the shape of a given density function.
The test involves a one-dimensional mesh consisting of three cells. In the original or “old” configuration the
cells are of equal lengths. In the remapped or “new” configuration the middle cell is compressed by a factor
of approximately 6.6, see [1] for the detailed setup. The density function has the shape of an asymmetrical
peak. An accurate method should preserve the shape of the peak on the new mesh. It is evident from
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Figure 5 that FVFT-OBR and MVMT-OBR preserve the peak, giving identical results, while FCR loses
accuracy due to the local approximation of the global FVFT-OBR formulation.
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Figure 5: FVFT-OBR and MVMT-OBR preserve the shape of the peak, giving identical results, while FCR loses accuracy and
transforms the peak into a step function.

The second test focuses on the preservation of monotonicity for a given density function. We use a simple
two-dimensional extension of the previous one-dimensional experiment. The same setup is used in [1]. As
in one dimension, the original mesh is uniform, while in the new mesh the middle cell is compressed equaly
in both spatial directions, see Figure 6. The density function is linear. We report loss of monotonicity if the
bounds in (2.14) or (2.26) are violated after a single remap step. We note that the compressive mesh motion
illustrated in Figure 6 is permitted according to the locality assumption (1.3) and the linearity preservation
conditions (2.28)-(2.29) established for FVFT-OBR and MVMT-OBR. Table 1 confirms that FVFT-OBR
and MVMT-OBR preserve monotonicity, which is a direct consequence of the construction of the schemes
as constrained optimization algorithms. At the same time, as explained in [1], the condition on mesh motion
for the monotonicity of the swept-region donor-cell method [11, p.279] is violated by this example. This
defect is inherited by FCR, resulting in the loss of monotonicity for high compressions of the middle cell.

0 0.5 1
0

0.5

1

−→←−−

0 0.5 1
0

0.5

1

Figure 6: A 3×3 uniform mesh (left pane) and a “compressed” mesh (right pane) with a 4×4-fold compression of the middle cell.

The third test examines whether the methods preserve linear density functions. We use the same torture
mesh as in the second experiment. The L1 error is evaluated after two remap steps (original mesh →
compressed mesh → original mesh). Since the linearity preservation conditions (2.28)-(2.29) are satisfied
for the compressive mesh motion, we expect that FVFT-OBR and MVMT-OBR preserve linear densities
regardless of how much the middle cell is compressed. This is confirmed in Table 2, where FVFT-OBR and
MVMT-OBR give very similar results. In contrast, FCR fails to preserve linear densities at the compression
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` = 5 ` = 6 ` = 7 ` = 14 ` = 15 ` = 16 ` = 100

FVFT-OBR yes yes yes yes yes yes yes

MVMT-OBR yes yes yes yes yes yes yes

FCR yes yes yes yes no no no

Table 1: Monotonicity of FVFT-OBR, MVMT-OBR and FCR, implemented using swept regions, with respect to the remap
of a linear density function in two dimensions, for different compression ratios `×` : 1 of the middle cell. FVFT-OBR and
MVMT-OBR are monotone throughout, while FCR is not.

ratios of 4×4 : 1 and above.

` = 3 ` = 4 ` = 5 ` = 15 ` = 16 ` = 100

FVFT-OBR (L1 err) 1.02e-16 3.02e-16 2.22e-16 6.17e-16 2.22e-15 1.26e-13

MVMT-OBR (L1 err) 6.78e-17 3.05e-16 2.25e-16 1.54e-15 1.70e-15 1.46e-13

FCR (L1 err) 9.25e-17 3.01e-03 7.68e-03 3.28e-02 3.49e-02 1.51e-01

Table 2: L1 errors in the FVFT-OBR, MVMT-OBR and FCR remap of a linear density function in two dimensions, for different
compression ratios `×` : 1 of the middle cell. Errors close to machine precision are highlighted. FVFT-OBR and MVMT-OBR
preserve linear densities for arbitrarily compressed middle cells, while FCR does not.

4.2. Asymptotic accuracy

In this section we compare the asymptotic accuracy of FVFT-OBR and MVMT-OBR in the context of
a continuous rezone strategy. The appropriate notions of remap error and convergence rates can be defined
through cyclic remap tests [11]. The methodology is described in great detail in [1, 12, 11].

We consider two cyclic mesh motions from [1]: the smooth tensor-product motion, resulting in a sequence
of slowly evolving rectangular meshes, and the repeated-repair motion, giving a sequence of rapidly changing
rectangular meshes, derived from the torture motion illustrated in Figure 6. For the convergence studies
involving the tensor-product motion, we use the sine, peak and shock densities referenced in [1, 11]. We test
convergence under the repeated-repair motion using the sine density.

For the repeated-repair motion, the absolute accuracy (and convergence rate) of MVMT-OBR equals
that of FVFT-OBR, see Table 4. For the tensor-product motion, FVFT-OBR has a slight advantage in
terms of absolute accuracy, see Table 3. As shown in Section 4.6 this accuracy can be easily matched by
MVMT-OBR when using slightly finer computational meshes.

4.3. Robustness

The purpose of the test in this section is to subject the FVFT-OBR and MVMT-OBR algorithms to
mesh motions that may violate the locality assumption (1.3) and the linearity preservation conditions (2.28)-
(2.29). In particular, we examine the behavior of the methods on 64×64 tensor-product cyclic meshes as
the number of remaps, R, is decreased much beyond the previously chosen value of R = 320. Equivalently,
we may say that the so-called pseudo-time step, 1/R, is increased significantly beyond 1/R = 1/320. For
completeness, we include the FCR results from [1].

It is evident from Table 5 that FVFT-OBR and MVMT-OBR perform similarly, in other words they are
both robust when subjected to mesh deformations that are beyond the theoretical guarantees of the methods.
In contrast, the FCR algorithm violates linearity preservation early, and eventually becomes unstable.
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FVFT-OBR Sine Peak Shock

#cells #remaps L1 err L1 rate L1 err L1 rate L1 err L1 rate

64×64 320 4.91e-04 — 2.55e-03 — 2.88e-02 —
128×128 640 6.16e-05 3.00 8.90e-04 1.52 1.75e-02 0.72
256×256 1280 7.82e-06 2.99 3.10e-04 1.52 1.06e-02 0.72
512×512 2560 9.89e-07 2.98 1.09e-04 1.52 6.35e-03 0.73

MVMT-OBR

64×64 320 6.38e-04 — 2.88e-03 — 3.03e-02 —
128×128 640 8.09e-05 2.98 1.08e-03 1.42 1.83e-02 0.73
256×256 1280 1.04e-05 2.97 4.04e-04 1.42 1.10e-02 0.73
512×512 2560 1.32e-06 2.97 1.51e-04 1.42 6.65e-03 0.73

Table 3: FVFT-OBR and MVMT-OBR L1 errors and convergence rate estimates for the sine, peak and shock densities using
4 tensor-product cyclic meshes. The convergence rates are very similar. The absolute errors are slightly lower for FVFT-OBR.

FVFT-OBR MVMT-OBR

#cells #remaps L1 err L1 rate L1 err L1 rate

64×64 320 1.09e-03 — 1.15e-03 —
128×128 640 2.69e-04 2.03 2.77e-04 2.06
256×256 1280 6.71e-05 2.01 6.82e-05 2.04
512×512 2560 1.68e-05 2.01 1.69e-05 2.03

Table 4: FVFT-OBR and MVMT-OBR L1 errors and convergence rate estimates for the sine density using 4 repeated-repair
cyclic meshes. The convergence rates are very similar. The absolute errors are slightly lower for FVFT-OBR.

R = 213 R = 212 R = 211 R = 155 R = 154 R = 153 R = 100 R = 50

FVFT-OBR 1.32e-13 1.42e-13 1.60e-13 4.60e-09 4.06e-06 1.53e-05 1.97e-03 6.48e-03

MVMT-OBR 1.32e-13 1.42e-13 1.60e-13 4.59e-09 2.07e-06 7.53e-06 1.27e-03 6.71e-03

FCR 1.32e-13 5.32e-08 1.10e-06 2.26e-03 2.35e-03 2.44e-03 5.73e+04 8.50e+11

Table 5: L1 errors in the FVFT-OBR, MVMT-OBR and FCR remap of a linear density function on the 64×64 tensor-product
cyclic mesh, for different values of the pseudo-time step 1/R. Errors smaller than 1e-8 are highlighted. The OBR methods fail
to preserve linear densities at R = 154, while FCR fails at R = 212, resulting in a pseudo-time step advantage for FVFT-OBR
and MVMT-OBR of 212/154 ≈ 1.4. Beyond this point, the OBR methods exhibit a graceful loss of accuracy; FCR becomes
numerically unstable.

4.4. Locality

An interesting question is whether the optimization-based remap algorithms respect the notion of “local-
ity” or “causality”, which is a feature of purely local, albeit less accurate and less robust methods like FCR.
To examine the behavior of OBR methods, we construct an example in which only a single mesh vertex is
displaced, and measure the mass updates computed by the methods on every cell. We note that if FCR
is applied to such single-vertex motion, the mass updates will be zero everywhere except in the immediate
neighborhood of the vertex (a four-cell neighborhood in this case).

The single-vertex motion is defined by moving the center vertex of the mesh, with coordinates (x, y), to
the position (x+h cos(α), y+h sin(α)), where α = 23π/180 and h ∈ {1/16, 1/32, 1/64, 1/128}, for the mesh
sequence {16×16, 32×32, 64×64, 128×128}, respectively. The remapped density function is a symmetric
Gaussian of amplitude 1 with standard deviation 0.1, centered at (0.5, 0.5). We plot the magnitudes of mass
updates, δmi, after a single remap step. The mass updates are scaled by K, the total number of cells.

18



While MVMT-OBR generates nonzero mass updates everywhere, we observe from Figure 7, top pane,
that there is a sharp drop-off in the magnitudes of mesh updates between the four-cell neighborhood sur-
rounding the displaced vertex and the remainder of the domain. The size of the drop-off increases as the
mesh is refined. For the 128×128 mesh, see Figure 8, bottom pane, the mass updates are approximately
seven orders of magnitude smaller for all cells outside of the four-cell neighborhood of the displaced vertex.
Thus we may argue that MVMT-OBR is an “asymptotically” local method.

In contrast, FVFT-OBR generates mass updates that are considerably more localized, see Figure 7,
middle pane. Nonetheless, the behavior of FVFT-OBR is not identical to that of FCR, as eight cells,
instead of four, contribute with non-zero mass updates. Thus we may label FVFT-OBR “weakly” local.

Finally, we examine the behavior of the mass-variable mass-target algorithm with the active cell option,
MVMT(a)-OBR. We recall that MVMT(a)-OBR eliminates the mass-update variables that correspond to
static cells. Figure 7 shows that this algorithmic modification yields an optimization-based remap scheme
with purely local behavior, when applied to the single-vertex mesh motion. We recommend the use of
MVMT(a)-OBR whenever significant portions of the computational domain are static.

4.5. Conservation properties

This section examines the numerical behavior of MVMT-OBR with respect to mass conservation. Our
test is designed to verify a claim made in Section 3, namely that the mass updates δmi(λ0), i = 1, . . . ,K,
where λ0 = 0 is the initial Lagrange multiplier guess, violate the mass conservation constraint only slightly.
We demonstrate that this is true in a cummulative sense (and so, clearly, at each remap step). We also show
that only a handful of iterations of our secant algorithm are needed to fully restore mass conservation. The
test is set up so that Algorithm 1 is terminated immediately after Step 2.(a), in other words, to minimize the
given objective function while ensuring bound preservation yet completely ignoring conservation of mass.
In a second run, we additionally enforce mass conservation and compare the mass totals to those generated
by the “faulty” algorithm. We use the 64×64 tensor-product cyclic mesh with 320 remaps. Table 6 fully
confirms our claims, i.e., the violation of mass conservation is relatively small and is fully corrected by a few
iterations of the MVMT-OBR algorithm.

Sine % diff Peak % diff Shock % diff

Original mass
∑K

i=1mi 1.0000000000 — 1.0654579749 — 1.5500488281 —

Final mass
∑K

i=1mi(λ0) 1.0000082955 0.0008 1.0663039593 0.08 1.5499147318 0.009

Final mass
∑K

i=1mi(λ
∗) 1.0000000000 0 1.0654579749 0 1.5500488281 0

Avg. Secant Iterations 1 3 5

Table 6: A comparison of the total mass (i) on the original mesh, (ii) as computed by the “faulty” (nonconservative) MVMT-
OBR algorithm after 320 remaps and (iii) as computed by the proper MVMT-OBR algorithm, Algorithm 1, after 320 remaps.
The average number of secant iterations for the proper MVMT-OBR algorithm, rounded to the nearest integer, is also reported.

4.6. Computational efficiency

Before proceeding to the comparisons of MVMT-OBR, FVFT-OBR and FCR, it is important to point out
that the MVMT-OBR algorithm, Algorithm 1, possesses several advantages over the FVFT-OBR scheme.
The FVFT-OBR algorithm relies on a dual QP formulation and a reflective Newton method for its solution,
see [1]; the MVMT-OBR algorithm, based on the secant method, is much simpler to implement. The average
number of iterations needed by the FVFT-OBR scheme (2-15) is about twice the number of iterations
observed in using MVMT-OBR (1-5). Each iteration of FVFT-OBR entails the solution of a sparse but
very large, O(K ×K), linear system; each iteration of MVMT-OBR solves K fully decoupled single-variable
quadratic programs. Finally, the parallelization of FVFT-OBR necessitates the parallelization of the linear
system solve; MVMT-OBR is trivially parallelized and requires minimal communication.
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Figure 7: The magnitudes of mass updates scaled by the number of cells in the mesh, K|δmi|, for one step of OBR algorithms
subject to the single-vertex motion. The remapped density function is a symmetric Gaussian of amplitude 1 with standard
deviation 0.1, centered at (0.5, 0.5). The top pane shows the mass updates generated by MVMT-OBR for the 16×16 and 32×32
meshes, resulting in an “asymptotically” local method. The middle pane shows the mass updates generated by FVFT-OBR –
a “weakly” local method; the bottom pane shows the mass updates generated by MVMT(a)-OBR – a local method.
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Figure 8: The magnitudes of mass updates scaled by the number of cells in the mesh, K|δmi|, for one step of MVMT-OBR
subject to the single-vertex motion, shown for the mesh sequence {16×16, 32×32, 64×64, 128×128}, across the (0, 0)-(1, 1)
diagonal of the domain.

Table 7 compares the computational cost of FCR, MVMT-OBR and FVFT-OBR for a sequence of cyclic
meshes and three target densities.4 It is evident that the cost of MVMT-OBR is virtually identical to that
of FCR. Additionally, they are on average twice as fast as FVFT-OBR. Table 8 addresses an observation
made in Section 4.2, namely that FVFT-OBR may exhibit better absolute accuracy in comparison with
MVMT-OBR. Therefore, in order to make the cost comparisons fair, we adjust the mesh resolution and
the number of remaps for MVMT-OBR, given in parentheses, to match the L1 error of FVFT-OBR. The
computational cost of MVMT-OBR is still significantly lower than the cost of FVFT-OBR.

5. Conclusions

We have developed a new optimization-based conservative, local bounds and linearity-preserving remap-
ping method – MVMT-OBR. Contrary to the existing flux-based remapping methods, which consider mass
fluxes exchanged between the new and old mesh cells, MVMT-OBR is based on aggregate mass transfer, that
is, the primary unknowns in the optimization formulation are the net mass updates between the new and
old cells. The optimization setting lets us treat mass conservation as one of the constraints. The choice of
primary variables leads to a singly linearly constrained quadratic optimization problem with simple bounds.
The structure of the optimization problem and the fact that in remap the old and new meshes are close
allow us to develop an efficient and easily parallelizable optimization algorithm.

We have demonstrated numerically that MVMT-OBR is “asymptotically” local, that is, the domain of
influence of a mesh change is limited, as the mesh size goes to zero, to its immediate neighborhood. We have
also presented a version of MVMT-OBR with the “active cell option” – MVMT(a)-OBR, which preserves
all key features of MVMT-OBR yet treats limited changes in the mesh much like explicit, purely local
remappers. We recommend the use of MVMT(a)-OBR whenever a large number of cells are static.

Numerical studies demonstrate that the new algorithm is as accurate and robust as the previously
developed flux-based optimization algorithm – FVFT-OBR, but has the same computational cost as the
state-of-the-art explicit flux-corrected remapping method – FCR. As future work we plan to develop an
algorithm for the recovery of mass fluxes from the aggregate mass updates. This may be needed, for

4All experiments are performed in MatlabTM, Version 7.11.0.584 (R2010b) 64-bit; as in [1], we note that the computational
cost of our MatlabTM implementation will be close to that of a Fortran or C implementation, due to a consistent vectorization
of algebraic operations.
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FCR MVMT-OBR FVFT-OBR
# cells # remaps time(sec) time(sec) ratio time(sec) ratio

Sine

64×64 320 4.1 4.1 1.0 6.8 1.7
128×128 640 25.1 24.6 1.0 48.7 1.9
256×256 1280 177.2 173.1 1.0 384.6 2.2
512×512 2560 2049.1 1918.0 0.9 3677.5 1.8

Peak

64×64 320 4.9 4.9 1.0 7.7 1.6
128×128 640 28.0 28.6 1.0 53.9 1.9
256×256 1280 194.5 192.8 1.0 400.8 2.1
512×512 2560 2060.1 2096.5 1.0 4410.5 2.1

Shock

64×64 320 4.6 4.9 1.1 9.0 2.0
128×128 640 27.4 29.1 1.0 85.1 3.1
256×256 1280 192.5 195.6 1.0 414.4 2.2
512×512 2560 2064.9 2146.7 1.0 3117.1 1.5

Table 7: Comparison of the computational costs of FCR, MVMT-OBR and FVFT-OBR, as measured by MatlabTM wall-clock
times in seconds, on a single Intel Xeon X5680 3.33GHz processor, for sine, peak and shock densities and the tensor-product
cyclic grid. Ratios of run times of MVMT-OBR and FVFT-OBR with respect to FCR are included. The cost of MVMT-OBR
is almost identical to the cost of FCR, while FVFT-OBR is on average two times slower.

FVFT-OBR MVMT-OBR
# cells # remaps L1 error time(sec) L1 error time(sec)

Sine

64×64 (71×71) 320 (350) 4.91e-4 6.8 4.84e-4 5.5
128×128 (142×142) 640 (705) 6.16e-5 48.7 6.04e-5 33.8
256×256 (283×283) 1280 (1410) 7.82e-6 384.6 7.76e-6 254.4
512×512 (566×566) 2560 (2825) 9.89e-7 3677.5 9.93e-7 2541.1

Peak

64×64 (71×71) 320 (350) 2.55e-3 7.7 2.56e-3 6.3
128×128 (148×148) 640 (735) 8.90e-4 53.9 8.88e-4 42.8
256×256 (310×310) 1280 (1545) 3.10e-4 400.8 3.11e-4 339.0
512×512 (646×646) 2560 (3225) 1.09e-4 4410.5 1.09e-4 4252.0

Shock

64×64 (70×70) 320 (345) 2.88e-2 9.0 2.87e-2 6.0
128×128 (138×138) 640 (685) 1.75e-2 85.1 1.74e-2 36.6
256×256 (271×271) 1280 (1350) 1.06e-2 414.4 1.06e-2 256.4
512×512 (547×547) 2560 (2730) 6.35e-2 3117.1 6.36e-3 2612.2

Table 8: Comparison of the computational costs of FVFT-OBR and MVMT-OBR, as measured by MatlabTM wall-clock times
in seconds, on a single Intel Xeon X5680 3.33GHz processor, for sine, peak and shock densities and the tensor-product cyclic
grid. In this example the mesh resolution and the number of remaps for MVMT-OBR, given in parentheses, are adjusted to
match the L1 error of FVFT-OBR. The cost of MVMT-OBR is still significantly lower than the cost of FVFT-OBR.

example, in the context of remapping multiple tracers in climate applications. Another possible extension is
a high-order (for example, quadratic-preserving) remapping algorithm, which will require the development
of new local bounds that take into account the presence of local extrema.
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