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                  Introduction 
 Since the mid-1990s, Pixar Animation Studios has created 

and released 12 full-length animated movies.  1   Afi cionados of 

computer-generated imagery (CGI) are aware that several of 

their movies have pushed the boundaries of what can be realis-

tically animated. Examples include vegetation (“A Bug’s Life”), 

fabric (“Toy Story 2”), hair (“Monsters, Inc.”), water (“Finding 

Nemo”), surfaces with layers of paint and dirt (“Cars”), food 

(“Ratatouille”), and rust and decay (“WALL-E”).  2

 Interestingly, as processor speeds and the number of proces-

sors used by Pixar have increased, the time needed to render 

the individual frames of its movies has not decreased. This is 

because the animators exploit increased computational power 

to render more complex physics and more complex scenes in 

each image. One of their employees referred to this as the “Law 

of Constancy of Pain.”  3   With continued enhancements to their 

algorithms and software, Pixar is moving toward the goal of 

enabling fast, realistic rendering of any physical phenomenon 

with a minimum of effort by the animator. Their algorithm 

developers are adept at knowing what low-level expensive 

details can be discarded while still producing images that “look 

right.” An important part of this process is comparing the ani-

mated images to real life, whether it be live video of swimming 

fi sh or human actors and their facial expressions. 

 As fans of Pixar fi lms know, the company’s success (nearly 

two dozen Academy Awards and an average gross of $600 million 

per fi lm) is not simply due to their animation prowess, but to 

their ability to use animation as a tool to tell an entertaining 

story that appeals to children and adults alike. 

 Some parallels to computational materials science and, in 

particular, to the growing use of many-body potentials in atom-

istic modeling, are evident. Over the 30 years covered in this 

issue of  MRS Bulletin , and leveraging the same increases in 

computational power available to Pixar, the scope and fi delity 

of atomistic materials modeling has grown by leaps and bounds. 

This is true both of the length and timescales accessible to 

simulation, as well as the complexity of the underlying physics 

encoded in a growing suite of empirical potentials. 

 A key motivation for developers of new potentials has been 

to enable more accurate modeling of specifi c classes of materi-

als such as metals, ceramics, oxides, or carbon nanotubes, often 

by including many-body effects. Part of the art and acumen 

needed in the development process is to know what physics and 

chemistry to include to capture the desired physical effects 

but also what can be excluded to enhance computational 

effi ciency. Simulations using empirical potentials have to do 

more than just “look right;” quantitative accuracy is required 

for comparisons with experiments or to more expensive and 

smaller-scale quantum calculations. 

 For simulators, the analog of the “Law of Constancy of Pain” 

is that while computing power has grown over time, the amount 

of wall-clock time available to an individual researcher on large 

computing platforms has not. Nor has our patience to wait 

for results. Most researchers do not use today’s computers to 
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dynamics simulation. The SPC/E water potential, used in bio-

molecular models, is included for comparison; it is computed 

via pairwise LJ and Coulombic interactions with additional 

constraints to rigidify each molecule. We next describe a few 

salient features of these many-body potentials that impact their 

computational cost. The timing information in the table is 

discussed later in the text.     

 The embedded-atom method (EAM) potential  7   ,   8   combines a 

pairwise interaction with a second term representing the energy 

of embedding each atom in the electron density produced by its 

neighbors. This term elegantly captures the compressibility of 

the electron gas formed by valence electrons in metals, without 

resorting to a special volume-dependent energy term. Comput-

ing this embedding energy and its derivative (force) requires 

two computational loops over neighbors: one to sum electron 

densities so the embedding function can be evaluated for each 

atom, and a second to calculate the force on each atom due to 

its contribution to its neighbors’ embedding energies. This is the 

source of the effective many-body nature of the potential and 

a common computational motif in all the potentials discussed 

here (see the sidebar).     

 The modifi ed EAM (MEAM) potential  9   has a similar math-

ematical structure to EAM, except that the electron density is 

given by a more complicated expression involving sums over 

three-body contributions that depend on the angle  θ   ijk   subtended 

by atoms  j  and  k  at a central atom  i . 

 The Tersoff potential  10   uses a short-range pair potential to 

represent covalent bonding. The key innovation is the concept 

of bond order, which plays a central role in many-body poten-

tials such as BOP (bond-order potential) and REBO (reac-

tive empirical bond order) and ReaxFF (reactive force fi eld) 

potentials. In the Tersoff potential, the energy of a bond is 

modulated by the angular location of neighbor atoms relative 

to the bond axis. 

simply run 10-year-old models faster than they did 10 years ago. 

Rather, they want to exploit increased computational resources 

by running larger systems for longer time scales, using more 

sophisticated potentials, while still waiting at most a few hours 

or days for the results. 

 At its best, atomistic modeling is a tool for telling a good 

science story (e.g., understanding for the fi rst time the mecha-

nisms underlying some physical phenomenon) or enabling 

models of processes that in turn allow more effi cient or con-

trollable manufacture of materials of interest. Sadly, this is 

the point where the Pixar analogy breaks down. To our knowl-

edge, no developer of a many-body potential has yet been 

nominated for an Academy Award or received a grant for $600 

million. *  

 In this article, we illustrate aspects of computational advances 

in atomistic modeling enabled by many-body potentials. In the 

next section, we discuss computational attributes of several 

popular potentials, developed over the last 30 years, and bench-

mark their relative cost and scalability for use in large simula-

tions. In the subsequent section, we show results from several 

large-scale calculations to give the reader a sense of the current 

state-of-the-art for atomistic modeling with many-body poten-

tials. We conclude with comments about how future hardware 

and software trends may infl uence continued research efforts 

in this area.   

 Computational performance 
 Before many-body potentials, there were pair or two-body 

potentials. Classic examples are the Lennard-Jones 6–12 

potential (LJ)  4   (for van der Waals interactions) and Coulom-

bic interactions between charged particles. It is worth noting 

these two potentials are still commonly used for modeling 

non-bonded interactions in all-atom biological and polymeric 

simulations (e.g., for solvated proteins). In force fi elds, such 

as CHARMm  5   and AMBER,  6   for these systems, the non-bond 

terms are augmented by a list of permanent bonds within 

each molecule’s topology, connected by harmonic springs. 

Additional terms represent covalent bond bending and 

torsion energies. 

 In contrast, many-body potentials, as the name implies, 

explicitly include many-body effects. The energy expression 

for the potential is typically written as a sum over interactions 

that involve not just two, but clusters of three or more nearby 

atoms. Unlike the permanent bonds in biological models, the 

atoms participating in each interaction depend on their current 

confi guration, so that covalent bonds can effectively break and 

form again as atoms move. 

   Table I   lists eight such many-body potentials, the year 

they were fi rst published, materials they are commonly used 

to model, and a typical time step size when used in a molecular 

   Tersoff test 

 Two criteria that can be used to help identify particularly 

effective inter-atomic potential energy functions have been 

attributed to Jerry Tersoff, one of the early developers 

of bond order potentials. These criteria are (1) “Has 

the person who constructed the potential subsequently 

refi ned the potential based on initial simulations?” and 

(2) “Has the potential been used by other researchers 

for simulations of phenomena for which the potential 

was not designed?”(B.J. Garrison, D. Srivastava,  Ann. 

Rev. Phys. Chem.   46 , 373 [1995]). Meeting these two 

criteria suggests that a potential has been thoroughly 

vetted, and that the developer has fi xed any problems 

that were identifi ed. Almost all of the potential func-

tions discussed in this issue pass the Tersoff test.  

 *     The comparison can also be stretched too far in the other direction. The analog for 

computer design of new materials would be to use CGI to create an improved version 

of George Clooney or Meryl Streep, something not even Pixar is likely planning. 
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 The REBO potential  11   extends the bond-order approach to 

differentiate between  σ  and  π  bonds, which increases the stabil-

ity and torsional stiffness of double and triple carbon-carbon 

bonds. The adaptive intermolecular REBO (AIREBO) potential  12   

extends the REBO potential by adding dispersion interactions 

between nearby atoms leading to effective six-body interactions. 

The BOP  13   uses the tight-binding theory of bond formation to 

describe the energetics of covalently bonded materials. 

 The ReaxFF potential  14   is a variable-charge bond order 

potential. In addition to handling conventional covalent bond-

ing contributions, such as bond formation, stretching, bending, 

and torsion, it also explicitly represents a range of additional 

chemical bonding features, such as hydrogen bonding and bond 

conjugation. Charge equilibration is handled by the iterative 

solution of a linear system of equations representing the elec-

tronegativity equalization conditions. The need to compute 

long-range electrostatic interactions is eliminated by using a 

smoothly truncated Coulombic potential. 

 The charge-optimized many-body potential (COMB)  15   is 

also a variable charge bond-order potential, developed to treat 

interfaces, oxides, and other compounds. The charges on atoms 

are adjusted at each time step according to the electronegativity 

equalization method,  16   which minimizes the total electrostatic 

energy of the system. Computation of long-range electrostatics 

is avoided by using the short-range Wolf summation method.  17   

 These are computational issues associated with these many-

body potentials, which increase their complexity and cost: 

     •      As the level of many-body dependencies increases, multiple 

and/or nested computational loops are needed to identify neigh-

bors, neighbors of neighbors, etc. This likewise implies longer 

cutoff distances as atoms are infl uenced by atoms further away.  

     •      As discussed for the EAM potential, there are intermedi-

ate stages to the computations where many-body terms are 

summed over interactions. In parallel, this typically requires 

extra communication to acquire the terms from atoms owned 

by different processors.  

     •      Identifying nearby groups of atoms that interact often requires 

that each atom store a “full” list of all its neighbors, rather than 

the typical “half” lists that suffi ce for enumerating pairwise 

interactions, due to pairwise forces being equal and opposite.  

     •      For potentials that include variable charge (e.g., ReaxFF 

and COMB), charge equilibration is effectively a long-range 

interaction that incurs additional cost. However, computing 

true long-range Coulombics (e.g., via an Ewald summa-

tion  18  ) is avoided by the use of approximate methods that 

truncate interactions within a cutoff distance.  

   The potentials in  Table I  have all been implemented in our 

parallel molecular dynamics (MD) package LAMMPS,  19   ,   20   

which allows us to compare their computational cost.  †   One 

feature of LAMMPS that makes it attractive for use in materials 

modeling is that it was designed to allow users to easily add 

functionality, such as a new potential, through well-defi ned 

interfaces. Evidence of this is that several of the potentials in 

 Table I  were implemented by individuals, including students, 

with only limited interaction with the LAMMPS developers. 

 The author of a potential writes code that computes per-atom 

forces and energies, as well as sets up or reads user-defi ned 

parameters (e.g., from a fi le). The LAMMPS infrastructure 

provides neighbor lists of various kinds, enables the potential 

to be used in hybrid simulations where two or more potentials 

are used to compute interactions between different groups of 

 Table I.      Many-body potentials.                    

   Potential  Year  Materials  Benchmark  Time Step 
(fs) 

 CPU 
(secs/atom/step) 

 Ratio 
(to LJ) 

 50% Eff 
(atoms/proc)     

 EAM  1983 7   fcc metals  Cu  5.0  3.52 10 –6 /3.44 10 –6   2.3x  500   

 MEAM  1987 9   metals  Ni  5.0  3.04 10 –5 /3.08 10 –5   20x  125   

 Tersoff  1988 10   covalent solids  Si  1.0  7.13 10 –6 /7.32 10 –6   4.6x  125   

 REBO  1990 11   CNTs  polyethylene  0.5  1.34 10 –5 /1.35 10 –5   8.7x  125   

 BOP  1999 13   covalent solids  CdTe  1.0  5.05 10 –5 /4.66 10 –5   33x  50   

 AIREBO  2000 12   multiwall CNTs  polyethylene  0.5  8.28 10 –5 /8.42 10 –5   54x  100   

 ReaxFF  2001 14   universal  PETN crystal  0.1  3.94 10 –4 /4.43 10 –4   256x  300   

 COMB  2007 15   oxides, interfaces  SiO 2   0.2  9.00 10 –4 /8.83 10 –4   585x  25   

 SPC/E  1987 42   water  liquid H 2 O  2.0  2.01 10 –5 /1.93 10 –5   13x  500   

    Many-body potentials (except SPC/E) discussed in this article, with their publication date, typical materials they model, and time step size for molecular dynamics 
simulation. The two CPU times are for small (32 K atom) and large (1 M atom) simulations. The ratio is the small-problem CPU time relative to a simple Lennard-Jones 
potential. The 50% effi ciency metric is taken from  Figure 1 . 
 EAM, embedded-atom method; MEAM, modifi ed embedded-atom method; REBO, reactive empirical bond order; BOP, bond–order potential; AIREBO, adaptive 
intermolecular REBO; ReaxFF, reactive force fi eld; COMB, charge optimized many-body; CNT, carbon nanotube.    

  †      The benchmarks timings presented are for second-generation REBO  21   and 

second-generation COMB  22   potentials, which are later versions than the dates listed 

in  Table I . Recent enhancements to the COMB implementation in LAMMPS show 

speed-ups of about 2x relative to what is presented here, but our Cray XT5 machine 

was not available to re-run the benchmarks. 
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atoms (e.g., water or polymer chains on a metal surface), per-

forms time integration, and computes additional analyses or 

diagnostics as requested by the user. Diagnostics can include 

per-atom virials and total energy and pressure, which can be 

derived from the per-atom energies and forces, eliminating the 

need for the potential itself to tally these quantities.  23   

 We benchmarked the relative computational cost of the 

LAMMPS implementation of the potentials in  Table I  on a 

Cray XT5 at Sandia National Laboratory. In each case, we ran 

a prototypical problem for that potential for 100 time steps, 

which is long enough to amortize the cost of occasional tasks 

such as neighbor-list building. More details on the benchmark 

problems are given in Reference   19  , which include timing data 

for other pairwise and many-body potentials not discussed here. 

 The results are shown in   Figure 1  . For each potential, three 

benchmark tests were performed. The “small” (red) and “large” 

(green) curves are for 32,000 (32 K) and 1,000,000 (1 M) atom 

systems, respectively (small variations in size for different crys-

tal structures), run on varying numbers of processors (so-called 

strong-scaling results). The “scaled” (blue) curves are for sys-

tems whose size (32,000 atoms per processor) was increased in 

proportion to the number of processors (weak-scaling results). 

Thus their 1024-processor timings are for 32 M atom systems.     

 The plots show parallel effi ciencies, where for each poten-

tial the one-processor timing is assumed to be 100% effi cient 

(dotted lines). For the strong-scaling (red/green) curves, parallel 

effi ciency is defi ned as the one-processor CPU time  T  1  divided 

by the  P -processor time  T P  , multiplied by (100/ P ). Thus a 1024-

processor effi ciency of 50% means the 32 K- or 1 M-atom 

problem ran 512 times faster than it did on one processor. For 

the weak-scaling (blue) curves, parallel effi ciency is simply 

100  T  1  /T P  , so that a 50% value means the 32 M-atom problem 

ran two times slower on 1024 processors than the 32 K-atom 

problem did on one processor. 

 Note that single-processor CPU times vary greatly between 

the potentials, as listed in  Table I , normalized on a per-atom, 

per-time step basis. Also note that the typical time step size 

is different for different potentials. These timings are for full 

  
 Figure 1.      Performance of eight many-body potentials and an SPC/E water potential on varying numbers of cores of a Cray XT5 machine, 

as implemented in LAMMPS.  19   The red curves are for 32 K-atom systems; the green curves are for 1 M-atom systems; and the blue curves 

are for scaled systems with 32 K atoms per processor. Defi nitions of fi xed-size and scaled-size parallel effi ciency and the dotted line are 

discussed in the text. Single-core CPU times per-atom per-time step are listed in  Table I . EAM, embedded-atom method; MEAM, modifi ed 

embedded-atom method; REBO, reactive empirical bond-order; BOP, bond order potential; AIREBO, adaptive intermolecular REBO; 

ReaxFF, reactive force fi eld; COMB, charge optimized many-body.    
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simulations, which include the cost of neighbor-list building 

and time integration. However, the vast majority of time, even 

for the cheapest potentials, is spent in computing the many-

body interactions. 

 Several trends are evident from the plots in  Figure 1 : 

     •      The weak-scaling (blue) curves for all the many-body poten-

tials show excellent scalability as the problem size and pro-

cessor counts increase. This is because all of them, even the 

expensive ones, are essentially short-range in nature. (The 

nominally long-range charge-equilibration calculations for 

ReaxFF and COMB do not affect this, at least for these bench-

mark problems.) This means their computational complexity 

scales linearly with  N/P  for the number of atoms  N  and pro-

cessors  P , so long as there are suffi cient atoms per processor. 

This is also refl ected in the single-processor timings listed in 

 Table I , which are nearly identical for the small 32 K- and 

large 1 M-atom problems, when normalized on a per-atom 

basis. The one exception is the blue curve for SPC/E. The 

degradation in effi ciency is due to the long-range Coulombic 

calculation performed via the particle-particle, particle-mesh 

(PPPM) method  24   ,   25   in LAMMPS, or the related particle-mesh 

Ewald (PME) method  26   in other MD codes. These are FFT-

based methods with an  O ( N log N ) complexity in the number 

of atoms, so their cost grows as the system size increases.  

     •      The strong-scaling curves show reasonable scalability until 

the effi ciency rolls off as the number of atoms per proces-

sor becomes too small. This happens more quickly for the 

32 K-atom problem (red) than for the 1 M-atom problem 

(green) and for cheaper potentials than for more expensive 

ones. Again, the SPC/E potential has the worst strong-scaling 

behavior, due to the high communication costs of the parallel 

3D FFTs needed for long-range Coulombic calculations.  

     •      Many of the curves show different effi ciency behavior for 

fewer versus more than 12 processors. This is typical of the 

performance of many codes on multi-core nodes and refl ects 

the architecture of the compute nodes in our Cray XT5, which 

contain dual hex-core processors (12 cores/node). Within a 

single node, running in parallel on more cores incurs memory-

bandwidth bottlenecks that degrade single-node performance. 

In weak-scaling mode (blue), adding nodes does not degrade 

performance further, since the additional time spent on inter-

node communication remains small relative to the compu-

tation. However, for the strong-scaling results (red), adding 

more nodes reduces the number of atoms per node, which can 

degrade effi ciency more rapidly if the inter-node communi-

cation is more costly than the reduced on-node computation.  

   The overall message of these benchmarking data is that 

many-body potentials perform or scale in molecular dynam-

ics calculations with a cost that increases linearly with the 

number of atoms, which means very large calculations can be 

performed. The data from the table and plots can be used to 

estimate the time to run any size system on a given number of 

processors, so long as there are a few hundred atoms or more 

per processor (less for more expensive potentials). The last 

column in  Table I  shows an estimate of the threshold for each 

potential, from the 32 K-atom timings, to maintain a parallel 

effi ciency of 50% or greater. 

 Another way to illustrate the growing computational com-

plexity of many-body potentials over time is with the plot in 

  Figure 2  , similar to the familiar Moore’s law for the exponential 

growth of transistor counts in semiconductor chips. The years 

and timings are taken from  Table I  for the small-system runs on 

a single Cray XT5 processor. The closed symbols are for poten-

tials discussed here; the open symbols are for other (mostly 

many-body) potentials available in LAMMPS.  19   One exception 

is the new Gaussian-approximation potential or GAP, which is 

not yet available in the public distribution of LAMMPS.     

 It is important to note these are timings for running all of the 

potentials on today’s hardware. If they were timings from the 

year they were developed, the slope in the data points would 

be closer to fl at.  Table I  also gives a ratio of the CPU cost for 

the many-body potentials relative to the Lennard-Jones 6–12 

pairwise potential,  4   which runs at 1.54 × 10 –6  s/atom/time step 

in LAMMPS (for a liquid state point).  ‡   

 The GAP potential  27   shown at the upper right of  Figure 2  was 

developed in 2010 with the goal of providing near quantum-

level accuracy in an empirical potential for systems it is 

appropriately fi t to via comparison to a large database of 

quantum-calculated energies and forces, as illustrated in 

  
 Figure 2.      Single CPU cost in seconds per-atom per-time 

step versus year for the potentials of  Table I  (closed symbols) 

and others (open symbols). The line represents a doubling in 

computational cost every two years, akin to Moore’s Law for 

hardware complexity.  19   EAM, embedded-atom method; MEAM, 

modifi ed embedded-atom method; REBO, reactive empirical 

bond order; BOP, bond-order potential; AIREBO, adaptive 

intermolecular REBO; ReaxFF, reactive force fi eld; COMB, 

charge optimized many-body; GAP, Gaussian approximation 

potential.    

  ‡      Since the LJ potential was published in 1924, we did not include it in the plot; it is 

an outlier in our otherwise compelling Moore’s law analysis! 
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 Figure 3  of Reference  27 . It continues the trend of  Figure 2 , 

since our preliminary investigations indicate that evaluating 

its large set of spherical-harmonic basis functions is an order-of-

magnitude more expensive than any of the many-body poten-

tials in  Table I .     

 The cost of empirical potentials can also be compared to 

quantum density functional theory (DFT) calculations. A col-

laborator, Thomas Mattsson at Sandia National Laboratory, 

gave CPU timings for several large systems he has recently 

modeled  28   ,   29   via quantum dynamics calculations with the VASP 

program,  30   using a 1 fsec time step similar to atomistic molec-

ular dynamics. For systems with 192 and 432 atoms (1024 

and 3456 electrons), the CPU times/atom/step were 252 and 

1344 seconds, respectively. These single processor times were 

inferred from parallel runs on 384 processors, assuming 100% 

parallel effi ciency, since they required too much memory to run 

on a single processor. The runs were made on a Nehalem-based 

Linux cluster, with single-processor performance similar to the 

Cray XT5 used for the atomistic simulations. 

 On a per-atom per-time step basis, these timings are 164 M 

and 873 M times, respectively, slower than the LJ timing. Thus 

they are fi ve or six orders of magnitude more costly than the 

most expensive many-body potentials in  Table I . Moreover, 

they indicate that unlike the empirical many-body potentials, 

DFT calculations do not yet scale linearly with the number of 

atoms (or electrons). Thus for DFT simulations of 32 K- or 1 

M-atom systems, as benchmarked for the atomistic case, these 

ratios would be many orders of magnitude larger.   

 Science examples 
 In this section, we give brief descriptions and images from four 

recent large-scale simulations using the MEAM, AIREBO, and 

ReaxFF potentials discussed in the previous section. These 

were all performed on large parallel machines, using hundreds 

to thousands of processors and with various parallel molecular 

dynamics (MD) codes. 

   Figure 3   shows the tree-like structure of displaced atoms in 

a bulk plutonium (Pu) sample resulting from the recoil energy 

imparted to a single atom by an  α -decay event as modeled in 

Reference  31 . Simulations with up to 16 M atoms (a 75 nm 

cube) were run for 2 ns to track the resulting damage and 

energy deposition. The MEAM potential  9   was used since it 

accurately models a variety of Pu phases by including angle-

dependent density contributions from electrons occupying 

 p ,  d , and  f  orbitals. These simulations were done with the 

pDynamo code developed by the authors,  31   a parallel version of 

the original EAM DYNAMO code. One interesting result from 

the modeling was the temperature dependence of the damage 

persistence. At 600 K, damage slowly heals, and bulk crys-

tal structure is recovered; at 180 K, an amorphous glass-like 

structure is created. 

   Figure 4   depicts the initial confi guration of a model of 

fi ber bundles composed of carbon nanotubes (CNTs) of vary-

ing individual length, arrayed end-to-end with cross-linking 

atoms and bonds added randomly between laterally adjacent 

CNTs, as described in Reference  32 . The largest systems stud-

ied were 800 nm length fi bers, with 1.2 M total atoms. Strain 

was applied incrementally along the axis of the fi ber (with 

relaxation time between the strain increments) over time scales 

up to 6 ns to measure the stress in the fi ber and observe its 

eventual rupture, as at the bottom of  Figure 4 . The AIREBO 

potential  12   was employed, as it has been widely used for CNT 

modeling and allows C‒C bonds to spontaneously form and 

break. These simulations were run with the LAMMPS code 

discussed in the previous section.  19   Tensile strengths (at break-

age) increased with fi ber length and cross-linking density, 

with a value of 60 GPa observed for 800 nm fi bers with cross-

links involving 0.75% of the CNT atoms.  §   This compares with 

a tensile strength of 110 GPa for single (5,5) CNTs used to 

construct the fi ber.     

   Figure 5   illustrates simulations used to elucidate atomistic 

mechanisms responsible for sulfur segregation‒induced embrit-

tlement of polycrystalline nickel, presented in Reference  33 . 

The ReaxFF potential  14   was used to capture the stress-induced 

reactions occurring between Ni and S near the grain boundaries 

(GBs). Models with 48 M atoms (2048 grains) were constructed 

for both pure Ni and Ni with 20% S in 1-nm-thick layers around 

the GBs. The models were large in the  xy  dimensions (470 nm) 

and thin and periodic in  z  (5 nm) to model a columnar grain 

structure. Lateral strain was applied in the vertical direction 

of  Figure 5  to a notched sample, and fracture ensued over the 

course of 0.25 ns simulations performed with a parallel code 

developed by the authors.  33       

 The pure Ni sample ( Figure 5 , upper left) fractured in a 

ductile manner with crack-tip blunting and void formation. 

  
 Figure 3.      Tree structure of an 85 keV collision cascade in 

 δ -Pu at 600 K, simulated with a modifi ed embedded-atom 

method potential. The colors represent the kinetic energy of the 

atom; red = high, yellow = medium, green = low. Reprinted with 

permission from Reference  31 . ©2007, Springer Science + 

Business Media.    

  §      For comparison, high-strength steel has a tensile strength of ~2 GPa; Kevlar is 

~3.5 GPa. 
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In contrast, the S-doped sample (upper right) fractured in a 

brittle manner, exhibiting only intergranular cleavage. Because 

atomistic simulations give the time histories of all atoms, 

further analysis was possible, as illustrated at the bottom of 

the fi gure. The common neighborhood parameter  34   illuminates 

atomic-scale defects such as dislocations as they form and 

move. Localized stress and energy calculations can also 

be performed. The authors’ analysis indicated a two-fold 

mechanism for S-embrittlement: a reduction in GB tensile 

strength, as well as a dramatic reduction in GB shear strength 

due to amorphization of the Ni-S phases present at the 

boundaries. 

 Finally,   Figure 6   shows results from non-equilibrium MD 

simulations of the shock compression of a polymer foam con-

structed from several thousand 50-mer chains of poly(4-methyl-

1-pentene) (PMP), as described in Reference  35 . An fcc lattice 

of 16 nm diameter voids was introduced by growing spheri-

cal inclusions into dense samples to give an initial density of 

0.3 g/cc, as at the top of the fi gure. The largest models were 

20 x 20 x 80 nm 3  in size and periodic in the lateral dimensions 

with 1.44 M atoms. A piston strikes the sample from the left at 

velocities up to 30 km/s. The simulations were performed with 

LAMMPS  19   using the ReaxFF potential  14   to allow for dissocia-

tion of the polymer bonds. A small time step of 0.025 fsec was 

required due to the high temperatures induced, and the shock 

front was tracked over a time scale of tens of picoseconds.     

 The bottom of  Figure 6  shows the shock 

front, which ruptures polymer bonds and 

induces jetting of polymer fragments into the 

voids. This is in contrast to shock propagation 

in dense samples, which gives rise to little dis-

sociation. The model quantitatively captures 

the pressure/density relationship of the material 

in the strong shock regime, in good agreement 

with experiment. The atomistic simulations also 

allow direct calculation of local temperature 

fluctuations and hot spot formation around 

the voids, effects that are diffi cult to measure 

experimentally.   

 Future issues 
 One software issue with using complex many-

body potentials in atomistic modeling codes is 

that “development” is a continual process. The 

kernel of a Lennard-Jones potential is 10 lines 

of code, whereas it is thousands of lines for a 

potential such as ReaxFF. As bugs are found, or 

features added, or upgrades made by developers 

implementing a potential in different codes, it 

can be hard for users to know which version they 

have or which version was used in a published 

result. This is particularly true for many-body 

potentials, where their application to new mate-

rials of interest (e.g., alloys, see the Pastewka 

et al. article in this issue) translates to large col-

lections of material-specifi c input and fi tting parameters that 

must be carefully replicated to reproduce simulation results. The 

Knowledgebase of Interatomic Models (KIM) project  36   hopes 

to address these kinds of issues by providing a repository where 

multiple versions of many-body (and other) potentials can be 

time-stamped and archived, and then used by various atomistic 

modeling codes via a standardized interface. 

 On the hardware side, two trends in high-performance com-

puting are changing the computer architectures that materials 

modeling codes (of all kinds, not just molecular dynamics) will 

commonly be running on in the future, at least at the high end. 

 The fi rst is the advent of graphics processing units (GPUs) 

and other highly threaded many-core processors from chip mak-

ers such as NVIDIA and Intel that are increasingly attractive 

for scientifi c computing. The second is the push for exascale 

computing by the US Department of Energy (and other gov-

ernment agencies in the United States and worldwide). In this 

context, “exascale” means large machines, 1000x more power-

ful than today’s state-of-the-art petascale machines (peta = 10 15  

fl oating point operations per second). Aiming for maximum 

fl oating-point performance (fl ops) at low cost on a few-year 

timeframe is driving the design and commissioning of “hybrid” 

supercomputers, whose compute nodes contain both many-core 

CPUs and GPUs. 

 Extracting high performance from these machines will 

require a different style of programming, both for algorithm 

  
 Figure 4.      Fracture of a bundle of carbon nanotubes (800 nm in length) undergoing tensile 

strain, simulated with the adaptive intermolecular reactive empirical bond-order potential. 

(a) A side view of a portion of the unstrained fi ber; (b) an end view showing cross-links 

between fi bers; and (c) after fracture occurs, with strain applied in the lateral direction. 

Reprinted with permission from Reference  32 . ©2011, American Institute of Physics.    
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design and low-level coding. Parallelism will need to be 

exploited at several levels (vector operations, multi-threading, 

message-passing), and memory access will need to be con-

trolled and optimized across a hierarchy of latency times and 

bandwidths. Computational tasks will need to be partitioned 

and balanced across a mixture of cores and GPUs that perform 

at different rates. Considerable work has already been done 

on these fronts to optimize molecular dynamics simulations 

with pairwise potentials.  37   –   40   But these are harder challenges 

for many-body potentials due to their complexity. The compu-

tational intensity of many-body potentials may translate into 

large speedups when they are optimized for GPUs; this is an 

area of active research. 

 We note one ancillary benefi t of the trend whereby many-

body potentials are becoming more expensive. On large parallel 

machines, a higher computational cost (per atom, relative to 

communication), typically means higher parallel effi ciencies 

can be maintained with fewer atoms per core. Thus, for a simu-

lation of a given size, the more expensive the potential, the more 

processors can be used effi ciently. One counterbalance is that 

potentials with a long-range component (e.g., Coulombics) 

often run less effi ciently with fewer atoms per processor. It is 

still an outstanding challenge to effi ciently solve for long-range 

Coulombics on large numbers of processors using either FFT-

based or multipole or multigrid solvers. 

 If the materials science community is successful in fully 

exploiting the capabilities of next-generation hardware for 

materials modeling, one outcome may be foreseen from recent 

successes in biomolecular modeling. New serial and parallel 

algorithms aimed at effi cient simulation of “small” systems 

(e.g., tens of thousands of atoms for small solvated proteins) and 

the design of specialized hardware tuned for this problem, such 

as the Anton machine of D.E. Shaw Research, have recently 

enabled simulations of protein folding at the millisecond time 

scale (400 billion 2.5-fsec time steps!).  41   This is allowing direct 

comparison with experiment, which in turn is enabling quanti-

tative testing and improvement in the accuracy of force fi elds 

such as CHARMM  5   and AMBER,  6   which have been used for 

decades in biomolecular simulations. Similar opportunities 

would be welcomed by developers and users of many-body 

potentials for materials systems. 

 Looking further ahead, the continued advance of computing 

power, coupled with innovative development of more accu-

rate and robust many-body potentials, portends an exciting 

next 30 years for materials modeling. Perhaps our community 

can achieve the Pixar-like goal of modeling any material with 

quantitative atomic level accuracy via empirical potentials, at 

length and time scales limited only by computing resources, 

and all with a minimum effort by the simulator.     

  
 Figure 5.      Ductile fracture of a polycrystalline sample (10 nm 

grains) of (a) pure Ni versus (b) brittle fracture of Ni with 20% 

S-doped (yellow atoms) grain boundary layers. (c) The bottom 

view of the pure Ni simulation is colored via the common 

neighborhood parameter  34   to highlight defects (non-blue) 

appearing at different scales. Reprinted with permission from 

Reference  33 . ©2010, American Physical Society.    

  
 Figure 6.      Shock compression response of a low-density 

polymer foam,  35   simulated using the reactive force fi eld 

potential.  14   (a) The initial 80-nm length foam sample and void 

structure. (b) A magnifi ed view of the shock wave moving from 

left to right through the sample. The dark patches are locations 

where the voids connect to adjacent voids on the back side of 

the sample. Small molecular fragments are ejected into the void 

space ahead of the main shock front.    
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