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Abstract—Current fault tolerance protocols are not sufficiently
scalable for the exascale era. The most-widely used method,
coordinated checkpointing, places enormous demands on the
I/O subsystem and imposes frequent synchronizations. Uncoor-
dinated protocols use message logging which introduces message

rate limitations or undesired memory and storage requirements
to hold payload and event logs. In this paper we propose a combi-
nation of several techniques, namely coordinated checkpointing,
optimistic message logging, and a protocol that glues them
together. This combination eliminates some of the drawbacks
of each individual approach and proves to be an alternative for
many types of exascale applications. We evaluate performance
and scaling characteristics of this combination using simulation
and a partial implementation. While not a universal solution,
the combined protocol is suitable for a large range of existing
and future applications that use coordinated checkpointing and
enhances their scalability.

I. INTRODUCTION

Fault tolerance for parallel computation has been explored

for several decades and many algorithms and protocols have

been proposed and evaluated since then. Among them, co-

ordinated checkpointing has been the most commonly used

because of its simplicity, while uncoordinated checkpointing

with sender-based message logging has been considered the

most efficient and scalable.

Entering the exascale era, some of the fundamental as-

sumptions underlying the research of the last thirty years are

changing. Therefore it is important to reevaluate fault tolerance

techniques in light of these new conditions. Faults are expected

to be frequent, and multiple simultaneous failing components

common. On a per core basis, access to distributed, stable

storage will become more expensive in terms of latency and

bandwidth. That means that protocols relying heavily on stable

storage may not scale. The per-core amount of memory in an

exascale system will be small compared to today’s memory

sizes per CPU and that memory has to be shared between the

application and the message logs. Finally, some applications
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require high message rates and will be severely hampered by

protocols that limit send rate.
Past approaches have often been evaluated on very small

systems and small problem sizes. Certain exascale effects, such

as a higher system-wide failure rate or higher per-core cost of

access to stable storage, have not been adequately taken into

consideration. It is necessary to do that now, review existing

approaches, and enhance them to become suitable for exascale.
Coordinated checkpointing is relatively easy to implement,

especially for self-synchronizing applications. However, in-

creasing machine size and the higher number of expected

faults in an exascale system, make coordinated checkpointing

less and less efficient.
Sender-based message logging in conjunction with unco-

ordinated checkpointing addresses some of the drawbacks

of coordinated checkpointing. However, because of the scale

of future systems and application characteristics, message

logging alone is not a complete answer either.
A fault tolerance protocol for exascale based on checkpoint-

ing techniques must address these challenges:

1) Message payload logs can grow large and take valuable

memory away from computation.

2) Because recoveries will become more frequent, recovery

times have to be quick and efficient.

3) Multiple simultaneous faults must be tolerated.

4) Message send rate is important. Waiting for an acknowl-

edgment for events written to stable storage is too costly.

In this paper we investigate a combination of message

logging with coordinated checkpointing. The two methods

support each other in creating a system that has fewer whole

application restarts by using message logs to restart individual

processes in most cases. This avoids “getting stuck” in ap-

plication restart because one or another process keeps failing.

Coordinated checkpointing in turn assists message logging by

(somewhat) limiting the log sizes and providing a fall-back in

cases where the system has gotten into an inconsistent state.
This combination of existing technologies and tailoring the

resulting algorithm to exascale addresses the challenges listed

above. We address 1) above with coordinated checkpointing,

at that time the payload and event logs can be cleared.

Furthermore, the combined algorithm does not assume that

the logs reside in stable storage.
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For 2) above we reduce the recovery time because most

failures cause a single process restart rather than a costly

coordinated, full-application restart. Addressing 3), the en-

hanced protocol tolerates any number of simultaneous faults

and degenerates to coordinated checkpointing if necessary.

Finally, for 4), we can use an optimistic logging protocol

which does not impose delays between consecutive sends.

This paper makes the following contributions:

• Describes a combined fault tolerance technique that is

enhanced and adapted for exascale class systems.

• Evaluates, using simulation and an initial implementation

of this algorithm, the scalability of the technique under

various fault conditions and assumptions.

• Provides estimates on how many spare nodes are required

to limit the number of full application restarts.

• Discusses the relative merits of various approaches to

fault tolerance at exascale.

II. DESIGN

Our proposed algorithm combines coordinated checkpoint-

ing with optimistic message logging. It uses additional nodes

as loggers to store event logs and as spares to be swapped in

when nodes fail. None of the components – senders holding

payload logs, loggers keeping events, nor spare nodes – are

assumed to remain fault free during the execution of a parallel

job. Only the storage system is assumed to be stable. Although

deceptively simple at a high-level, combining these algorithms

in this manner requires a protocol described in the following

sections.

A. Definitions and assumptions

There are three classes of nodes: compute nodes (Sc) send

and receive messages, additional nodes set aside as spares (Ss)

to replace failed nodes, and a few more nodes, called loggers

(Sl), which are used to store message event logs. Therefore,

our algorithm requires N = |Sc|+ |Ss |+ |Sl | number of nodes

to execute an application that runs on n = |Sc| compute nodes.

Before we describe the algorithm in detail, we list the

underlying assumptions:

• Communication channels observe FIFO order.

• Fail-stop model, which implies for instance that messages

are delivered correctly, or not at all.

• Any number of compute nodes, loggers, and spare nodes

can fail at any time during a job’s execution.

• Neither the message payload logs nor the event logs are

assumed to be stored in stable storage.

• The system can be modeled as an asynchronous system

with a perfect failure detector. Moreover, we assume the

presence of a Reliability, Availability, and Serviceability

(RAS) system for detecting failures and restarting pro-

cesses on spare nodes we have set aside.

• Process checkpoints are stored in stable storage.

• One MPI process per node and only MPI message recep-

tion can cause a node to behave non-deterministically.

This last assumption does not mean an application can use only

one process or thread per node, nor that scheduling needs to

be deterministic. What is required is that all externally visible

events are deterministic and solely determined by the order and

content of incoming MPI messages. Local non-determinism

is fine as long as it does not cause externally visible non-

deterministic events.

B. Protocol description

The protocol makes use of blocking coordinated check-

points as described in [1] and [2]. A coordinated checkpoint

can be triggered at the time applications enter a synchro-

nization point or upon request by the RAS system. We call

the time between two consecutive coordinated checkpoints a

phase. The protocol also relies on optimistic message logging

similar to [3]. A small, constant size information field is

piggybacked onto each message. That information is used to

uniquely identify a message. It is also used to determine, at the

time a process restarts after a failure, if the optimistic protocol

“failed” and a full application restart from the last global

checkpoint must be triggered due to possible inconsistency.

1) Variables: Each process p in the system maintains three

counters or local logical clocks. The first counter, Sp, increases

for each message sent by p. The second counter, Rp, increases

for each message p receives. The last counter, restp, is

incremented each time p restarts.

Each process p also keeps four sparse arrays: ASp[], ARp[],
ARestartp[] and ASentp[], all indexed by MPI rank. ASp[]
and ARp[] store the last Spid

clock and Rpid
clock p has seen

from process pid. ARestartp[] stores the current restart counter

of every process. Finally, ASentp[j] stores the ID of the last

message sent to process Pj .

2) Normal execution: Every process is either in its normal

execution state or in restart mode. During normal execution,

when process pi sends a message to pj , it increases its clock

Spi
and piggybacks three counter values onto the message:

restpi
, Spi

and Rpi
. Note that, contrary to causal protocols,

the amount of information piggybacked is small and of con-

stant size. The payload of a message and this piggybacked

information is stored in a log in the sender’s memory and is

indexed by pj , Spi
. Finally, the process checks whether Spi

>

ASentpi
[j]. If true, it sends the message, else it does not and

continues its execution.

When process pj receives a message from pi, contain-

ing restpi
, Spi

and Rpi
, it first checks whether restpi

=

ARestartp[i]. If not it drops the message, waiting for a new

message to be sent after the sender has restarted. Else it

processes the message. It increases its own clock Rpj
, and

it updates its arrays: ARpj
[i] = max (ARpj

[i], Rpi
), AS pj

[i]
= max (ASpj

[i], Spi
). It then sends an event containing infor-

mation about the sender and receiver of this message to its

logger. That event is small and of constant size as it contains

only (pi, Spi
, Rpi

, pj , Rpj
). pj finally delivers the message

and optimistically continues its execution without waiting for

an acknowledgment from the logger. Each event logger serves

many compute nodes and erases its log at the beginning of

each phase. Message payloads are not stored in event loggers.



When process pi receives restpk
from the RAS system to

inform it of a process pk restarting, it updates ARestartpi
[k]

= restpk
and ASentpk

[i] = 0. It sends m restpi
(ASpi

[k],
ARpi

[k]) to pk to let the restarting process know which

message between pi and pk was the last one successfully

delivered. Finally pi resends every message kept in its logs

that was sent to pk before it failed during this phase. These

messages are resent using the payload and piggybacked in-

formation contained in the sender’s log, with only the value

restpi
updated to the current value of the sender.

3) Failure handling: If a logger fails, the application con-

tinues to execute. If it reaches a global checkpoint, the RAS

system uses a spare node to assign a new logger and informs

every process about it. When the RAS system detects process

pk has failed, it checks if a spare node is available. If no spare

node is available, the RAS system forces an application restart.

In that case the job scheduler can be involved to reschedule

the application at a later time when more nodes are available.

If a spare node is available, the RAS system restarts pk on that

spare node, sends to every process the incremented restpk
and

sends the array ARestart [], listing the current restart counter

of every process, to pk.

4) Process restart: When process pk restarts, all its arrays

and counter are zeroed. It confirms with the RAS system that

its logger is alive and asks for the list L of all events logged

for pk. In case its logger has failed, the whole application has

to be restarted by the RAS system.

For each event (pi, Spi
, Rpi

, pk, Rpk
) ∈ L, it updates

ARpk
[i] = max (ARpk

[i], Rpi
). It then receives and updates

restpk
and ARestartpk

[] from the RAS system. Finally pk
waits for m restpi

= (ASpi
[k], ARpi

[k]) from every process

pi 6= pk. When it receives one, pk updates ASentpk
[i] =

ASpi
[k] and checks that ARpi

[k] ≤ |L |. If this is not the

case, it asks the RAS system to trigger a full application restart,

since this indicates that one or more events did not get logged.

When pk has all m rest messages, it starts execution in

restart mode. Restart mode is similar to normal mode with

one difference: when a message has to be received, the first

element (pi, Spi
, Rpi

, pk, Rpk
) is popped from L and pk

selects or waits for the message sent by pi containing (Spi
,

Rpi
). Normal execution continues when L becomes empty.

C. Case studies

We present a few scenarios of execution to highlight features

of the protocol presented in the previous section. Fig. 1 shows

the basic operations of the algorithm. In this example, four

processes, one logger, and a spare node progress through two

phases without incident. After the second barrier, b2, fault f1
occurs and process P3 has to restart.

The process restart is done on the spare node. The last

checkpoint has to be read, the work of the entire phase has to

be redone, and the next checkpoint has to be written before

process P3 can join the other processes in barrier b3. Once

a process has written its own checkpoint and is waiting in

the barrier b3, it will be restarted into this barrier should that

process fail at the end of the phase, using the checkpoint it

Fig. 1. Progress of a parallel application.

just did. If a global application restart is triggered, then all

processes will restart from the checkpoint of barrier b2.

In our example, processing continues until the second fault

occurs at f2. At that time, no more spare nodes are available

and the entire application is forced to restart. Because a full

application restart places more demand on the I/O system, it

will take longer than the restart of an individual process. We

assume that after an application restarts, enough nodes are

available again to host the compute processes, loggers, and

spare nodes for the next phase.

More examples are in Fig. 2. If a spare node fails, at f1 in

the graphic, an attempt is made to reboot it. In our simulations

we assume that it will succeed 50% of the time and “fix”

the problem that caused the fault. In that case the spare node

becomes available again. If a compute node or a logger fail,

we attempt the same trick and, if successful, place the freshly

booted node into the pool of spares.

The second example in Fig. 2 is at f2, when the logger fails.

There is no need to restart the whole application at this stage.

Only if a node fails which needs event information from that

logger, would an application restart become necessary. In our

simulation we decided to ignore this optimization though, and

do a full restart a soon as a logger fails.

Three more examples using Fig. 2: 1) Assume that messages

m1, . . . ,m6 on the right hand side of the figure have been

received, and that the corresponding events, e1, . . . , e6, have

been recorded by the logger, then the complete event log would

look like Table I. This log could be split among different

loggers, but every event sent by a particular process is stored

on its assigned logger.

When fault f3 occurs in Fig. 2, process P3 needs to restart.

At the beginning of its restart phase, it will ask its logger for all

event entries that carry information about its previous receives.

In our example, those are events e2 and e3, thus the logger

will build the list L = (e2, e3). Armed with this knowledge, P3

determines that it received messages m2 and m3 in that order

from P1 and P2. P3 will then wait for information from the

other processes and will discover that P0 and P1 have received

messages from P3 that do not need to be sent again. P3 will



Fig. 2. Several examples discussed below.

TABLE I
AN EVENT LOG EXAMPLE

Event Source Destination

rank snd rcv rank rcv
e1 P1 1 0 P0 1

e2 P1 2 0 P3 1

e3 P2 1 0 P3 2

e4 P3 1 2 P0 2

e5 P3 2 2 P1 1

e6 P0 1 2 P2 1

receive m2 and m3 in some order. It will re-execute and when

receiving the first message, then m2 will be delivered first,

followed by m3, according to L. P3 will fake emission of m4

and m5 and store their contents in its message log.

2) Assume that event e3 got lost or delayed and is not

available in the log when P3 restarts. This could happen

because P3 sends event e3 followed immediately by m4 to its

logger and P0. For one reason or another, e3 is delayed and

held in P3’s resend buffer, while m4 is successfully received

by P0. Since communication channels are FIFO, only a suffix

of the sequence of events logged regarding a process can be

lost. For instance, if e4 is received by the logger of P0, then

e1 has been received and logged.

After P3 restarts, it will learn about event e2, but not e3
and will thus build L = (e2). From L, P3 deduces it has

previously received a single message and could decide to

receive a different message than m3 following m2. This would

lead to an inconsistent execution regarding P0. There are two

possibilities at this stage: P0 has effectively received message

m4 when getting informed of P3 restarting. In that case it

will send the corresponding information; i.e., m restP0
(1, 2).

P3 deduces from this message that it should have gotten at

least two events from its logger and requests a full application

restart. In the case of P0 not having received m4, it will send

m restP0
(0, 0) when P3 restarts. P0 then deduces its restart is

legitimate and continues its execution. In that case, consistency

is enforced within P0 by detecting when receiving m4 that

the message was sent before P3 restarted, using restp3
, and

by dropping this message.

It is important that a sender replays all of its messages in

the same order as before the restart. In our protocol, either all

non-deterministic events were logged to the sender’s logger or

the receiver will be able to tell the sender the number of events

it handled prior to this communication. This can be used as a

hint of the necessity to do a full application restart.

3) For the case of multiple failures, assume P3 and P0 fail

as in Fig. 2. The case of e4 not being logged, potentially

creating an inconsistency for m6, has already been described

in 2) above. It will either trigger a full restart, or any message

can be received instead of m4 without creating inconsistency.

Thus, let us assume e4 is logged. In that case it may be that

P3 is also restarting and is not yet able to reproduce m4 in

exactly the way it did in the previous phase. This can happen

if e3 has been lost. When P3 restarts, either P0 has not failed

yet in which case we are in a similar situation as described in

2) and the same logic applies that triggers a full restart. Or, P0

already restarted and it has received the list of events from its

logger, holding e4 from which it recovered the knowledge that

P3 performed two receives before sending m4. It will deliver

this information to P3 when it restarts, making P3 detect the

missing event e3 and triggering a full application restart.

We expect these scenarios to be very rare occurrences

because supercomputer networks seldom drop small events but

succeed in delivering subsequent application messages from

the same node.

III. SIMULATION

We wrote a discrete event simulator to evaluate the scal-

ability of the combined protocol. We briefly discuss the

implementation and then present the results we have obtained.

A. Implementation

Fig. 3 shows the possible states of a message event logger

and a compute node. A logger is either working and logging

messages, or it has failed and been swapped out. If so, it can

no longer assist failed compute nodes, because it has lost the

message events since the current phase began. It will resume

a working state after the next barrier, or cause an application

restart, if a compute node needs log information.

The basic mode of a compute node is working until the

checkpoint interval time has elapsed, then write a checkpoint,

and enter a barrier, where it waits for the other nodes. If a

compute node fails, it performs a single-node restart at the

beginning of the current phase. If a compute node’s logger

has also failed, a single-node restart is no longer possible and

the whole application must restart. Once a node reaches its

barrier, future faults will restart it into that barrier, restarting

from the most recently written checkpoint.

The simulator is configured with N = |Sc| + |Ss| + |Sl |
nodes, each executing the state diagram in Fig. 3 according to

its role. Spare nodes can be used to replace failed loggers or

compute nodes. When the pool of spare nodes is exhausted,

an application restart becomes necessary. Spare nodes, while

waiting for assignment, can also fail. When a node fails, an



Fig. 3. Logger and compute node state diagrams.
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Fig. 4. Elapsed time for a 168-hour job, 5-year socket MTBF.

attempt is made to reboot it. With a probability of 50% this

succeeds in “fixing” whatever caused the node to fail, and the

node is placed into the spare pool five minutes later.

For all the simulations in this paper we ran a 168-hour,

weak scaling job. Each of the |Sc| compute nodes needs to

get 168 hours (1 week) of work done. Because of checkpoint

overheads and restarts due to faults, the elapsed time for each

node to complete 168 hours of work is larger. We ran each

experiment until the elapsed time was within ±5% of the 95%

confidence interval. For most experiments that was five trials;

our minimum number for any experiment.

B. Results

Fig. 4 shows how much time is needed to complete a 168-

hour job. The top curve in the plot, labeled “coordinated”, is

a calculation of how much time a job requires when it uses

only coordinated checkpoint/restart for fault tolerance. We use

Daly’s Equation 20 from [4] to calculate the elapsed time. We

use Equation 37 from the same paper to calculate the optimal

checkpoint interval τopt .

The bottom curve in Fig. 4, labeled “2x replication” is

a model of running an application on a system with dual

redundancy. We use Equation 1 from [5] for that. The gray

band between these two curves represents our area of interest.

We know coordinated checkpointing does not scale well. That

curve, therefore, represents an upper bound. In [5] the authors

found that dual redundancy greatly reduces the number of

faults an application experiences, albeit at twice the hardware

cost. We use it as a lower bound in our comparisons and a

goal to strive for. The black middle curve in Fig. 4, is the

simulated performance of the protocol described in this paper.

With the parameters chosen for the experiment in Fig. 4, it

performs very well compared to coordinated checkpointing.

The two models and our simulator require input parameters.

One is the number of compute nodes |Sc| available to the

application. Redundant computing requires N = 2 · |Sc| nodes

and the combined protocol requires logger and spare nodes.

Our plots always show |Sc|, not N . For an exascale system

to be built near the end of this decade, it is usually assumed

that it will have between 30,000 and about 300,000 nodes,

depending on configuration [6]. We assume each node hosts a

single MPI process, possibly with multiple threads. The shaded

area in Fig. 4, and in other plots in this paper, indicates the

expected design space for future exascale systems. The socket

MTBF for this example is 43,800 hours (5 years). That number

is based on [7] and [8] and includes everything – not just

hardware – that could cause a process on a socket to fail; e.g.,

software, external power and cooling, human error, etc.

The time required to read and write a checkpoint depends

on many factors, including its size, the I/O bandwidth, and

contention for network paths and storage units. We arbitrarily

set the amount of data each node saves and restores to 16 GB.

We further assume that a single node can read or write that

amount of data in 3.2 seconds; i.e., it can transfer at 5 GB/s.

For a full application checkpoint or restart, we assume

that the parallel file system has an aggregate bandwidth of

0.5 TB/s, 1.0 TB/s, 5.0 TB/s, 10 TB/s, or 30 TB/s. These val-

ues cover the range expected by [6]. The available bandwidth

has to be shared by the number of nodes in the system. For

example, in a 100,000-node system capable of an aggregate

I/O bandwidth of 5.0 TB/s, each node writing its 16 GB of

data would take 320 seconds; i.e. I/O may be limited by node

or aggregate bandwidth.

We use Daly’s τopt [4] to set the checkpoint interval. For

the redundant computing model and the simulation of the

combined protocol, that is not entirely correct, since τopt is

meant for coordinated checkpointing. However, it gives us

reasonable starting points for our experiments.

For the simulations in this paper, we used exponentially dis-

tributed faults assuming nodes fail independently. Not enough

is known yet about failure distribution and their interdepen-

dence in future systems.

Fig. 5 analyzes the impact of MTBF on elapsed time.

We perform the same experiment as in Fig. 4 and steadily

increase the socket MTBF to 100 years. The three planes in

this plot represent, from the top, coordinated checkpointing

(green), the combined protocol of this paper (gray), and

redundant computing (blue). The elapsed time for coordinated

checkpointing at large socket counts and small MTBF, exceeds

the bounding box of Fig. 5.
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Fig. 5. The elapsed time of a process varies with the number of nodes and
the socket MTBF of the system as well as the algorithm used.

At small node counts and large MTBF (left corner of Fig. 5)

the elapsed time for all three methods is about the same. As we

increase the number of nodes, execution times using redundant

nodes or the combined protocol, stay close together, with

redundant computing needing always less time to complete

than the other approaches. Coordinated checkpoint/restart is

several times slower than the other two approaches at high

node counts (front center corner of Fig. 5). When we decrease

the node MTBF, the situation for all approaches gets worse,

but much more so for coordinated checkpointing (right side

corner of Fig. 5).

Redundant computing uses additional hardware to reduce

the number of faults visible to an application: N = 2 · |Sc|.
Our combined method uses additional nodes for loggers and

spares. For our experiments we set the number of loggers to

|Sl | = 0.01 · |Sc| and provided |Ss| = 0.05 · |Sc| spares, for

a total of N = |Sc|+ 0.05 · |Sc|+ 0.01 · |Sc| nodes. We will

see later that 5% spare nodes is plenty. The 1% logger nodes

is a compromise between fault tolerance and performance.

Fewer logger nodes in a system is better for fault tolerance,

since a failure of any of them usually mandates an expensive

application restart. However, too few logger nodes can create

a bottleneck in writing and retrieving message events.

In Fig. 6 we use socket hours as a metric to measure

hardware costs of a fault tolerance method. It is the number

of sockets required to carry out a computation multiplied by

the total time to completion. We normalize the results against

coordinated checkpointing since that method uses the fewest

number of nodes. At low node counts, redundant computing

uses 200% the number of nodes. With higher node counts,

redundant computing uses less time to finish than the same

size job using coordinated checkpointing. Therefore, the ratio

decreases and, beyond 20,000 nodes, redundant computing

needs fewer socket hours than coordinated checkpointing to

complete a job of the same size. Our protocol also starts

out using more resources, but much fewer than redundant

computing. Beyond 10,000 nodes, its socket hour consumption

is becoming much less than either redundant computing or co-

ordinated checkpointing. At very high node counts, redundant

computing and the combined protocol are much better than
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coordinated checkpointing.

The shaded area, marking the expected design space of

future exascale systems, helps us see that redundant computing

may not be cost effective below the exascale range, while

checkpointing methods like the one presented in this paper,

can play a role in large scale systems, even if they are smaller

than the top-ranked systems.

Again, the node MTBF plays an important role in this

evaluation. We repeat the experiment for Fig. 6 for a range

of MTBFs in Fig. 7. The middle (gray) plane represents

coordinated checkpointing, which we normalize at 100%. The

lower plane is the combined protocol. It starts out, at low node

counts and high MTBF (left corner of the plot), above the

gray plane, indicating that it requires more socket hours than

coordinated checkpointing. As the number of nodes increases

and the MTBF drops, the combined protocol results fall below

the gray plane, indicating better resource usage.

Redundant computing starts out high in the left side corner

of Fig. 7. It, too, drops below the gray plane representing coor-

dinated checkpointing, but at a later point than the combined

protocol. That dip towards better resource utilization occurs

sooner if the MTBF is low (far back corner of Fig. 7.)

In a system with a higher aggregate I/O bandwidth, check-

points can be written more quickly. This allows coordinated

checkpointing to scale better. For Fig. 4 we used an aggregate

I/O bandwidth of 0.5 TB/s. We repeated the experiment with
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an I/O bandwidth of 30 TB/s. The result is shown in Fig. 8.

With 0.5 TB/s aggregate bandwidth, there are clear advantages

for redundant computing and the protocol presented in this

paper, starting at about 20,000 nodes. If the bandwidth is as

high as 30 TB/s, more than 100,000 nodes are needed before

the overhead of coordinated checkpointing causes much longer

execution times than the two other fault tolerance methods.

I/O bandwidth to storage is improving as technology

marches forward but is not growing at the same rate as proces-

sor performance. However, enormous aggregate bandwidths,

such as 30 TB/s, will not be cheap and the cost of that will

have to be taken into consideration when deciding on a fault

tolerance solution. A compromise between an affordable I/O

system and an efficient fault tolerance method has to be found.

Given these trade-offs, it is interesting to see where in the

parameter space of projected exascale systems, the break-even

point lies. I.e., how many compute nodes are required before

the combined fault tolerance protocol of this paper completes

a job in fewer socket hours than a system that uses coordinated

checkpointing alone.

Fig. 9 shows the break-even lines for five different aggregate

I/O bandwidths. Given a node MTBF, a node count above the

break-even line indicates that the protocol of this paper may

be preferable over coordinated checkpointing. Like in previous

graphs, the shaded area indicates parameter ranges in which

an exascale system in the next few year may be built.

Although we used 5% spare nodes for all of our simulation

runs, that many spares are actually not needed. Fig. 10 shows

a typical example. For various aggregate I/O bandwidths (y-

axis) and increasing number of nodes (x-axis), we use color

shading to indicate the largest number of failed or in-use

spares at any time during the simulation. A darker shade means

more spares were needed. All our results, including the 70-

year node MTBF example of Fig. 10, show that more spares

are needed with higher node counts (right side of graph), and

lower aggregate I/O bandwidth (bottom part of graph). Not

surprisingly, the lower the MTBF, the more spares are needed.

However, in almost 3,000 simulations over a wide range of

aggregate I/O bandwidths, MTBFs, and node counts, even with

a 1-year node MTBF, the largest number of spares needed was

1309 in a 270,000-node experiment.
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IV. LIBRARY IMPLEMENTATION AND TESTING

To evaluate the runtime performance and scalability of this

design, we implemented the combined protocol described here

as a library, called mlMPI. It features:

• A configurable number of ranks set aside as logger nodes.

• Send payload data tracked and saved on the local node

in host memory.

• ID information in all point-to-point messages.

• An event sent to a logger node for each receive.

• Emulated local checkpoints, failures, and restarts.

Our implementation is at the MPI profiling layer. We chose

that for quick prototyping and portability to the majority

of modern MPI libraries. Implementing at the PMPI layer

represents a worst case overhead for this design. A full im-

plementation needs to be at a lower layer in order to optimize

the handling of some protocol messages more efficiently.

This initial implementation has a number of limitations. Most

importantly, collective operations are not fully implemented

and can not fully recover from an actual failure. Due to this,

restarts do not currently pull messages from corresponding

nodes and instead busy-wait locally for a time equal to the

interval since the last local checkpoint, simulating the rework

time. mlMPI is in the approval stage for open source release.



A. Results

Due to the limited availability of dedicated time on large-

scale systems, only limited runtime results using mlMPI are

available currently. We use simulation in Section III for large

scale results, and the library to evaluate runtime overheads

for a number of micro-benchmarks: latency, bandwidth, and

message-rate. We measure the expected log growth rates, a

key scalability issue for logging based protocols, for four key

HPC workloads: CTH [9], SAGE [10], LAMMPS [11], [12],

and HPCCG [13]. We do not show the runtime results for

these workloads because at the node counts tested, up to 128

nodes, we saw no difference in run times when compared to

the native MPI stack.

These applications represent a range of computational tech-

niques, are frequently run at very large scales, and are key

simulation workloads for both the US DOD and DOE. These

four applications represent different communication charac-

teristics and compute to communication ratios. Therefore, the

overhead of mlMPI affects them in different ways.

All tests were run on a small Cray XE6 system, the same

architecture as the ACES Cielo platform. Each node consists

of a Dual socket AMD Opteron 6136 eight-core Magny-Cours

processor @ 2.4 GHz with 32 GB of main memory and Cray’s

Gemini proprietary network.

1) Micro-benchmark performance: As micro-benchmarks

do nothing but constantly transmit and receive messages within

the system, we expect them to exhibit higher overheads than a

full HPC application. The latency measurements in Fig. 11

show the impact of the message logging protocol. Small-

message bandwidth also decreases a little bit due to the

increased latency. We see that for smaller message sizes,

as expected, performance is impacted. The majority of this

performance loss is due to the additional message ID infor-

mation that must be included in every message. At the cost

of portability, a message logging library built at a lower level

within the network stack could greatly increase performance.

This is cost we are currently willing to pay in order to maintain

portability. A small amount of performance is lost in the

library due to the pessimistic send log commit protocol that is

used locally on a node. As the logs are not pushed to stable

storage, an optimistic protocol could easily be used in its place

at the cost of additional bookkeeping within the library.

Fig. 12 illustrates the MPI message rate performance for

our library in comparison to native. Message rate is the most

severely impacted of the three micro-benchmarks. Again, the

performance loss is attributed to the transmission of message

IDs. We are working on methods to reduce this message rate

slowdown without sacrificing portability.

2) Message log growth rates: In the previous section we

showed that the overhead of mlMPI can be quite large for

micro-benchmarks in comparison to native. In contrast, in our

limited scale testing, our applications have shown no runtime

performance impact. We expect these overheads can be kept

low as long as we scale the number of logging nodes along

with application nodes.
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Along with runtime performance, we also measured the log

growth rate for our example workloads. This growth rate is

important as the logs in our library share memory with the

application. The log growth rate is tracked with the library and

the initial problem setup and tear-down and is not included as

these messages are typically much larger than messages sent

during the main compute portion of the application. Table II

shows the per-process log growth rate per second. These

numbers represent the averages for each application between 2

and 1024 MPI processes. After 128 ranks the per-process log

size remained relatively constant for all applications. These log

growth rates can vary dramatically; from 40 MB/second for

the bandwidth sensitive application CTH, to 0.6 MB/second

for the communication avoiding HPCCG.

TABLE II
PER MPI PROCESS LOG GROWTH RATES.

Application Log growth rate per MPI process

HPCCG 0.6 MB/s
LAMMPS 1.5 MB/s

SAGE 13 MB/s
CTH 40 MB/s



V. DISCUSSION

Our simulation studies indicate that a combined approach,

like the one we present in Section II, can be used to take

proven fault tolerance methods and make them more suitable

for exascale. We compare our approach to coordinated check-

pointing alone, because it is a crucial part of our combined

protocol and is a widely used method. At the other end of

the extreme, we look at redundant computing which greatly

reduces the number of faults visible to an application.

There are several reasons why our protocol works well

at large scale. The most vulnerable parts of our system are

the logger nodes. Most of the time when one of them fails,

an application has to perform a full restart. However, since

there are relatively few loggers required, the probability of

one of them failing is small. Another reason we scale well is

our optimistic approach to message logging. Nodes neither

get nor wait for an acknowledgment when writing logs.

Therefore, these operations can be done asynchronously in

the background without pausing an application. Furthermore,

when the optimistic approach creates an inconsistency, our

protocol can detect that as soon as a node restarts and then

request a full application restart. It never needs to roll back

further than the last complete full application checkpoint.

Our experiments show a measurable impact on micro-

benchmark performance. This is due in part to our non-

optimized initial implementation, but has negligible impact

on real application performance. In addition, the overhead

our protocol introduces, for example the three counters we

send in each message, is of constant size and has no scaling

limitations. Our approach is most suitable for extreme-scale

application which already use coordinated checkpointing, or

self synchronize on a regular basis. Like all message logging

based protocols, there is an issue with storing the message

payload logs. Our protocol does not require them to be

written to stable storage, which lessens the demand on the

I/O subsystem. Nevertheless, the size of these logs stored in

memory that could be used by applications, is of concern.

Due to our regular checkpoints, the size of these logs can be

limited. This is a trade-off controlled by number and size of

messages sent, and the checkpoint interval. A large checkpoint

interval reduces demand on the I/O subsystem and lowers

checkpoint overhead. A small checkpoint interval increases

overhead, but reduces the amount of memory needed to store

message payloads. We also looked at the impact of aggregate

I/O bandwidth. A high aggregate bandwidth is beneficial and

extends the scalability of all three approaches, but coordinated

checkpointing in particular. The trade-off is the high cost

of such a storage system. It requires a massively parallel

I/O subsystem coupled with a very fast network capable of

carrying a huge volume of data.

Another approach is to make the system more reliable.

For several reasons, this is unlikely to happen. Near-future

exascale system will be made of components that are the

same or similar to the ones used in standard compute technol-

ogy. Manufacturers are struggling to keep reliability of these

components at today’s levels because feature sizes and supply

voltages are shrinking, making these devices more vulnerable

to transient failures. The sheer number of components required

for an exascale system will all but guarantee that faults occur

more frequently. The large scale parallelism will also make

software bugs and human error more likely.

Several improvements to our protocol are possible. One is

to make the loggers more reliable, for example by running

them on redundant nodes. This would require few extra nodes,

but would virtually eliminate the need for full application

checkpoints and restarts. Because most failures cause only a

single node to restart, it is possible to increase the checkpoint

interval. This has the disadvantage that the message payload

logs may grow too big, but would further lower the overhead of

our protocol. Finally, since we already are logging messages,

we could let nodes do individual checkpoints between the

regularly scheduled coordinate checkpoints. Those individual

checkpoints could be triggered when a message log on a node

grows beyond a threshold.

A. Validation

We use Daly’s equation to model coordinated check-

point/restart. It has been validated in [4]. For the double

redundant case we use equation 1 from [5]. It is an approx-

imation and has been validated in [5] against a couple of

simulators and empirically. We validated simulation of the

combined protocol up to 1,024 MPI ranks using our partial

implementation. We also have a high level analytical model

of the combined protocol:

E ≈
W

1− τ
1.5Θ

− R
Θ

where E is elapsed time, W is failure-free time to solution

(work to be done), τ is checkpoint interval, Θ is system

MTBF, and R is socket restart time. Up to 100,000 sockets

the simulation and model differ by less than 4%.

The rudimentary model becomes less accurate at higher

socket counts due to its ignorance of full application restarts,

which occur more often at high socket counts. The model

assumes failures are uniformly distributed, not exponential,

and does not account for writing checkpoints.

VI. RELATED WORK

Checkpoint based techniques are the subject of numerous

studies. Two different families of such techniques exist: meth-

ods that coordinate checkpoints of all processes in order to

create a consistent snapshot of the system, and methods that

log message content and information about the reception,

without coordinating checkpoints between processes. Both

families are detailed in [2]. In this Section we present recent

advances in this domain and differences to our approach.

A. Coordinated checkpoints

Our protocol relies on blocking, coordinated checkpoints.

This technique consists of taking regular snapshots of the

global system state [14] by coordinating process checkpoints.



When a process fails, the whole application is then restarted

from the last snapshot taken. Two main techniques are used

to coordinate checkpoints. One, called nonblocking, makes use

of the snapshot algorithm [14] and lets the application execute

while transparently checkpointing the processes states. The

other, called blocking, quiesces the network prior to check-

pointing the system’s state, avoiding communication during

that time and, thus, impacting the application performance.

Blocking techniques are used in LAM/MPI [15] and Open

MPI [16] because they are agnostic of the underlying network

architecture. During a blocking checkpoint, the network is

quiescent, and NIC state does not need to be saved, making

it possible to restart on a node with a different network type.

A study comparing blocking and nonblocking techniques [17]

demonstrates that both of these two approaches do not scale

well. Moreover, an increased frequency of process failures can

lead to application never terminating [18]. Contrary to these

approaches, our algorithm uses message logging techniques

which usually prevent the whole application from restarting.

B. Pessimistic, causal, and optimistic message logging

Most of the message logging techniques do not coordi-

nate checkpoints. Instead, these protocols rely on piecewise

determinism [2]. The execution of a process is assumed to

be determined by its sequence of message receptions. These

protocols keep logs of message events and store message

payloads in either a remote stable storage [19] or in the

sender’s volatile memory [20]. When a process restarts from a

previous checkpoint, it will receive the exact same messages,

in the same order, again. This is necessary for consistency.

In [2], [21], message logging protocols are formally cate-

gorized into three classes: pessimistic, causal, and optimistic.

Pessimistic protocols ensure all information needed for re-

executing a process is stored in stable storage before a process

can receive another message. Thus, these protocols have a high

impact on message rate [19], [22].

Causal protocols ensure that the information needed for sys-

tem consistency after a process fails, is either stored in stable

storage or in the volatile memory of some other processes.

To achieve this, causal protocols piggyback information on

every message. This diminishes the impact on latency but

affects bandwidth due to the often large amount of additional

information in each message [18].

Optimistic message logging protocols [23]–[25] let applica-

tions continue their execution without making sure all informa-

tion will be recoverable. These protocols can therefore create

orphans which can cause inconsistent system state. Optimistic

protocols use various mechanisms to detect such situations

and to find a consistent snapshot from all previous process

checkpoints. This can potentially lead to an application having

to restart from the beginning. Following this classification

scheme for log-based checkpoint/restart, the logging portion

of our protocol can be described as optimistic and is most

similar to [3]. Contrary to existing optimistic protocols, when

the rare situation of creating orphans occurs, we can use the

last coordinated checkpoint to recover the application. Another

difference is that we do not assume event loggers to use stable

storage. Message logging protocols store message payload and

event information. Garbage collection is needed to cleanup

these logs. In our case, that is simple. When a coordinated

checkpoint finishes, or if a full application restart is required,

message payload and event information is erased.

In this paper, we do not delve deeply into the exact way of

how logging is to be done. For example, [26] discusses that

MPI messages are not monolithic blocks of data, and that mod-

ern NICs make the determination of when a message has been

delivered more complex. [27] present techniques to reduce the

cost of memory copies needed to log message payloads. There

is also previous work looking at specialized hardware to serve

as logging memory or stable storage. Examples are [28] which

investigates PCRAM for the log memory, and [29] which looks

at non-volatile memory for stable storage. These optimizations

are out of scope for our study.

C. Similar work

Combining message logging with coordinated checkpoint-

ing has been proposed in [30]. Different from our approach,

that work relies on pessimistic message logging and stable

storage. Using a pessimistic technique is more costly than

an optimistic one, but prevents creation of orphans and thus

prevents having to restart the whole application. In [30],

coordinated checkpointing is used for garbage collection and

to prevent storing message payloads in stable storage. A recent

study [26] indicates that pessimistic message logging may have

too high of a cost for applications at exascale.

Work that is closely related to ours is described in [31].

That paper explains that coordinated checkpoint/restart does

not scale and that the alternative – message logging – has the

problem of high storage overhead, particularly on nodes with

a high core count. Because failures among cores of the same

node are correlated, Bouteiller et al. propose a hybrid method:

coordinated within nodes and uncoordinated with message

logging between nodes.

There have been several attempts to reduce the overhead of

message logging. Examples include [32] and [33]. The latter

makes use of send deterministic properties, which many MPI

HPC applications possess, to avoid checkpoint coordination

and to lower the amount of logging data. Our approach is

limited to certain types of applications as well. There have also

been attempts to improve checkpoint/restart without message

logging; e.g., [34]. Our approach differs because we do use

message logging, but do not incur most of the overheads

traditionally associated with message logging. Work like [18],

[35] and [36] compare the two approaches with each other,

but do not consider the combination of the two.

VII. CONCLUSIONS

We investigated a combination of optimistic message log-

ging that uses external loggers in combination with coordi-

nated checkpoint/restart for its suitability to make a class of

exascale applications more fault tolerant. We found that this

particular combination of techniques allows an application to



complete its work in a total time that rivals the time that would

be required in a redundant system, but with a small fraction

of the additional nodes required for redundant computing.

The protocol presented here is not a universal solution to

fault tolerance at exascale. Some applications, for example

those that are already memory-size constrained, may not be

able to accommodate logs. In those situations, an approach that

uses additional hardware, for example redundant computing,

may be the preferred solution. However, in this paper we

have shown that combining coordinated checkpointing with

optimistic message logging is performance compatible with

redundant computing, but requires far fewer additional nodes.

REFERENCES

[1] G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and P. Stodghill,
“Recent advances in checkpoint/recovery systems,” in Parallel and Dis-

tributed Processing Symposium, 2006. IPDPS 2006. 20th International,
Apr. 2006.

[2] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,”
ACM Comput. Surv., vol. 34, no. 3, pp. 375–408, 2002.

[3] T. Ropars and C. Morin, “Active optimistic message logging for reliable
execution of MPI applications,” in 15th International Euro-Par Confer-

ence, Delft, Netherlands, Aug. 2009.
[4] J. T. Daly, “A higher order estimate of the optimum checkpoint interval

for restart dumps,” Future Gener. Comput. Syst., vol. 22, no. 3, pp. 303–
312, 2006.

[5] K. Ferreira, R. Riesen, P. G. Bridges, D. Arnold, Steraley, J. H. L. III,
R. Oldfield, K. Pedretti, and R. Brightwell, “Evaluating the viability
of process replication reliability for exascale systems,” in ACM/IEEE

International Conference for High Performance Computing, Networking,

Storage and Analysis (SC), 2011.
[6] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-

neau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keck-
ler, D. Klein, P. Kogge, R. Lucas, M. Richards, A. Scarpelli,
S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick,
“Exascale computing study: Technology challenges in achiev-
ing exascale systems,” http://www.science.energy.gov/ascr/Research/CS/
DARPAexascale-hardware(2008).pdf, Sep. 2008.

[7] B. Schroeder and G. A. Gibson, “A large-scale study of failures in
high-performance computing systems,” in International Conference on

Dependable Systems and Networks (DSN), Jun. 2006.
[8] T. J. Hacker, F. Romero, and C. D. Carothers, “An analysis of clustered

failures on large supercomputing systems,” J. Parallel Distrib. Comput.,
vol. 69, pp. 652–665, Jul. 2009.

[9] J. E. S. Hertel, R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I.
Kerley, J. M. McGlaun, S. V. PetneY, S. A. Silling, P. A. Taylor, and
L. Yarrington, “CTH: A software family for multi-dimensional shock
physics analysis,” in Proceedings of the 19th International Symposium

on Shock Waves, Jul. 1993, pp. 377–382.

[10] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman,
and M. Gittings, “Predictive performance and scalability modeling of
a large-scale application,” in Proceedings of the ACM/IEEE conference

on Supercomputing, 2001, pp. 37–48.
[11] S. J. Plimpton, “Fast parallel algorithms for short-range molecular

dynamics,” J Comp Phys, vol. 117, no. 1, pp. 1–19, 1995.
[12] Sandia National Laboratory, “LAMMPS molecular dynamics simulator,”

http://lammps.sandia.gov, Apr. 10 2010.
[13] ——, “Mantevo project home page,” https://software.sandia.gov/

mantevo, Apr. 10 2010.

[14] K. M. Chandy and L. Lamport, “Distributed snapshots: determining
global states of distributed systems,” ACM Trans. Comput. Syst., vol. 3,
no. 1, pp. 63–75, 1985.

[15] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Duell, P. Har-
grove, and E. Roman, “The LAM/MPI checkpoint/restart framework:
System-initiated checkpointing,” International Journal of High Perfor-

mance Computing Applications, vol. 19, no. 4, pp. 479–493, Winter
2005.

[16] J. Hursey, T. I. Mattox, and A. Lumsdaine, “Interconnect agnostic
checkpoint/restart in Open MPI,” in HPDC ’09: Proceedings of the

18th ACM international symposium on High Performance Distributed

Computing. New York, NY, USA: ACM, 2009, pp. 49–58.
[17] D. Buntinas, C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita,

E. Rodriguez, and F. Cappello, “Blocking vs. non-blocking coordinated
checkpointing for large-scale fault tolerant MPI protocols,” Future

Generation Computer Systems, vol. 24, no. 1, pp. 73–84, 2008.
[18] P. Lemarinier, A. Bouteiller, T. Herault, G. Krawezik, and F. Cappello,

“Improved message logging versus improved coordinated checkpointing
for fault tolerant MPI,” in IEEE International Conference on Cluster

Computing, 2004, pp. 115–124.
[19] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain,

T. Herault, P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and
A. Selikhov, “MPICH-V: Toward a scalable fault tolerant MPI for
volatile nodes,” in Proceedings of the 2002 ACM/IEEE conference on

Supercomputing, ser. Supercomputing ’02. Los Alamitos, CA, USA:
IEEE Computer Society Press, 2002.



[20] D. B. Johnson and W. Zwaenepoel, “Sender-based message logging,”
in Proceedings of the Seventeenth International Symposium on Fault-

Tolerant Computing, 1987.
[21] L. Alvisi and K. Marzullo, “Message logging: Pessimistic, optimistic,

causal, and optimal,” IEEE Trans. Softw. Eng., vol. 24, no. 2, pp. 149–
159, Feb. 1998.

[22] A. Bouteiller, F. Cappello, T. Herault, G. Krawezik, P. Lemarinier, and
F. Magniette, “Mpich-V2: a fault tolerant MPI for volatile nodes based
on pessimistic sender based message logging,” in Proceedings of the

2003 ACM/IEEE conference on Supercomputing. New York, NY, USA:
ACM, 2003.

[23] D. B. Johnson and W. Zwaenepoel, “Recovery in distributed systems
using asynchronous and checkpointing,” in Seventh Annual ACM Sym-

posium on Principles of Distributed Computing (PODC), 1988, pp. 171–
181.

[24] Y. Saito and M. Shapiro, “Optimistic replication,” ACM Comput. Surv.,
vol. 37, no. 1, pp. 42–81, 2005.

[25] Q. Jiang, Y. Luo, and D. Manivannan, “An optimistic checkpointing and
message logging approach for consistent global checkpoint collection in
distributed systems,” J. Parallel Distrib. Comput., vol. 68, no. 12, pp.
1575–1589, 2008.

[26] A. Bouteiller, T. Ropars, G. Bosilca, C. Morin, and J. Dongarra,
“Reasons for a pessimistic or optimistic message logging protocol in
MPI uncoordinated failure recovery,” in IEEE International Conference

on Cluster Computing, Sep. 2009.
[27] B. George, B. Aurelien, H. Thomas, L. Pierre, and D. J. J., “Dodging the

cost of unavoidable memory copies in message logging protocols,” in
Proceedings of the 17th European MPI users’ group meeting conference

on Recent advances in the message passing interface, ser. EuroMPI’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 189–197.

[28] X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann, and Y. Xie,
“Leveraging 3D PCRAM technologies to reduce checkpoint overhead
for future exascale systems,” in ACM/IEEE International Conference

for High Performance Computing, Networking, Storage and Analysis

(SC), 2009.
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