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1. Introduction

The use of nonlocal models in science and engineering applications has
been steadily increasing over the past decade. The ability of nonlocal theories
to accurately capture effects that are difficult or impossible to represent by
local Partial Differential Equation (PDE) models motivates and drives the
interest in this type of simulations.

For instance, potential–based atomistics provides an accurate represen-
tation of material defects, such as dislocations and interacting point defects,
which play roles in determining the elastic and plastic response of a mate-
rial [27]. Likewise, nonlocal continuum theories such as peridynamics [32, 34]
or physics–based nonlocal elasticity [11] allow interactions at distance with-
out contact and can accurately resolve small scale features such as crack tips
and dislocations. Such models can also arise from homogenization of non-
linear damage models [15]. Similarly, nonlocal electrostatic models [17] have
proved essential in, e.g., simulations of electrokinetic nanofluidic channels,
where local response modification to Poisson–Boltzmann are qualitatively
incorrect [4].

However, the improved accuracy of nonlocal models comes at the price
of a significant increase in computational costs compared to, e.g., traditional
PDEs. In particular, a complete nonlocal simulation remains computation-
ally untenable for many science and engineering applications. Further, nonlo-
cal models generally require the application of volume constraints, which are
more difficult to specify in practice than the boundary conditions of the local
theory. As a result, many researches have focused attention on the develop-
ment of various Local–to–Nonlocal (LtN) coupling strategies, which aim to
combine the accuracy of nonlocal models with the computational efficiency
of PDEs. The basic idea is to use the more efficient PDE model everywhere
except in those parts of the domain that require the improved accuracy of
the nonlocal model.

Atomistic–to–Continuum coupling methods [22, 21] are perhaps the earli-
est and most established class of LtN formulations, dating back to the quasi-
continuum approach [35]. Formulation of LtN couplings for material models
such as peridynamics and continuum mechanics [15, 31, 20, 2] is a more re-
cent development and is among the applications targeted by the coupling
approach we develop in this paper.

Despite the differences in the type of models being coupled and the spe-
cific details of their coupling, the bulk of the existing LtN methods can be
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described as variations of a “blending” approach. Blending methods merge
models by using partition of unity, or a similar mechanism, to create a hy-
brid state on the overlap of the subdomains where the models operate. For
instance, a typical energy–based AtC method defines a hybrid energy func-
tional by mixing atomistic and continuum energies over a bridging domain
[3, 22], whereas a force–based AtC method first derives the atomistic and
continuum force balance equations and then blends them into a hybrid force
balance equation.

In the context of nonlocal and local continuum models the extension of
the Arlequin method [10, 15] and the morphing approach [20, 2] are ana-
logues to energy–based AtC, whereas force–based coupling of peridynamics
and continuum mechanics [31] is similar to force–based AtC. The LtN cou-
plings mentioned above are examples of heterogeneous domain decomposition
in which different mathematical models operating in different parts of the do-
main are coupled by imposing physically–motivated coupling conditions as
constraints on blended energy or force balance equations.

The LtN coupling method in this paper differs fundamentally from these
approaches because it reverses the roles of the coupling conditions and the
models. Specifically, it couches the merging of the local and nonlocal mod-
els into a constrained optimization problem in which the models define the
constraints, the coupling conditions provide the optimization objective, and
suitable boundary and/or force data act as virtual controls. This divide and
conquer strategy allows the models to operate independently from each other
by exchanging information through the virtual controls.

Following this approach, we obtain a coupling method that does not ex-
hibit spurious forces on the interface and by construction can recover any
solution that is representable exactly by the discretizations of the models,
i.e., it passes a “patch test” of an arbitrary order. Furthermore, solving in-
dependently the local and nonlocal problems enables us to use discretization
methods and software tools optimized for each individual model. In particu-
lar, it allows us to implement the coupling by using Sandia’s Albany [29] and
Peridigm [26] codes for the local and nonlocal models, respectively, resulting
in an efficient, three–dimensional simulation capability that can be applied
to realistic problems.

This work continues our previous efforts to use optimization and control
ideas for the development of LtN coupling methods. These efforts include
both coupling of atomistic and continuum models [23, 24] as well as local and
nonlocal diffusion equations [8, 7] with homogeneous Dirichlet volume con-

3



straints. The latter provide a simple, yet representative LtN setting, which
we continue to study in this paper. Specifically, we focus on extending the
formulation and analysis in [8, 7] to the case of nonlocal diffusion problems
with mixed volume constraints.

Practical applications, such as a clamped bar, or a body with an insulated
wall, which require specification of both states (displacements, temperatures
and etc.) and “fluxes” (surface traction force, heat flux and etc.) on the
boundaries and interaction regions, motivate our interest in this setting. Al-
though the imposition of mixed volume constraints does not substantially
change the core optimization–based formulation, it does introduce theoret-
ical challenges that are not present in the case of a single Dirichlet volume
constraint, studied in [7].

The paper is organized as follows. In Section 2 we review the basic
concepts of the nonlocal vector calculus, a theory developed in [13] that allows
us to study nonlocal problems in a way similar to how we study PDEs. Here,
we also introduce the nonlocal and local mathematical problems. In Section
3 we formulate the LtN coupling method and prove its well–posedness by
exploiting the nonlocal vector calculus and some of the theoretical results
in [7]. In Section 4 we introduce a finite–dimensional approximation and
present the results of three–dimensional numerical simulations employing a
meshless discretization of a nonlocal model and a finite element discretization
of a local model.

2. Preliminaries

Let Ω be a bounded open domain in Rd, d = 2, 3, with Lipschitz–
continuous boundary ∂Ω. We introduce the nonlocal operators that describe
the nonlocal mathematical model. Let α(x,y): Rd×Rd → Rd be an antisym-
metric function, i.e. α(y,x) = −α(x,y). For the functions u(x): Rd → R
and ν(x,y): Rd × Rd → Rd we define the nonlocal divergence D: Rd → R of
ν(x,y) as

D(ν)(x) :=

∫
Rd

(ν(x,y) + ν(y,x)) ·α(x,y) dy x ∈ Rd (1)

and the nonlocal gradient G: Rd × Rd → Rd of u(x) as

G(u)(x,y) := (u(y)− u(x))α(x,y) x,y ∈ Rd. (2)
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It is shown in [13] that the adjoint D∗ = −G. Next, given a second–order
symmetric positive semi–definite tensor Φ(x,y) = Φ(y,x) we define the
nonlocal diffusion L: Rd → R of u(x) as a composition of the nonlocal diver-
gence and gradient operators, i.e.

Lu(x) := D(ΦGu)(x) = 2

∫
Rd

(u(y)− u(x)) γ(x,y) dy x ∈ Rd, (3)

where γ(x,y) := α(x,y) ·Φ(x,y)α(x,y) is a non–negative symmetric ker-
nel2.

We define the interaction domain of an open bounded region Ω ∈ Rd as

Ω̃ = {y ∈ Rd \ Ω : γ(x,y) 6= 0, x ∈ Ω},

and set Ω+ = Ω∪ Ω̃. Note that, in general, Ω̃, and by extension Ω+, may be
unbounded even if Ω is bounded. To avoid unnecessary technical complica-
tions in this work we consider localized kernels γ such that for x ∈ Ω{

γ(x,y) > 0 ∀y ∈ Bε(x)

γ(x,y) = 0 ∀y ∈ Ω+ \Bε(x),
(4)

where Bε(x) = {y ∈ Ω+ : ‖x − y‖ < ε, x ∈ Ω} and ε is the interaction
radius. For such kernels the interaction domain is a layer of thickness ε that
surrounds Ω, i.e.

Ω̃ = {y ∈ Rd \ Ω : ‖y − x‖ < ε, x ∈ Ω}. (5)

We refer to Figure 1 (left) for an illustration of a two–dimensional region and
its interaction domain.

Corresponding to the divergence operator D(ν) we introduce a nonlocal
interaction operator

N (ν)(x) = −
∫

Ω+

(ν(x,y) + ν(y,x))α(x,y) dy x ∈ Ω̃. (6)

2There are more general representations of the nonlocal diffusion operator, these are
associated with non–symmetric and not necessarily positive kernel functions. In such
cases L may define a model for non–symmetric diffusion phenomena, we mention e.g.
non–symmetric jump processes [9].
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Figure 1: Left: two–dimensional domain Ω and interaction domain Ω̃. Right: for problem
(9), two–dimensional domain Ω, Dirichlet interaction domain Ω̃D and Neumann interaction
domain Ω̃N .

The integral
∫eΩN (ν) dx generalizes the notion of a flux

∫
∂Ω

q ·n dA through
the boundary of a domain, with N (ν) playing the role of a flux density q ·n.
Of course the key difference between (6) and a conventional flux is that in
the former the flux is a volume integral, whereas in the latter it is a bound-
ary integral. Nonetheless, the nonlocal divergence and interaction operators
satisfy a nonlocal Gauss theorem

∫
Ω
D(ν) dx =

∫eΩN (ν) dx. We refer to [13]
for additional nonlocal vector calculus results, including generalized nonlocal
Green’s identities. We respectively introduce the nonlocal energy semi–norm,
nonlocal energy space, and nonlocal volume–constrained energy space

|||v|||2Ω+ :=
1

2

∫
Ω+

∫
Ω+

Gv · (ΦGv) dy dx

V (Ω+) := {v ∈ L2(Ω+) : |||v|||Ω+ <∞}

VΩ̆(Ω+) :=
{
v ∈ V (Ω+) : v = 0 on Ω̆

}
for Ω̆ ⊆ Ω̃.

(7)

For certain kernel functions the energy space is equivalent to standard spaces
such as L2(Ω+) and the fractional Sobolev space Hs(Ω+), s ∈ (0, 1); see [12].

We assume that for all Ω̆ ⊆ Ω̃ with nonzero measure the energy norm satisfies
a Poincaré–like inequality, i.e. ‖v‖0,Ω+ ≤ Cpn|||v|||Ω+ for all v ∈ VΩ̆(Ω+),
where Cpn is referred to as the nonlocal Poincaré constant and ‖ · ‖0,Ω+ is the
L2 norm over Ω+. This property holds for a large class of kernel functions,
see, e.g., cases 1 and 2 in [12, §4.2]. We also define the volume–trace space

Ṽ (Ω̆) := {v|Ω̆ : v ∈ V (Ω+)}, for Ω̆ ⊆ Ω̃, and an associated norm

‖σ‖eV (Ω̆) := inf
v∈V (Ω+),v|Ω̆=σ

|||v|||Ω+ . (8)
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2.1. Local–to–Nonlocal coupling setting

Let Ω ⊂ Rd be a bounded open region with interaction domain Ω̃ ⊂
Rd. We assume that the nonlocal diffusion operator L, with Φ = I chosen
for simplicity, provides an accurate description of the physical processes of
interest in Ω+ = Ω ∪ Ω̃.

In this paper we focus on the formulation and analysis of LtN methods for
L augmented with mixed volume constraints. To this end we assume that the
interaction domain is a union of two nonintersecting subdomains Ω̃D and Ω̃N ,
respectively, i.e, Ω̃ = Ω̃D ∪ Ω̃N and Ω̃D ∩ Ω̃N = ∅; see Figure 1 (right). Then
we consider the following volume–constrained nonlocal diffusion equation

−Lun = fn x ∈ Ω

un = σn x ∈ Ω̃D

−N (Gun) = ηn x ∈ Ω̃N ,

(9)

where fn ∈ L2(Ω), σn ∈ Ṽ (Ω̃D) and ηn ∈ L2(Ω̃N).
Volume constraints, i.e., constraints acting on domains having nonzero

volume, are the nonlocal counterparts of boundary conditions for PDEs. In
particular, the volume constraints on Ω̃D and Ω̃N are the nonlocal analogues
of a Dirichlet boundary condition and a Neumann boundary condition, re-
spectively. Multiplication of (9) by a test function zn ∈ VeΩD

(Ω+), integration
over Ω and application of the first nonlocal Green’s identity [13] yield the
following weak form of the nonlocal problem:∫

Ω+

∫
Ω+

Gun ·Gzn dy dx =

∫
eΩN

ηn zn dx+

∫
Ω

fnzn dx ∀zn ∈ VeΩD
(Ω+). (10)

The weak form (10) confirms that the Neumann volume constraint plays
a role similar to that of a conventional Neumann boundary condition by
providing a forcing term acting on the interaction domain. We make the
additional assumption that (9) is well–posed, i.e., (10) has a unique solution
such that3

|||un|||Ω+ ≤ Kn(‖fn‖0,Ω + ‖σn‖eV (eΩD) + ‖ηn‖0,eΩN
) (11)

for some positive constant Kn.

3One can show that (10) is well–posed for a positive definite Φ [13].
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The nonlocal problem (9) can be discretized by a number of different
methods either directly or by using its weak form (10); see, e.g., [6, 1, 5, 28,
25, 18] and the references therein. However, as the extent of the nonlocal
interactions necessary to capture long range forces increases, so does the
bandwidth of the algebraic systems resulting from any discretization of (9).
This makes the numerical solution of (9) in all of Ω+ expensive or not even
feasible.

As an example, in the case of finite element discretizations, depending
on the relationship between the mesh size and the interaction radius ε the
bandwidth of the finite element matrix can be significantly larger than that
for the local problem [8].

The key idea of an LtN simulation strategy is to improve the compu-
tational efficiency by using (9) only where strong nonlocal effects must be
properly accounted for and switch to a more efficient local model elsewhere.
A fundamental prerequisite for employing such a strategy is the availability
of a local model that can accurately approximate all sufficiently “nice” so-
lutions of (9). In the present context, such a model is provided by the local
diffusion model given by the Poisson equation

−∆ul = fl x ∈ Ω+

ul = σl x ∈ ΓD

∇ul · n = ηl x ∈ ΓN ,

(12)

where ΓD = ∂Ω+ ∩ Ω̃D and ΓN = ∂Ω+ ∩ Ω̃N , and fl ∈ L2(Ω+), σl ∈ H
1
2 (ΓD)

and ηl ∈ L2(ΓN) are suitable forcing term and boundary data, respectively.

Assumptions on Ω̃D and Ω̃N imply that ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = ∂Ω+.
We refer to [13] for results showing that (12) is a good approximation of (9),
whenever the latter has sufficiently regular solutions.

3. Optimization–based LtN formulation

Without loss of generality we consider (9) and (12) with homogeneous

Dirichlet constraints on Ω̃D and ΓD and homogeneous Neumann constraints
on Ω̃N and ΓN . We assume that these problems act on two overlapping
subdomains of Ω+. Thus we introduce a partition of Ω+ into a nonlocal
subdomain Ωn with interaction volume Ω̃n and a local subdomain Ωl, such
that Ω+

n := Ωn∪ Ω̃n ⊂ Ω+ and Ωb = Ω+
n ∩ Ωl 6= ∅; see Figure 2 for a

two–dimensional example. The key assumption in LtN couplings is that
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Figure 2: Two–dimensional coupling configuration.

accurate description of the material behavior in Ωn requires the nonlocal
model (9), whereas (12) provides a fair representation for the rest of the
domain. Our coupling strategy consists in minimizing the difference between
local and nonlocal solutions in the overlap region Ωb tuning their values on
the “virtual” interaction volumes and boundaries induced by the partition.

To this end we set

Ω̃D
n = Ω̃n ∩ Ω̃D, Ω̃N

n = Ω̃n ∩ Ω̃N , and Ω̃c = Ω̃n \ (Ω̃D
n ∪ Ω̃N

n ),

so that Ω̃n = Ω̃D
n ∪ Ω̃N

n ∪ Ω̃c. Likewise, we set

ΓDl = ∂Ωl ∩ ΓD, ΓNl = ∂Ωl ∩ ΓN , and Γc = ∂Ωl \ (ΓDl ∪ ΓNl ),

so that ∂Ωl = ΓDl ∪ΓNl ∪Γc; see Figure 2. Specification of a volume constraint

on Ω̃c and a Dirichlet condition on Γc allows one to adjust the subdomain so-
lutions. The restrictions of (9) and (12) to the nonlocal and local subdomains
yield

−Lun = fn x ∈ Ωn

un = θn x ∈ Ω̃c

un = 0 x ∈ Ω̃D
n

−N (Gun) = 0 x ∈ Ω̃N
n

and


−∆ul = fl x ∈ Ωl

ul = θl x ∈ Γc
ul = 0 x ∈ ΓDl

∇ul · n = 0 x ∈ ΓNl ,

(13)

where θn ∈ Θn = {vn|eΩc
: vn ∈ VeΩD

n
(Ω+

n )} and θl ∈ H
1
2 (Γc) are an undeter-

mined volume constraint and a Dirichlet boundary condition, respectively.
As we show later, the parameter space Θn×Θl is Hilbert with respect to the
L2 and H

1
2 metrics.
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In this paper we study an optimization–based LtN coupling comprising
the following constrained optimization problem

min
un,ul,θn,θl

J(un, ul) =
1

2

∫
Ωb

(un − ul)2 dx =
1

2
‖un − ul‖2

0,Ωb
subject to (13).

(14)
In the terminology of optimization and control problems, the subdomain
problems (13) are the optimization constraints, un and ul are the states, and
θn and θl are the controls.

The absence of control penalty terms βn‖θn‖2
0,eΩc

and βl‖θl‖2
1/2,Γc

in the

objective is a notable feature of the optimization formulation (14). Typi-
cally, such terms are required to ensure the well–posedness of the optimiza-
tion problem; however, the analysis in the following section reveals that the
control penalty is not necessary for the well–posedness of (14).

Another notable feature of (14), which distinguishes it from conventional
LtN approaches, is the absence of any blending between the nonlocal and
local subproblems over Ωb. Instead, as constraints, these problems act in-
dependently on Ω+

n and Ωl and communicate implicitly through the virtual
controls.

Following [7] we define the LtN solution u∗ ∈ L2(Ω+) as

u∗ =

{
u∗n x ∈ Ω+

n

u∗l x ∈ Ωl \ Ωb,
(15)

where (u∗n, u
∗
l , θ
∗
n, θ
∗
l ) ∈ VeΩD

n
(Ω+

n )×H1
ΓD

l
(Ωl)×Θn×Θl is an optimal solution

of (14). In the next section we prove the well–posedness of (14), i.e. the
uniqueness of u∗.

3.1. Well–posedeness

We rewrite the optimization problem (14) in terms of the control variables
only. Under the assumption of well–posedness of the constraints, for any
pair (θn, θl) the subproblems in (13) have unique solutions un(θn) and ul(θl).
Substitution of these states into the functional yields the so called reduced
space form of (14)

min
θn,θl

J(θn, θl) =
1

2

∫
Ωb

(un(θn)− ul(θl))2 dx =
1

2
‖un(θn)− ul(θl)‖2

0,Ωb
. (16)
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Following [7] we split, for any given (θn, θl), the solutions of the state equa-
tions into a harmonic and a homogeneous part as follows

un(θn) = vn(θn) + u0
n and ul(θl) = vl(θl) + u0

l , (17)

where the harmonic components vn(θn) and vl(θl) solve the equations
−Lvn = 0 x ∈ Ωn

vn = θn x ∈ Ω̃c

vn = 0 x ∈ Ω̃D
n

−N (Gvn) = 0 x ∈ Ω̃N
n

and


−∆vl = 0 x ∈ Ωl

vl = θl x ∈ Γc
vl = 0 x ∈ ΓDl

∇vl · n = 0 x ∈ ΓNl

(18)

respectively, whereas the homogeneous components u0
n and u0

l solve
−Lu0

n = fn x ∈ Ωn

u0
n = 0 x ∈ Ω̃D

n ∪ Ω̃c

−N (Gu0
n) = 0 x ∈ Ω̃N

n

and


−∆u0

l = fl x ∈ Ωl

u0
l = 0 x ∈ ΓDl ∪ Γc

∇u0
l · n = 0 x ∈ ΓNl

(19)
respectively. According to (17) J(θn, θl) assumes the form

J(θn, θl) =
1

2
‖vn(θn)−vl(θl)‖2

0,Ωb
+ (u0

n−u0
l , vn(θn)−vl(θl))0,Ωb

+
1

2
‖u0

n−u0
l ‖2

0,Ωb
.

Setting the first variations of J(θn, θl) with respect to θn and θl to zero and
using that vn(θn) and vl(θl) are linear functions of the controls yields the
following first–order optimality system (Euler–Lagrange equation) for (16):
seek (σn, σl) ∈ Θn ×Θl such that

Q(σn, σl;µn, µl) = F (µn, µl) ∀(µn, µl) ∈ Θn ×Θl, (20)

where F (µn, µl) = −(u0
n − u0

l , vn(µn)− vl(µl))0,Ωb
is an affine functional and

Q(σn, σl;µn, µl) = (vn(σn)− vl(σl), vn(µn)− vl(µl))0,Ωb

is a symmetric bilinear form.
We show that (16) is well–posed by proving that Q(·; ·) defines an inner

product. The proof relies on the fact that the solutions of (18) satisfy max-
imum principles. The following lemma reviews the maximum principle that
holds for the solution of the local harmonic problem.
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Lemma 3.1. For the local problem in (18) we have (see e.g. [30])

sup
Ωl

vl ≤ sup
Γc∪ΓD

l

vl, and inf
Ωl

vl ≥ inf
Γc∪ΓD

l

vl. (21)

A similar result holds for the solution of the nonlocal problem in (18).

Lemma 3.2. For the nonlocal problem in (18) we have

supeΩN
n ∪Ωn

vn ≤ supeΩc∪eΩD
n

vn; (22)

in particular, if supeΩN
n ∪Ωn

vn = supeΩc∪eΩD
n

vn, then vn is constant. Also,

infeΩN
n ∪Ωn

vn ≥ infeΩc∪eΩD
n

vn

and if infeΩN
n ∪Ωn

vn = infeΩc∪eΩD
n

vn, then vn is constant.

Proof. We show that if supΩ+
n
vn = supeΩN

n ∪Ωn
vn then vn is constant, which

also implies that (22) holds. The results related to the infimum can be proved

analogously. Let K = supΩ+
n
vn. There exists x ∈ Ω̃N

n ∪ Ωn such that

sup
Σ 1

3
(x)

vn = K, with Σq(x) := Bq ε(x) ∩ (Ω̃N
n ∪ Ωn).

Assume that vn is non–constant in Σ 2
3
(x), i.e. for some δ > 0 there exists

a set of nonzero measure S(x) ⊂ Σ 2
3
(x) where vn ≤ K − δ. Because of the

properties of the supremum, for any k = 1, 2, . . . there exists a set of nonzero
measure Sk ∈ Σ 1

3
(x) such that for any xk ∈ Sk, vn(xk) ≥ K − 1

k
. Using

these bounds together with the kernel locality assumption (4), the nonlocal

Neumann constraint N (Gvn) = 0 in Ω̃N
n , and the nonlocal equation Lvn = 0
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in Ωn, we find that for any xk ∈ Sk

vn(xk) =

∫
Bε(xk)∩Ω+

n

vn(y)γ(xk,y) dy∫
Bε(xk)∩Ω+

n

γ(xk,y) dy

=

∫
Bε(xk)∩Ω+

n \S(x)

vn(y)γ(xk,y) dy +

∫
S(x)

vn(y)γ(xk,y) dy∫
Bε(xk)∩Ω+

n

γ(xk,y) dy

≤
K

∫
Bε(xk)∩Ω+

n

γ(xk,y) dy − δ
∫
S(x)

γ(xk,y) dy∫
Bε(xk)∩Ω+

n

γ(xk,y) dy

≤ K − Cδ ≤ vn(xk) + 1
k
− Cδ,

where Cδ is a positive constant that does not depend on k. For a large enough
k the inequality vn(xk) ≤ vn(xk) + 1

k
− Cδ leads to a contradiction. As a

consequence, vn must be constant in Σ 2
3
(x). We can move to another point

x1 ∈ Σ 2
3
(x1) and repeat the argument and conclude that vn is constant in

Σ 2
3
(x1) until we cover all the domain. Notice that instead of Σ 1

3
and Σ 2

3
we

can choose Σp and Σ1−p, for any positive p < 1. In this way we can prove
that vn is constant in Ω+

n .

Lemma 3.3. The form Q(·; ·) defines an inner product on Θn ×Θl.

Proof. Since by construction the bilinear form Q(·, ·) is symmetric and posi-
tive semi–definite, we only need to prove its positive definiteness, i.e.,

Q(σn, σl;σn, σl) = 0 if and only if (σn, σl) = (0, 0).

Suppose Q(σn, σl;σn, σl) = 0, then vn(σn) − vl(σl) = 0 in Ωb. Let v =
vn(σn) = vl(σl) in Ωb, our goal is to show that v = 0 in Ωb. We do this by

contradiction, assuming v is nonzero. This implies that v is nonzero over Ω̃c,
otherwise, because of Lemma 3.2 it would be zero on Ωb.

We assume, without loss of generality, that v > 0 on a set with nonzero
measure contained in Ω̃c. Then, we have

supeΩc

v ≤ sup
Γc

v ≤ supeΩc

v,

13



where the first inequality is a consequence of Lemma 3.1 and the second of
Lemma 3.2. Therefore, we have that supeΩc

v = supΓc
v and hence, v must be

constant.

The next two lemmas require the following assumptions on the kernel γ:

γ1 <∞ and γ2 <∞, where (23)

γk(x) =

∫
Ω+

γk(x,y) dy, and γk = ‖γk‖1/k
∞ , k = 1, 2. (24)

In the remainder of the section Ci, i = 1, 2, . . ., denote generic positive
constants and C(Ω) denotes a positive constant that depends on |Ω|.

Lemma 3.4. The space ṼΩ̆(Ω̂) = {µn = w|bΩ : w ∈ VΩ̆(Ω+)} is a closed

subspace of L2(Ω̂) for any Ω̂ ⊂ Ω̃ and Ω̆ ⊂ Ω̃. Thus, ṼΩ̆(Ω̂) is Hilbert with
respect to the L2 inner product.

Proof. Consider a sequence {µk} ⊂ ṼΩ̆(Ω̂) such that µk → µ∗ ∈ L2(Ω̂); next,
consider the function w∗ ∈ L2(Ω+) such that

w∗|bΩ = µ∗ and w∗|Ω+\bΩ = 0.

To complete the proof it remains to show that w∗ ∈ VΩ̆(Ω+), i.e. that w∗

has finite energy norm. Using the equivalence of the energy norm and the
L2 norm (see [7]) we have

|||w∗|||Ω+ ≤ C(Ω+)‖w∗‖0,Ω+ = ‖µ∗‖0,bΩ <∞.
Therefore, w∗ ∈ VΩ̆(Ω+) and w∗|bΩ = µ∗, hence µ∗ ∈ ṼΩ̆(Ω̂).

Lemma 3.5. The space Θn ×Θl is Hilbert with respect to the inner product

Q(σn, σl;µn, µl) = (vn(σn)− vl(σl), vn(µn)− vl(µl))0,Ωb
.

Proof. As a consequence of Lemma 3.4, the space Θn × Θl is Hilbert with
respect to the inner product of L2(Ω̃c)×H

1
2 (Γc) and in Lemma 3.3 we showed

that Q is an inner product. We have to show that Θn ×Θl is complete with
the norm induced by Q: ‖(σn, σl)‖2

∗. We do this by showing that ‖(σn, σl)‖2
∗

is equivalent to the norm ‖(σn, σl)‖2
Θn×Θl

= ‖σn‖2
0,eΩc

+ ‖σl‖2
1
2
,Γc

, i.e.

C1‖(σn, σl)‖2
Θn×Θl

≤ ‖(σn, σl)‖2
∗ ≤ C2‖(σn, σl)‖2

Θn×Θl
.

14



By the well–posedness of both problems we have that for all (σn, σl) ∈ Θn×Θl

‖(σn, σl)‖2
∗ = ‖vn(σn)− vl(σl)‖2

0,Ωb

≤ ‖vn(σn)‖2
0,Ωb

+ ‖vl(σl)‖2
0,Ωb

≤ C2
pn|||vn(σn)|||2

Ω+
n

+ ‖vl(σl)‖2
H1(Ωl)

≤ C2
pnK

2
n‖σn‖2eVeΩD

n
(eΩD

n ∪eΩc)
+K2

l ‖σl‖2
1
2
,Γc
,

where σn is an extension to 0 of σn in Ω̃D
n and Kl is the stability constant

for the local problem in (18). Also, by a nonlocal trace theorem ([7], Lemma
A.1) and by the equivalence of the energy and the L2 norms ([7], Lemma
A.2) we have

‖(σn, σl)‖2
∗ ≤ C3|||σn|||2eΩD

n ∪eΩc
+K2

l ‖σl‖2
1
2
,Γc

≤ C4‖σn‖2
0,eΩD

n ∪eΩc
+K2

l ‖σl‖2
1
2
,Γc

≤ C5

(
‖σn‖2

0,eΩc
+ ‖σl‖2

1
2
,Γc

)
.

Next, by using Lemma A.4 in [7], we can show that

‖vn(σn)‖2
0,Ωb

+ ‖vl(σl)‖2
0,Ωb
≤ C(Ωb)‖vn(σn)− vl(σl)‖2

0,Ωb
.

Because Ω̃c ⊂ Ωb and σn = vn|eΩc
, we have ‖σn‖2

0,eΩc
≤ ‖vn‖2

0,Ωb
. For the

local problem, by combining the trace inequality [30] and the Caccioppoli
inequality for harmonic functions, we obtain

‖σl‖2

H
1
2 (Γc)

≤ ‖vn‖2
H1(Ωb) = ‖vn‖2

0,Ωb
+ |vn|2H1(Ωb) ≤ (1 +C(Ωb))‖vn‖0,Ωb

. (25)

The following result is a direct consequence of Lemmas 3.3 and 3.5 and
the projection theorem.

Theorem 3.1. The reduced space problem (16) has a unique minimizer.
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4. Numerical solution of the optimization–based LtN formulation

This section presents a discretization of the optimization–based LtN for-
mulation and outlines a gradient–based method for finding an approximate
minimizer of the discrete problem.

As mentioned above, one of the most attractive features of our coupling
method is the fact that the local and nonlocal problems can be solved inde-
pendently, without any blending over Ωb. This means that one can utilize
two fundamentally different discretization methods. In this work, we employ
a meshfree discretization for the nonlocal problem and a finite element dis-
cretization for the local problem, both of which are described in the following
section.

4.1. Discretization schemes

We obtain the solution for the nonlocal diffusion problem by discretizing
the strong form of (9) using a meshfree approach that follows Silling and
Askari [33, 26, 19]. Under this procedure, the nonlocal domain is represented
by a set of material points, each of which is assigned a (scalar) volume. The
integral expression given by (3) is approximated as a summation,

Lu(x) ≈ 2
Nx∑
i=1

(u(yi)− u(x)) γ(x,yi)Vyi
, (26)

where the summation is taken over the Nx material points that are within a
distance ε of material point x, and Vyi

is the volume associated with material
point yi.

For the approximation of the local problem we employ a finite element
discretization of the weak form of (12). Let Vθl

:= {v ∈ H1
ΓD

l
(Ωl) : v|Γc =

θl ∈ Θl}. The weak solution ul(θl) ∈ Vθl
solves the variational equation∫

Ωl

∇ul∇zl dx =

∫
Ωl

flzl dx, (27)

for all zl ∈ H1
ΓD

l ∪Γc
. We consider the finite–dimensional spaces

Hh
ΓD

l
⊂ H1

ΓD
l

(Ωl), Θh
l ⊂ Θl, V h

θh
l

:= {v ∈ Hh
ΓD

l
(Ωl) : v|Γc = θhl ∈ Θh

l }.
(28)

The parameter h > 0 describes the resolution of a discrete space and is
proportional to the inverse of its dimension. We assume that the spaces in

16



(28) are such that the sequence of best approximations, to any function in
the infinite–dimensional space, converges as h → 0. The finite dimension
approximation of (27) reads: Find ulh ∈ V h

θh
l

such that∫
Ωl

∇ulh∇zlh dx =

∫
Ωl

flzlh dx, (29)

for all zlh ∈ Hh
ΓD

l ∪Γc
(Ωl) := {v ∈ Hh

ΓD
l

(Ωl) : v|Γc = 0}.
Because the meshfree discretization scheme utilized for the nonlocal model

does not readily support the calculation of a continuous functional, it is con-
venient to instead consider a “discrete” functional in which the difference
between the local and the nonlocal solutions is taken pointwise. For the
example simulations presented below, the functional is evaluated at the loca-
tions of the material points of the nonlocal model within the overlap region
Ωb. The solution for the local model is interpolated to these locations using
the finite–element shape functions employed in the discretization of the local
problem. The objective function for the optimization routine is then defined
as the `2-norm of the pointwise differences between the local and nonlocal
solutions.

Let un ∈ RNn be the vector of pointwise values of the nonlocal solution
and ul ∈ RNl be the vector of values of the local solution corresponding to
the finite element degrees of freedom. Also, let Nb be the number of degrees
of freedom of un in Ωb. We define the nonlocal selection matrix Sn ∈ RNb,Nn

as the operator that selects the components of un in Ωb
4:

Sn = [ONb,Nn−Nb
INb

] .

We define the local selection matrix Sl ∈ RNb,Nl as the operator that evaluates
ul on the degrees of freedom of un in Ωb:

(Sl)ij = φj(xi),

where φj is the j-th finite element basis function for ul. Then, we can ex-
press the functional as the sum of the squared differences between local and
nonlocal solution at each point on Ωb corresponding to a degrees of freedom

4Here we assume that the components of un corresponding to material points in Ωb are
the last entries of the vector.
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of un, i.e.

Jd(un,ul) =
1

2

Nb∑
i=1

((Snun)i − (Slul)i)
2 Vi, (30)

where Vi is the volume associated with the i-th material point.

4.2. A gradient–based method for the solution of the optimization problem

We perform the optimization following the discretize–then–optimize paradigm.
A general gradient–based algorithm proceeds as follows.

Given an initial guess for the discrete control variables θ0
n,θ

0
l , perform

the following steps, for k = 0, 1, 2, . . ..

1. Solve the nonlocal and local discretized problems to obtain ukn and ukl
corresponding to θkn,θ

k
l and evaluate the functional Jd(u

k
n,u

k
l ).

2. Compute the total derivative of the functional Jd
(
un(θkn),ul(θ

k
n)
)

with
respect to the control parameters at θkn,θ

k
l . Stop if the norm of the

functional derivative is smaller than a given tolerance.

3. Compute the increments δ(θkn) and δ(θkl ) using the value of the func-
tional and its derivative computed in steps 1 and 2.

4. Set θk+1
n = θkn + δ(θkn), and θk+1

l = θkl + δ(θkl ). Go to step 1 and repeat
the procedure until the desired convergence has been achieved.

The derivative of the functional in Step 2 is obtained using the adjoint
based approach (see e.g. [14]). Step 3 depends on the optimization method
used to solve the problem, e.g. gradient, conjugate gradient, quasi–Newton,
etc. In the numerical results presented in the next section we utilize the BFGS
method as implemented in the Trilinos (www.trilinos.org) [16] package ROL,
combined with a backtrack line search.

5. Numerical tests

In this section we demonstrate the optimization–based LtN coupling strat-
egy via two example simulations. We first present a linear patch test, followed
by a simulation that includes a discontinuity in the nonlocal domain. Though
preliminary, the results show the effectiveness of the coupling method and
provide the basis for realistic engineering analyses.
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The simulations utilize the following nonlocal kernel,

γ(x,y) =


3

πε4

1

‖x− y‖
‖x− y‖ ≤ ε

0 otherwise,

(31)

which is often used in the literature, including in a linear peridynamic model
for solid mechanics. The energy space associated with this kernel is not
equivalent to a Sobolev space, but is nonetheless a separable Hilbert space
whose energy norm satisfies a nonlocal Poincaré inequality.

The example simulations are carried out using the Albany5[29] and Peridigm6[26]
codes, developed in the Center for Computing Research at Sandia National
Laboratories. Albany is a finite–element code for simulating a variety of
physical processes governed by partial differential equations. It is applied for
the majority of the computation, including finite–element assembly for the
local Laplacian, calculation of the functional and its derivative, and solution
of the state and adjoint systems. Peridigm is a peridynamics code initially
developed for solid mechanics and extended in this study for application to
nonlocal diffusion. Specifically, Peridigm is employed for the solution of (3)1

with the kernel given by (31). A software interface was developed to facil-
itate the linking of Peridigm routines with Albany, enabling the evaluation
of the entirety of (13) within a single executable. Both Albany and Peridigm
rely on several Trilinos packages, for example, Epetra for the management of
parallel data structures, Intrepid for finite–element assembly, and Ifpack and
AztecOO for the preconditioning and solution of linear systems. We applied
the LBFGS optimization algorithm, as implemented in the Trilinos package
ROL7, in combination with a backtrack line search for solution of (14).

Linear patch test. We perform a patch test simulation to demonstrate the
ability of a coupled local–nonlocal system to recover a known linear solution.
The geometric configuration of the test is presented in Figure 3a. The non-
local problem (13)1 is prescribed in
Ωn := [−0.8125, 0.1875]× [−0.25, 0.25]× [−0.125, 0.125],

5The Albany code can be obtained from its public github repository:
https://github.com/gahansen/Albany

6The Peridigm code can be obtained at: https://peridigm.sandia.gov
7The ROL code can be obtained at: https://trilinos.org/packages/rol
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and the local problem (13)2 in
Ωl := [−0.1875, 0.8125]× [−0.25, 0.25]× [−0.125, 0.125].
The nonlocal interaction radius ε is set to 0.125. The overlap of the local
and nonlocal domains is
Ωb := [−0.1875, 0.1875]× [−0.25, 0.25]× [−0.125, 0.125].
As illustrated in Figure 4, the manufactured solution u∗anl = 0.001x

1.625
is pre-

scribed as a Dirichlet condition in the region −0.8125 ≤ x ≤ −0.71875 (for
nonlocal diffusion) and on the plane x = 0.8125 (for local diffusion). The
control Dirichlet conditions, initialized to zero, are prescribed in the nonlocal
domain on 0 ≤ x ≤ 0.1875 and in the local domain on the plane x = −0.1875.
Homogeneous Neumann conditions are prescribed on the remaining portion
of the domain boundary. As shown in Figures 3b and 4, the optimization–
based LtN coupling approach is successful in producing the expected linear
solution.

Simulation containing a discontinuity. We perform a simulation containing
a discontinuity to confirm the effectiveness of the nonlocal model within a
coupled local–nonlocal system. The simulation is designed such that (non–
control) Dirichlet boundary conditions are applied to the local model only.
This decision was motivated by the practical difficulties in applying volume
constraints to nonlocal models on nontrivial configurations. Effectively, the
LtN approach enables the transmission of local boundary conditions to the
nonlocal model.

The configuration for the simulation containing a discontinuity is shown
in Figure 5a. The nonlocal domain is defined as
Ωn := [−0.9375, 0.9375]× [−0.25, 0.25]× [−0.125, 0.125].
The simulation contains two local domains, defined over the regions
Ωl1 := [−1.0625, −0.5625]× [−0.25, 0.25]× [−0.125, 0.125] and
Ωl2 := [0.5625, 1.0625]× [−0.25, 0.25]× [−0.125, 0.125].
The overlap domains are prescribed as
Ωb1 := [−0.9375, −0.5625]× [−0.25, 0.25]× [−0.125, 0.125] and
Ωb2 := [0.5625, 0.9375]× [−0.25, 0.25]× [−0.125, 0.125],
and the nonlocal interaction radius as ε = 0.125. The control Dirichlet
conditions, again initialized to zero, are prescribed in the nonlocal domain
on−0.9375 ≤ x ≤ −0.5625 and 0.5625 ≤ x ≤ 0.9375, and in the local domain
on the planes x = −1.0625 and x = 1.0625. A discontinuity is inserted into
the model via a rectangular plane defined by x = 0, 0 ≤ y ≤ 0.25, and
−0.125 ≤ z ≤ 0.125. Here, the visibility between material points separated

20



(a) Configuration for the patch test simulation. Dirichlet boundary conditions are
applied to the nodes highlighted in green. Control nodes are highlighted in blue.

(b) Solution u for the patch test simulation.

Figure 3: Linear patch test simulation.
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(a) Nonlocal model.
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(b) Local model.

Figure 4: Initial and final values for the patch test for a set of points aligned with the
horizontal axis.

by the plane is disallowed.
Simulation results are presented in Figures 5b and 6. In Figure 5b, the

discontinuity appears as a jump in the solution at x = 0 that runs vertically
from the top of the bar to the center of the bar. The ability of the nonlocal
model to capture the discontinuous solution is better illustrated in Figure 6.
The discontinuous solution along the top of the bar is shown in Figure 6b,
and the continuous solution along the bottom of the bar in Figure 6d.

The example simulations demonstrate the utility and effectiveness of
optimization–based LtN coupling for the recovery of a known linear solution,
the application of local boundary conditions to a coupled local–nonlocal sys-
tem, and the modeling of a discontinuity within the nonlocal domain. These
preliminary results serve as the groundwork for the ongoing development of
engineering analysis tools.
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(a) Configuration for the example simulation with a discontinuity in the nonlocal
domain. Dirichlet boundary conditions are applied to the nodes highlighted in
green, which reside in the local domain. Control nodes are highlighted in blue.

(b) Solution u for the example simulation with a discontinuity in the nonlocal
domain. A discontinuity is present in the center of the bar, resulting in a jump in
the solution u along the top edge of the bar.

Figure 5: Simulation of a bar containing a discontinuity. The discontinuity extends verti-
cally from the top of the bar halfway through the height of the bar. Dirichlet boundary
conditions are applied to the ends of the bar (local domain), circumventing the need to
prescribe volume constraints in the nonlocal domain.
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(c) Local model, bottom of bar.
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(d) Nonlocal model, bottom of bar.

Figure 6: Initial and final values for the simulation containing a discontinuity for a set of
points aligned with the horizontal axis. Solution values are plotted for points along the
top of the bar, which contains a discontinuity, and also for points along the bottom of the
bar, which does not contain a discontinuity.
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