
ar
X

iv
:c

s.
D

S
/0

40
70

58
 v

1
 2

4
Ju

l 2
00

4

Communication-Aware Processor Allocation for Supercomputers

Michael A. Bender∗ David P. Bunde† Erik D. Demaine‡ Sándor P. Fekete§

Vitus J. Leung¶ Henk Meijer‖ Cynthia A. Phillips¶

Abstract

This paper gives processor-allocation algorithms for minimizing the average number of communica-
tion hops between the assigned processors for grid architectures, in the presence ofoccupiedcells. The
simpler problem of assigning processors on afreegrid has been studied by Karp, McKellar, and Wong
who show that the solutions have nontrivial structure; theyleft open the complexity of the problem.

The associated clustering problem is as follows: Givenn points inℜd, find k points that minimize
their average pairwiseL1 distance. We present a natural approximation algorithm andshow that it is a
7

4
-approximation for 2D grids. Ford-dimensional space, the approximation guarantee is2 − 1

2d
, which

is tight. We also give a polynomial-time approximation scheme (PTAS) for constant dimensiond, and
report on experimental results.

Keywords: Processor allocation, supercomputers, communication cost, Manhattan distance, clustering,
approximation, polynomial-time approximation scheme (PTAS).

1 Introduction

This paper gives processor-allocation algorithms for minimizing the average number of communication
hops between the processors assigned to a job on a grid architecture. Our problem is: given a setP of n
points inℜd, find a subsetS of k points with minimum average pairwiseL1 distance.

Processor Allocation in Supercomputers. As part of the Advanced Simulation and Computing Initia-
tive1 [18], the Department of Energy Laboratories are purchasingincreasingly powerful custom supercom-
puters. In a parallel effort to increase the scalability of commodity-based supercomputers, Sandia National
Laboratories is developing the Computational Plant or Cplant [6,28]. Sandia’s diverse computing resources
rely on scheduling/queueing software such as NQS [10] or PBS[26] to determine which job to run next.
This decision is based on policy enforcement (fairness and priority) rather than optimal use of resources.
When a job is selected to run, the allocator assigns it to a setof processors, which are exclusively dedicated
to this job until it terminates. Security constraints forbid migration, preemption, or multitasking.

∗Department of Computer Science, SUNY Stony Brook, Stony Brook, NY 11794-4400, USA. Email:
bender@cs.sunysb.edu . Partially supported by Sandia Natl. Labs. and NSF Grants EIA-0112849 and CCR-0208670.

†Department of Computer Science, University of Illinois, Urbana, IL 61801, USA. Email:bunde@uiuc.edu . Supported in
part by Sandia National Laboratories.

‡MIT Laboratory for Computer Science, 200 Technology Square, Cambridge, MA 02139, USA. Email:edemaine@mit.edu .
Supported in part by NSF Grant EIA-0112849.

§Dept. of Mathematical Optimization, Braunschweig University of Technology, 38106 Braunschweig, Germany.
Email:s.fekete@tu-bs.de . Partially supported by DFG grant FE 407/10.

¶Discrete Algorithms & Math Department, Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185-1110, USA.
{vjleung , caphill }@sandia.gov .

‖Dept. of Computing and Information Science, Queen’s University, Kingston, Ontario, K7L 3N6, Canada.
Email:henk@cs.queensu.ca .

1This program was originally called the Accelerated Strategic Computing Initiative.

1

To obtain maximum throughput in a network-limited computing system, the processors that are allo-
cated to a single job should be physically near each other. This placement reduces communication costs
and avoids bandwidth contention caused by overlapping jobs. Processor locality is particularly impor-
tant in commodity-based supercomputers, which typically have higher communication latencies and lower
bandwidth than supercomputers with custom networks. For example, in Cplant supercomputers, where
the switches roughly form two- or three-dimensional mesheswith some toroidal wraps, a good processor
allocation occupies an approximate subcube of switches.

Experiments have shown that processor allocation affects throughput on a range of architectures [3, 19,
22,23,25]. On Cplant in particular, when two high-communication jobs are hand-placed on the machine so
that their communication paths overlap significantly, bothjobs’ running times approximately double [19].

Several papers suggest that minimizing theaverage number of communication hopsis an appropriate
metric for job placement [17, 22, 23]. Experiments with a communication test suite demonstrate that this
metric correlates with the job’s completion time. See Figure 1, reproduced from [19]. While this correlation
may not be strong for all communication patterns, it does seem to hold for the most intense: all-to-all [7].

800

1000

1200

1400

1600

1800

2000

2200

3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4

F
lo

w
 T

im
e

(s
ec

on
ds

)

Average Number of Hops

Figure 1: Job flow time (completion time minus arrival time) as a function of the average number of
communication hops between processors assigned to that. All plotted jobs used 30 processors on a 128-
processor machine configured as a 2D mesh with toroidal wraps.

Early processor-allocation algorithms allocate only a convex set of processors to a job [5,9,20,33]. This
design decision means that each job’s communication can be routed entirely within the processors assigned
to that job, so jobs contend only with themselves. Unfortunately, this design decision also reduces the
achievable system utilization to levels unacceptable for any government-audited system [16,30].

More recent work [8, 19, 21, 24, 30] allows discontiguous allocations but tries to cluster processors and
minimize contention with previously allocated jobs. Mache, Lo, and Windisch [24] propose the MC al-
gorithm for grid architectures. MC assumes that jobs request processors in a particular rectangular shape.
Each free processor evaluates the quality of an allocation centered on itself. It counts the number of free
processors within a submesh of the requested size centered on itself and within “shells” of processors sur-
rounding this submesh. The processors are weighted by the shell containing them;0 for the initial submesh,
1 for the first shell out,2 for the second, and so on. The sum of the weights gives the costof the allocation.
MC chooses the allocation with lowest cost; see Figure 2 reproduced from [24]. Since users of Cplant do
not request processors in a particular shape, MC cannot be used. Thus, in this paper, we consider a variant
called MC1x1, in which shell 0 is1 × 1 and subsequent shells grow in the same way as in MC.

Until recently, processor allocation on the Cplant system was not based on the locations of the free
processors. The allocator simply verified that a sufficient number of processors were free before dispatching
a job. The current allocator uses space-filling curves and 1Dbin-packing techniques based upon the results
of [19]. The mature version of our research will determine the allocation algorithm for both the next release
of Cplant system software [28] and the initial release of RedStorm system software [29].

2

Allocated processor

Free processorA

Figure 2: Illustration of MC: Shells around processorA for a3 × 1 request.

1

25

1684

38 54 72

96 124 152 188

227 272

433 632

318 374

496 563
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

w
(x

)

x

w(x)
circle

Figure 3: (Left) Optimal unconstrained clusters for small values ofk; numbers shown are the sums of Manhattan
distances. (Right) Plot of a quarter of the optimal limitingboundary curve; the dotted line is a circle.

Related Algorithmic Work. A natural special case of the allocation problem is theunconstrainedprob-
lem, in the absence of occupied processors: for any numberk, find a set ofk grid points of minimal average
Manhattan distance. For moderate sizes ofk, these allocations can be computed by exhaustive search; see
Figure 3. The resulting shapes appear to approximate some “ideal” rounded shape, with better and better
approximation for growingk. Karp et al. [15] and Bender et al. [4] study the exact nature of this shape.
They show that for largek, the optimal solution doesnot approach any basic simple shape. Instead, it is
bounded by a convex curve described by a differential equation; the closed-form solution is unknown. The
complexity of even this special case remains open.

Krumke et. al. [17], motivated by processor allocation on the CM5, consider the constrained problem.
They prove that for distances obeying the triangle inequality, a greedy algorithm gives a2-approximation
and they prove hardness of approximation for arbitrary distances.

In the context of reconfigurable computing on field-programmable gate arrays (FPGAs), we are faced
with a generalization of the problem considered in this paper, as the size of processors may vary: The
objective is to place a set of rectangular processors (modules) on a given grid, such that the overall weighted
sum of Manhattan distances is minimized. See [1], who give anO(n log n) algorithm for finding an optimal
feasible location for one additional module between a set ofn existing modules. At this point, no results are
known on the general off-line problem (placen modules simultaneously) or on on-line versions.

Another related problem is calledmin-sumk-clustering. separate a graph intok clusters to minimize the
sum of pairwise distances between nodes in the same cluster.For general graphs Sahni and Gonzalez [27]
show that this problem is NP-hard to approximate within any constant factor fork ≥ 3. In a metric space
the problem is easier to approximate: Guttmann-Beck and Hassin [13] give a2-approximation, Indyk [14]
gives a PTAS fork = 2, and Bartel et al. [2] give anO(1/ε log1+ε n)-approximation for generalk.

3

The problem ofmaximizingthe average Manhattan distance has also been considered: Fekete and Mei-
jer [12] give a PTAS for thisdispersionproblem inℜd for constantd, and show that for any fixedk, an
optimal set ofk of n given points can be determined in time linear inn.

Our Results. This paper gives exact and approximate algorithms for minimizing the average Manhattan
distance between allocated processors. One of these algorithms has been implemented on Cplant, a super-
computer at Sandia National Laboratories. In particular, we have the following results:

• Improving on the previous best factor of 2, we prove that a natural median-based heuristic is a74 -
approximation algorithm for2D grids and show this analysis is tight.

• We present a simple generalization to generald-dimensional space with fixedd and prove that it is a
2 − 1

2d -approximation algorithm, which is tight.

• We give an efficient polynomial-time approximation scheme (PTAS).

• We present a PTAS for the clustering problem inℜd for constantd.

• We describe how our results have been applied in practice.

In addition, we have a number of other results whose details are omitted due to space constraints: We
have a linear-time exact algorithm for the 1D case based on dynamic programming. We prove that the
MC1x1 algorithm is a2d-approximation. We can solve the 2-dimensional case fork = 3 in timeO(n log n).

The rest of the paper is organized as follows. Section 2 givesa 7
4 -approximation for two-dimensional

point sets. Section 3 gives a PTAS in the plane. Section 4 sketches how to extend the 2-dimensional results
to general, fixedd-dimensional space: We show that a median-based heuristic yields a2− 1

2d approximation,
and describe how to get a PTAS. Section 5 uses simulation results to discuss our results in the context of the
original allocation problem. We conclude with Section 6.

2 The Manhattan Median Algorithm for Two-Dimensional Point Sets

2.1 Median-Based Algorithms
Given a setP of k points in the plane. A point that minimizes the total (Manhattan) distance to these

points is called an (L1) median: It is straightforward to deduce from the nature of Manhattan distances that
this is a point both of whosex- andy-coordinates are medians of the given point sets. Clearly, we can always
pick a median whose coordinates are from the coordinates inP . If k is odd, then there is a unique median;
if k is even, possible median coordinates may form intervals.

The natural greedy algorithm is as follows:

Build the set of all possible medians by drawing a horizontaland vertical line through every point,
and consider all theO(n2) intersection points. For each of these pointsp do:

1. Take thek points closest top (using theL1 metric).

2. Compute the total pairwise distance between allk points.

Return the set ofk points with smallest pairwise distance.

We call this strategy MM, forManhattanMedian algorithm. We will see in the following that MM
yields a performance ratio of74 on 2D meshes. (Note that this algorithm was shown to be 2-competitive in
arbitrary metric spaces by Krumke et al. [17], who called it Gen-Alg.)

4

2.2 Analysis of the Algorithm
For S ⊆ P , let |S| denote the sum of the pairwiseL1 distances between points inS. If p is a point in

the plane, we usepx andpy to denote thex- andy-coordinate ofp respectively.

Lemma 1 MM is not better than a7/4 approximation.

Proof: For a class of examples establishing the lower bound, consider the situation as shown in Figure 4.
For anyε > 0, it consists of a cluster ofk/2 points at(0, 0), four clusters ofk/8 points each at(±1,±1),
a cluster of3k/8 points at(−1 − ε, 0), three clusters ofk/8 points each at(−2 − ε, 0), (−1 − ε,±1).
Choosing(0, 0) as median yields a total distance of7k2/16 for MM(and more for any other median), while
choosing the points at(0, 0), (−1, 0), and(−1 − ε, 0) yields a total distancek2/4(1 + Θ(ε)). 2

k/2 points

k/8 points

3k/8 points

−2 − ε

−1 − ε

1

1

−1

−1

Figure 4: A class of examples where MM yields a ratio of7/4.

Now we will show that7/4 is indeed worst case. We will focus on possible worst-case arrangements
and use local optimality to restrict the possible arrangements until the claim follows.

Let OPTbe a subset ofP of sizek for which |OPT| is minimal. Without loss of generality assume that
the origin is a median point ofOPT. This means that the number of points ofOPTwith positive or negative
x- or y-coordinates is at mostk/2. Let MM be the set ofk points closest to the origin. (Since this is one
candidate solution for the algorithm, its sum of pairwise distance is at least as high as that of the solution
returned by the algorithm.)

Without loss of generality, assume that the largest distance of a point inMM to the origin is equal to 1,
soMM lies in the unit circleC. We say that points are either insideC, onC or outsideC. All points of S
insideC are inMM and at least some points onC are inMM. If there are more thank points on and inside
C, we select all points insideC plus those points onC that give the largest value for|MM|.

Clearly1 ≤ |MM|/|OPT|. Let ρk be the supremum of|MM|/|OPT|. By assuming that ties are broken
badly, we can assume that there is a configurationS for which |MM|/|OPT| = ρk.

Lemma 2 For anyn andk, there are point setsS with |S| = n for which|MM|/|OPT| attains the valueρk.

Proof: The set of arrangements ofn points in C is a compact set in2d-dimensional space. By our
assumption on breaking ties,|MM|/|OPT| is upper semi-continuous, so it attains a maximum. 2

The following observation allows us to restrict our attention to a subset of possiblek.

Lemma 3 Letk1 < k2. Thenρk1 ≤ ρk2

Proof: Let P be a configuration that attains the worst-case ratioρk1 . Placingk2 − k1 points at the
corresponding median yields at least the same performance for k2 selected points, proving the claim. 2

Thus, the following suffices for the overall claim.

5

Lemma 4 For values ofk that are multiples of 8 we haveρk = 7/4.

Proof: For ease of presentation, we assume without loss of generality that S = MM ∪ OPT. Let B =
OPT∩ MM, O = OPT− B andA = MM − B. See Figure 5 (a).

Claim 0: Nop ∈ O lies outsideC.
If a point p ∈ O lies outsideC we can move it a little closer to the origin without enteringC. Since it

remains outsideC, the point does not become part ofMM, so|OPT| is reduced,|MM| remains the same and
the ratio|MM|/|OPT| increases, which is impossible.

Claim 1: All points insideC are in MM.
It follows from the definition ofMM that all points insideC are inMM. Notice that this implies that no

point p ∈ O can lie insideC.

Claim 2: The origin is also a median of MM.
Suppose that the origin is not a median ofMM. Without loss of generality assume that there are more

thank/2 points fromMM with positivey-coordinate. So any median ofMM has a positivey-coordinate.
Moving the point ofMM with the smallest positivey-coordinate downward moves it away from all medians
of MM. So|MM| increases and|OPT| does not increase. So|MM|/|OPT| increases, which is impossible.

Claim 3: Nop ∈ A lies insideC.
Suppose there is ap ∈ A that lies insideC. Moving p away from the origin increasesMM becausep

is moved further away from the median ofMM. Sincep /∈ OPT, OPTdoes not increase, although it may
decrease. So|MM|/|OPT| increases, which is impossible. This implies that all points insideC are inB and
that points fromA andO lie on the boundary ofC.

Claim 4: Without loss of generality we may assume that all pointsp ∈ A onC lie in a corner ofC.
Supposep ∈ A lies on an edge ofC but not in a corner. LetD be the sum of the distances fromp to all

points inMM − p. Consider the set of all pointsq for which the sum of the distances fromq to all points in
MM − p is equal toD. The set is a convex polygonP throughp. Therefore we can movep along the edge
of C on which it lies, so that it either moves outside ofP , in which case|MM| increases, or it remains on
the boundary ofP , in which case|MM| remains equal or possibly increases ifp leavesMM. In either case
|OPT| stays the same or decreases. If|MM| increases and/or|OPT| decreases,|MM|/|OPT| increases which
is impossible. If both stay the same, we can movep until it reaches a corner ofC. For an illustration of what
the configuration may look like see Figure 5(a).

Claim 5: Without loss of generality we may assume that all points inO ∪ B lie in a corner ofC or on
the origin.

We prove the claim by contradiction. Suppose there is a set ofpointsS for which the claim is false. Let
p ∈ O∪B be a point that does not lie in a corner ofC or on the origin. Without loss of generality assume that
0 < py < 1. We now define up to four sets of points. LetY +(p) be the points inS with y-coordinate equal
to py. If there is a pointq ∈ Y +(p) with qx + qy = 1 then letX+(p) be the points inS with x-coordinate
equal toqx, otherwiseX+(p) is empty. If there is a pointq ∈ Y +(p) with qy − qx = 1 then letX−(p) be
the points inS with x-coordinate equal toqx. If there is a pointq ∈ X+(p) ∪X−(p) with qx + qy = −1 or
qx − qy = 1 then letY −(p) be the points inS with y-coordinate equal toqy. So the four sets of points lie on
four axis-parallel line segments in the disk that meet onC. LetXY (p) = X−(p)∪X+(p)∪Y −(p)∪Y +(p).
The setXY (p) is illustrated in Figure 5(b). We move the points inXY (p) simultaneously, in such a way
that they stay on four axis-parallel line segments meeting on C. We move all points inY +(p) not onC
upwards byε. We move all points inY +(p) ∩ C upwards while remaining onC. Points inX−(p) move
to the right, points inX+(p) move to the left and points inY −(p) move down. We chooseε small enough

6

(a) (b)

one or more points fromO

one or more points fromA

one or more points fromB

Figure 5: Points ofA, O andB (a) after claim 4 and (b) during motion used in claim 5.

such that no point fromS \XY (p) enters one of the four line segments definingXY (p). This move changes
|MM| by some amountδaε and|OPT| by some amountδoε. However if we move all points in the opposite
direction (i.e. point inY +(p) downwards, etc.)|MM| and|OPT| change by−δaε and−δoε respectively. So
if δa/δo 6= ρk, one of these two moves increases|MM|/|OPT|, which is impossible. Ifδa/δo = ρk we keep
moving the points in the same direction until there is a combinatorial change, i.e. a point inXY (p) reaches
C, a point inXY (p) reaches a corner, or a point fromS \ XY (p) enters one of the line segments defining
XY (p). We can then repeat this argument until all points ofS lie onC or on the origin.

We can now complete the proof. Letb denote the number of points at the origin. Leta0, a1, a2, a3 and
o0, o1, o2, o3 be the points ofMM andOPTat the north, east, south and west corners ofC respectively. The
value of|MM| is 2

∑

0≤i<j≤3 aiaj +
∑

0≤i≤3 bai = 2
∑

0≤i<j≤3 aiaj + b(k− b) which is maximal when
all valuesai are equal to⌈(k − b)/4⌉ or ⌊(k − b)/4⌋. The value of|OPT| is 2

∑

0≤i<j≤3 oioj + b(k − b)
which is minimal wheno0 = k − b ando1 = o2 = o3 = 0. However the origin is the median ofOPTso
if b < k/2, the minimum value for|OPT| occurs wheno0 = k/2 ando1 = k/2 − b. Therefore ifb ≥ k/2

we have |MM|

|OPT| ≤
12(k−b)2

16
+b(k−b)

b(k−b) which is maximal whenb = k/2 in which case|MM|/|OPT| = 7/4.

If b < k/2 we have |MM|

|OPT| ≤
12(k−b)2

16
+b(k−b)

k(k
2
−b)+b(k−b)

from which it follows that |MM|

|OPT| ≤
3k2−2kb−b2

2k2−4b2
. This is an

increasing function ofb in the interval0 ≤ b < k/2 and approaches the value 7/4. Therefore the lemma
holds. 2

We summarize:
Theorem 1 MM is a7/4-approximation algorithm for minimizing the sum of pairwise Manhattan distances
in a 2D mesh.

3 A PTAS for Two Dimensions
Let w(S, T) be the sum of all the distances between points inS and points inT . Let wx(S, T) and

wy(S, T) be the sum of all thex- andy- distances between points inS and points inT respectively. So
w(S, T) = wx(S, T) + wy(S, T). Let w(S) = w(S, S), wx(S) = wx(S, S) andwy(S) = wy(S, S).

Let S = {s0, s1, . . . , sk−1} be a minimal weight subset ofP , wherek is an integer greater than 1. We
will label thex- andy-coordinates of a points ∈ S by some(xa, yb) with 0 ≤ a < k and0 ≤ b < k such that

7

x0 ≤ x1 ≤ . . . ≤ xk−1 andy0 ≤ y1 ≤ . . . ≤ yk−1. (Note that in general,a 6= b for a points = (xa, yb).)
We can derive the following equation:wx(S) = (k − 1)(xk−1 − x0) + (k − 3)(xk−2 − x1) + . . .
wy(S) = (k − 1)(yk−1 − y0) + (k − 3)(yk−2 − y1) + . . . We show that there is a polynomial time
approximation scheme (PTAS), i.e., for any fixed positivem = 1/ε, there is a polynomial approximation
algorithm that finds a solution that is within(1 + ε) of the optimum.

The basic idea is similar to the one used in [12] for the problem of selecting a set of points that maximizes
the overall distance: We find (by enumeration) a subdivisionof an optimal solution intom × m rectangular
cellsCij , each of which must contain a specific numberkij of selected points. From each cellCij , the points
are selected in a way that guarantees that the total distanceto all other cells except for them − 1 cells in
the same “horizontal” strip or them − 1 cells in the same “vertical” strip is minimized. As it turns out, this
can be done in a way that the total neglected distance within the strips is bounded by a small fraction of the
weight of an optimal solution, yielding the desired approximation property. See Figure 6 for the setup.

η2

η1

η0

ξ0 ξ1 ξ2 ξm

ηm

ηm−1

X0 X1 Xm−1

Ym−1

Y0

Y1

ξm−1

C11

C10

C01

C00

Figure 6: Dividing the point set in horizontal and vertical strips.

For ease of presentation we assume thatk is a multiple ofm andm > 2. Approximation algorithms for
other values ofk can be constructed in a similar fashion. Consider an optimalsolution ofk points, denoted
by OPT. Furthermore consider a division of the plane by a set ofm + 1 x-coordinatesξ0 ≤ . . . ≤ ξ1 ≤ ξm.
Let Xi := {p = (x, y) | ξi ≤ x ≤ ξi+1, 0 ≤ i < m} be the vertical strip between coordinatesξi andξi+1.
By enumeration of possible choices ofξ0, . . . , ξm we may assume that theξi have the property that, for an
optimal solution, from each of them stripsXi preciselyk/m points ofP are chosen. (A small perturbation
does not change optimality or approximation properties of solutions. This shows that in case of several
points sharing the same coordinates, ties may be broken arbitrarily; in that case, points on the boundary
between two strips may be considered belonging to one or the other of those strips, whatever is convenient
to reach the appropriate number of points in a strip.)

In a similar manner, suppose we knowm + 1 y-coordinatesη0 ≤ η1 ≤ . . . ≤ ηm such that from each
horizontal stripYi := {p = (x, y) | ηi ≤ y ≤ ηi+1, 0 ≤ i < m} a subset ofk/m points are chosen for an
optimal solution.

Let Cij := Xi ∩ Yj, and letkij be the number of points inOPTthat are chosen fromCij . Since
∑

0≤i<m

kij =
∑

0≤j<m

kij = k/m,

we may assume by enumeration over theO(km) possible partitions ofk/m into m pieces that we know all
the numberskij .

Finally, define the vector∇ij := ((2i + 1 − m)k/m, (2j + 1 − m)k/m). Now our approximation
algorithm is as follows: from each cellCij, choose somekij points that are minimal in direction∇ij , i.e.,

8

select pointsp = (x, y) for which (x(2i + 1−m)k/m, y(2j + 1−m)k/m) is minimal. For an illustration,
see Figure 7.

k12 = 4

2+1−m)k
m

4+1−m)k
m

η3

η2

ξ1 ξ2

Figure 7: Select points in cellC12.

It can be shown that if we select points in this way from each cell, we minimize the sum of thex-distances
from each point inCij to points not inXi and they-distances to points not inYj. (Overlap between the
selections from different cells is avoided by proceeding inlexicographic order of cells, and choosing thekij

points among the candidates that are still unselected.)
Details are somewhat technical and described in Appendix A.We summarize:

Theorem 2 The problem of selecting a subset of minimum total Manhattandistance for a set of points in
ℜ2 allows a PTAS.

4 Higher-Dimensional Spaces

Using our techniques from the previous sections, it is not too hard to get generalizations to higher
dimensions. We start by describing the performance ofMM.

4.1 A (2 − 1/2d)-Approximation
As in two-dimensional space, we enumerate over all possiblemedians, using theO(nd) combinations

of point coordinates. From each median, we pick thek points that are closest underL1 distances.

Lemma 5 MM is not better than a2 − 1/2d approximation.

Proof: Consider the following class of examples, based on the cross-polytope ind dimensions, i.e., the
d-dimensionalL1 unit ball. Letε > 0. The example consists of a cluster ofk/2 points at(0, . . . , 0); in
addition, we have2d clusters ofk/4d points each at(±ei), whereei is theith unit vector. Moreover, we
have a cluster of

(

k
2 − 4

4d

)

points at(−1 − ε, 0, . . . , 0), and clusters ofk/4d points at(−2 − ε, 0, . . . , 0),
and(−1 − ε, 0, . . . , 0) ± ei). Choosing the origin as median and performingMM yields a total distance of
k2

4

(

2 − 1
2d

)

; all other choices yield a worse sum. On the other hand, picking thek/2 points at the origin,

and thek/2 points near−e1 yields a total distance ofk
2

4 (1 + Θ(ε)). 2

Establishing a matching upper bound can be done analogouslyto Section 2. Lemmas 2 and 3 hold for
general dimensions. The rest is based on the following general lemma:

Lemma 6 Worst-case arrangements for MM can be assumed to have all points at positions(0, . . . , 0) and
±ei, whereei is theith unit vector.

Sketch of Proof.Consider a worst-case arrangement within the cross-polytope centered at the origin, with
radius 1. Local moves consist of continuous changes in pointcoordinates, performed in such a way that
the existing number of coordinate identities is kept. This means that if there is a point to be moved at a
coordinate different from0, 1,−1, then all other points sharing that coordinate are moved in away that
changes keeps the identical coordinates the same, analogous to Figure 5 (b).

9

Note that under these moves, the functions OPT and MM are locally linear, so the ratio of MM and OPT
is locally constant, strictly monotonically decreasing, or strictly monotonically increasing. If the ratio is
decreasing with respect to a move, it must be increasing withrespect to the opposite move; this means the
arrangement was not worst-case optimal to start with.

If the ratio stays locally constant during a move, it will continue to be extremal until an event occurs,
i.e., when the number of coordinate identities between points increases, or the number of point coordinates
at0, 1,−1 increase. While there are points with coordinates different from 0, 1,−1, there is always a move
that decreases the total degrees of freedom, until alldn degrees of freedom have been eliminated. This
means we can always reach an arrangement that fixes thedn point coordinates to be from the set{0, 1,−1}.
These leaves as only positions within the cross-polytope the origin and the2d positions±ei. 2

Using symmetry, the remaining restricted set of arrangements can be evaluated quite easily. This yields

Theorem 3 For points ind-dimensional space, MM is a2− 1/2d-approximation algorithm, which is tight.

4.2 A PTAS for General Dimensions
Theorem 4 For any fixedd, the problem of selecting a subset of minimum total Manhattan distance for a
set of points inℜd allows a PTAS.

Sketch of Proof.For any chosenm = Θ(1/ε), we subdivide the set ofn points byd(m + 1) axis-aligned
hyperplanes, such that(m + 1) are normal for each coordinate direction. Moreover, any setof (m + 1)
hyperplanes normal to the same coordinate axis is assumed tosubdivide the optimal solution intok/m
equal subsets, calledslices. Enumeration of all possible structures of this type yieldsa total ofnm choices
of hyperplanes in each coordinate, for a total ofnmd possible choices. For each choice, we have a total ofmd

cells, each containing between0 andk points; thus, there areO(mkd) different distributions of cardinalities
to the different cells.

Just like in the two-dimensional case, each cell has a corresponding gradient direction. This allows it to
pick for each cell the assigned number of points that are extremal in this gradient direction.

It is easily seen that for each coordinatexi, the above choice minimizes the total sum ofxi-distances be-
tween points not in the samexi-slice. The remaining technical part (showing that the sum of distances within
slices are small compared to the distances between different slices) is analogous to the details described in
Appendix A and omitted. 2

5 Experiments
Although this paper has focused on allocating a single job, the real allocator makes a decision for each

job that is scheduled and which processors are available foreach job depends on the previous allocations. In
order to understand the interaction between the quality of an individual allocation and the quality of future
allocations, we ran a simulation involving pairs of algorithms. One algorithm, thesituation algorithm, is
run normally. Each allocation decision is treated as an input for the other algorithm, called thedecision
algorithm. The sum of pairwise distances for the decision algorithm are recorded as the result for that pair.

Our simulation used the algorithms MC1x1, MM, MM+Inc, and HilbertBF. MM+Inc takes the allocation
of MM and then tries to improve it by replacing a processor included in the allocation with an excluded
processor until a local minimum is reached. HilbertBF is the1-dimensional strategy developed by Leung
et al. [19] currently being run on Cplant. The simulation used the LLNL Cray T3D trace from the Parallel
Workloads Archive [11]. This trace consists of 21323 jobs running on a machine with 256 processors,
treated as a16 × 16 mesh for the simulation. Table 1 shows the results.

Observe that, in each row, the algorithms are ranked best to worst as MM+Inc, MM, MC1x1, and
HilbertBF. This is consistent with their worst-case results since MM is a 7/4-approximation, MC1x1 is
a 4-approximation, and HilbertBF has an unbounded approximation factor.2 However, looking just at the

2On anN × N mesh, the approximation ratio can beΩ(N).

10

Situation Decision Algorithm
Algorithm MC1x1 MM MM+Inc HilbertBF
MC1x1 5256 5218 5207 5432
MM 5323 5285 5276 5531
MM+Inc 5319 5281 5269 5495
HilbertBF 5090 5059 5046 5207

Table 1: Average sum of pairwise distances when the decisionalgorithm makes allocations with input
provided by the situation algorithm.

diagonal entries, where the free processors depend on the same algorithm’s previous decisions, give the rank-
ing (from best to worst) HilbertBF, MM, MC1x1, and MM+Inc. The locally-better decisions of MM+Inc
seem to paint the algorithm into a corner over time.

We confirmed that locally-better decisions are not best for an entire trace using Procsimity [31, 32],
which simulates messages moving through the network. We ranthe NASA Ames iPSC/860 trace from the
Parallel Workloads Archive [11], but scaled the number of processors for each job down by a factor of 4.
This made the trace run on a machine with 32 processors, allowing us to solve for the optimal at each step.
In terms of average job flow time, MC1x1 was best, followed by MM, and then the optimal. (MM+Inc was
not considered in this simulation. HilbertBF was much worsethan all three of the algorithms mentioned, but
this is at least partially because of problems with the curvefor machines that are not square meshes whose
dimensions are powers of 2.)

6 Conclusions

We have presented a number of new results on a natural generalization of a classical problem. Clearly,
there are several interesting extensions. As indicated by our experiments, studying the online version of
the problem may be of particular interest and relevance. We hope to present results on this aspect in future
work.

Acknowledgments

We would like to thank Moe Jette and Bill Nitzberg for providing the LLNL and NASA Ames iPSC/860
traces, respectively, to the Parallel Workloads Archive.

References
[1] A. Ahmadinia, C.Bobda, S. Fekete, J.Teich, and J. der Veen. Optimal routing-conscious dynamic placement for reconfigurable

computing. InInternational Conference on Field-Programmable Logic andits applications, 2004. To appear. Available at
http://arxiv.org/abs/cs.DS/0406035.

[2] Y. Bartal, M. Charikar, and D. Raz. Approximating min-sum k-clustering in metric spaces. InProc. 33rd Symp. on Theory of
Computation, pages 11–20, 2001.

[3] S. Baylor, C. Benveniste, and Y. Hsu. Performance evaluation of a massively paralel I/O subsystem. In R. Jain, J. Werth,
and J. Browne, editors,Input/Output in parallel and distributed computer systems, volume 362 ofThe Kluwer Inter-
national Series in Engineering and Computer Science, chapter 13, pages 293–311. Kluwer Academic Publishers, 1996.
http://www.research.ibm.com/people/b/baylor/papers/ sjb_io94.ps .

[4] C. M. Bender, M. A. Bender, E. Demaine, and S. Fekete. Whatis the optimal shape of a city?Journal of Physics A:
Mathematical and General, 37:147–159, 2004.

[5] S. Bhattacharya and W.-T. Tsai. Lookahead processor allocation in mesh-connected massively parallel computers. In Proc.
8th International Parallel Processing Symposium, pages 868–875, 1994.

[6] R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson, M. Levenhagen, A. B. Maccabe, and R. Riesen. Massively parallel
computing using commodity components.Parallel Computing, 26(2-3):243–266, 2000.

11

http://www.research.ibm.com/people/b/baylor/papers/sjb_io94.ps

[7] D. Bunde, V. Leung, and J. Mache. Communication patternsand allocation strategies. InProc. 3rd Int. Workshop on
Performance Modeling, Evaluation, and Optimization of Parallel and Distributed Systems, 2004.

[8] C. Chang and P. Mohapatra. Improving performance of meshconnected multicomputers by reducing fragmentation.Journal
of Parallel and Distributed Computing, 52(1):40–68, 1998.

[9] P.-J. Chuang and N.-F. Tzeng. An efficient submesh allocation strategy for mesh computer systems. InProc. International
Conf. on Distributed Computer Systems, pages 256–263, 1991.

[10] Cray Inc. Network queuing environment.http://www.cray.com/products/software/nqe.html .

[11] D. Feitelson. The parallel workloads archive.http://www.cs.huji.ac.il/labs/parallel/workload/ind ex.html .

[12] S. P. Fekete and H. Meijer. Maximum dispersion and geometric maximum weight cliques.Algorithmica, 38:501–511, 2004.

[13] N. Guttmann-Beck and R. Hassin. Approximation algorithms for minimum sump-clustering.Disc. Appl. Math., 89:125–142,
1998.http://www.math.tau.ac.il/˜hassin/cluster.ps.gz .

[14] P. Indyk. A sublinear time approximation scheme for clustering in metric spaces. InProc. 40th Annual IEEE Symp. Found.
Comp. Science (FOCS), pages 154–159, 1999.

[15] R. M. Karp, A. C. McKellar, and C. K. Wong. Near-optimal solutions to a 2-dimensional placement problem.SIAM Journal
on Computing, 4:271–286, 1975.

[16] P. Krueger, T.-H. Lai, and V. Dixit-Radiya. Job scheduling is more important than processor allocation for hypercube com-
puters.IEEE Trans. on Parallel and Distributed Systems, 5(5):488–497, 1994.

[17] S. Krumke, M. Marathe, H. Noltemeier, V. Radhakrishnan, S. Ravi, and D. Rosenkrantz. Compact location problems.Theo-
retical Computer Science, 181(2):379–404, 1997.

[18] Lawrence Livermore National Laboratory. Advanced Simulation and Computing (ASCI).
http://www.llnl.gov/asci/ .

[19] V. Leung, E. Arkin, M. Bender, D. Bunde, J. Johnston, A. Lal, J. Mitchell, C. Phillips, and S. Seiden. Processor allocation
on Cplant: achieving general processor locality using one-dimensional allocation strategies. InProc. 4th IEEE International
Conference on Cluster Computing, pages 296–304, 2002.

[20] K. Li and K.-H. Cheng. A two-dimensional buddy system for dynamic resource allocation in a partitionable mesh connected
system.Journal of Parallel and Distributed Computing, 12:79–83, 1991.

[21] V. Lo, K. Windisch, W. Liu, and B. Nitzberg. Non-contiguous processor allocation algorithms for mesh-connected multicom-
puters.IEEE Transactions on Parallel and Distributed Computing, 8(7), 1997.

[22] J. Mache and V. Lo. Dispersal metrics for non-contiguous processor allocation. Technical Report CIS-TR-96-13, University
of Oregon, 1996.

[23] J. Mache and V. Lo. The effects of dispersal on message-passing contention in processor allocation strategies. InProc. Third
Joint Conference on Information Sciences, Sessions on Parallel and Distributed Processing, volume 3, pages 223–226, 1997.

[24] J. Mache, V. Lo, and K. Windisch. Minimizing message-passing contention in fragmentation-free processor allocation. In
Proc. 10th International Conf. Parallel and Distributed Computing Systems, pages 120–124, 1997.

[25] S. Moore and L. Ni. The effects of network contention on processor allocation strategies. InProc. 10th International Parallel
Processing Symposium, pages 268–274, 1996.

[26] NASA. The portable batch system.http://www.nas.nasa.gov/Software/PBS/ .

[27] S. Sahni and T. Gonzalez.p-complete approximation problems.JACM, 23(3):555–565, 1976.

[28] Sandia National Laboratories. The Computational Plant Project.http://www.cs.sandia.gov/cplant .

[29] Sandia National Laboratories. Red storm.http://www.cs.sandia.gov/platforms/RedStorm.html .

[30] V. Subramani, R. Kettimuthu, S. Srinivasan, J. Johnson, and P. Sadayappan. Selective buddy allocation for scheduling parallel
jobs on clusters. InProc. 4th IEEE International Conference on Cluster Computing, 2002.

[31] University of Oregon Resource Allocation Group. Procsimity. http://www.cs.uoregon.edu/research/DistributedCompu ting/ProcS

[32] K. Windisch, J. Miller, and V. Lo. Procsimity: An experimental tool for processor allocation and scheduling in highly
parallel systems. InProc. Fifth Symp. on the Frontiers of Massively Parallel Computation, pages 414–421, 1995.
ftp://ftp.cs.uoregon.edu/pub/lo/procsimity.ps.gz .

[33] Y. Zhu. Efficient processor allocation strategies for mesh-connected parallel computers.J. Parallel and Distributed Comput-
ing, 16:328–337, 1992.

12

http://www.cs.huji.ac.il/labs/parallel/workload/index.html
http://www.math.tau.ac.il/~hassin/cluster.ps.gz
http://www.cs.sandia.gov/platforms/RedStorm.html
http://www.cs.uoregon.edu/research/DistributedComputing/ProcSimity.html
ftp://ftp.cs.uoregon.edu/pub/lo/procsimity.ps.gz

A Correctness of the PTAS

A.1 Notation
Let MM be the point set selected by the algorithm described in Section 3. It is clear thatMM can

be computed in polynomial time. We will proceed by a series oflemmas to determine how wellw(MM)
approximatesw(OPT). In the following, we consider the distances involving points from a particular cell
Cij . Let MMij be the set ofkij points that are selected fromCij by the heuristic, and letOPTij be a set
of kij points of an optimal solution that are attributed toCij . Let MMi•, OPTi•, MM•j andOPT•j be the
set ofk/m points selected fromXi andYj by the heuristic and an optimal algorithm respectively. Finally
MMi• := MM \ MMi•, MM•j := MM \ MM•j, OPTi• := OPT\ OPTi• andOPT•j := OPT\ OPT•j .

For the rest of the notation notice that

w(HEU) =
∑

i,j

[wx(MMij , MMi•) + wy(MMij, MM•j)] +
∑

i

wx(MMi•) +
∑

j

wy(MM•j).

We first show that the first part is smaller thatw(OPT). We then show that the second and third part are
small fractions ofw(HEU).

A.2 Details
Lemma 7 wx(MMij , MMi•) + wy(MMij, MM•j) ≤ wx(OPTij, OPTi•) + wy(OPTij, OPT•j).

Proof: Consider a pointp ∈ OPTij \ MMij. Thus, there is a pointp′ ∈ MMij \ OPTij that was chosen
by the heuristic instead ofp. Let p − p′ = h = (hx, hy). When replacingp′ in MM by p, we increase the
x-distance to theik/m points left ofCij by hx, while decreasing thex-distance to(m − i − 1)k/m points
right of Cij by hx. In the balance, this yields a change of((2i+ 1−m)k/m)hx . Similarly, we get a change
of ((2j +1−m)k/m)hy for they-coordinates. Sincep′ was chosen to minimize the inner product〈p′,∇ij〉
we know that the inner product〈h,∇ij〉 ≥ 0, so the overall change of distances is positive.

Performing these replacements for all points inMM \ OPT, we can transformMM to OPT, while in-
creasing the sum of distanceswx(MMij, MMi•) + wy(MMij, MM•j) to the sum

wx(OPTij , OPTi•) + wy(OPTij, OPT•j).

2

Corollary 8
∑

i,j

wx(MMij , MMi•) + wy(MMij, MM•j) ≤ w(OPT).

In the following two lemmas we show that
∑

i

wx(MMi•)

is a small fraction ofw(MM). Similar proofs can be given for
∑

j

wy(MM•j).

Lemma 9
∑

0<i<m−1

wx(MMi•) ≤
wx(MM)

2(m − 2)
.

13

Proof: Let δi = ξi+1 − ξi. Sincei(m − i − 1) ≥ m − 2 for 0 < i < m − 1, we have for0 < i < m − 1

wx(MMi•) ≤ k2

2m2 δi ≤
ik
m

(m−i−1)k
m δi

1
2(m−2) . SinceMM hasik/m and(m − i − 1)k/m points to the left

of ξi and right ofξi+1 respectively, we have

wx(MM) ≥
∑

0<i<m−1

ik

m

(m − i − 1)k

m
δi

so
∑

0<i<m−1

wx(MMi•) ≤
1

2(m − 2)
wx(MM).

2

Lemma 10 For i = 0 andi = m − 1 we havewx(MMi•) ≤ wx(MM)
m−1 .

Proof: Without loss of generality assumei = 0. Letx0, x1, · · · , x(k/m)−1 be thex-coordinates of the points
p0, p1, . . . , p(k/m)−1 in MM0•. So

wx(MM0•) =

(

k

m
− 1

)

(

x k
m
−1 − x0

)

+

(

k

m
− 3

)

(

x k
m
−2 − x1

)

+ . . .

≤

(

k

m
− 1

)

(ξ1 − x0) +

(

k

m
− 3

)

(ξ1 − x1) + . . .

≤
k

m
(ξ1 − x0) +

k

m
(ξ1 − x1) + . . .

≤
k

m
(ξ1 − x0) +

k

m
(ξ1 − x1) + . . . +

k

m

(

ξ1 − x k
m
−1

)

.

Sinceξ1 −xj ≤ x−xj where0 ≤ j < k/m andx is thex-coordinate of any point inMM0• and since there
are(m − 1)k/m points inMM0•, we haveξ1 − xj < m

(m−1)k wx(pj, MM0•) so

wx(MM0•) ≤
k

m

m

(m − 1)k

∑

0≤i< k
m

wx(pi, MM0•)

≤
1

m − 1

∑

0≤i< k
m

wx(pi, MM0•)

=
1

m − 1
wx(MM0•, MM0•)

≤
1

m − 1
wx(MM).

2

A.3 Result
Combining the three lemmas we get the claimed result.

w(MM) =
∑

i,j

wx(MMij, MMi•) + wy(MMij, MM•j) +
∑

i

wx(MMi•) +
∑

j

wy(MM•j)

≤ w(OPT) +
1

2(m − 2)
(wx(MM) + wy(MM)) +

2

m − 1
(wx(MM) + wy(MM))

= w(OPT) +
1

2(m − 2)
w(MM) +

2

m − 1
w(MM).

Sow(MM)(1 − 1
2(m−2) −

2
m−1) ≤ w(OPT).

14

	Introduction
	The Manhattan Median Algorithm for Two-Dimensional Point Sets
	Median-Based Algorithms
	Analysis of the Algorithm

	A PTAS for Two Dimensions
	Higher-Dimensional Spaces
	A (2-1/2d)-Approximation
	A PTAS for General Dimensions

	Experiments
	Conclusions
	Correctness of the PTAS
	Notation
	Details
	Result

