arXiv:cs.DS/0407058 v1 24 Jul 2004

Communication-Aware Processor Allocation for Supercotagu

Michael A. Bender David P. Bundé Erik D. Demainé Sandor P. Fekete
Vitus J. Leund Henk Meijet! Cynthia A. Phillipd

Abstract

This paper gives processor-allocation algorithms for miming the average number of communica-
tion hops between the assigned processors for grid artiniés; in the presence otcupiedcells. The
simpler problem of assigning processors dineg grid has been studied by Karp, McKellar, and Wong
who show that the solutions have nontrivial structure; tleyopen the complexity of the problem.

The associated clustering problem is as follows: Gikguoints inR?, find k points that minimize
their average pairwisé; distance. We present a natural approximation algorithmséuosy that it is a
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;-approximation for 2D grids. Faf-dimensional space, the approximation guarant@e-is;;, which

is tight. We also give a polynomial-time approximation stiee(PTAS) for constant dimensiah and
report on experimental results.

Keywords: Processor allocation, supercomputers, communicatioty désnhattan distance, clustering,
approximation, polynomial-time approximation schemeABY.

1 Introduction

This paper gives processor-allocation algorithms for mining the average number of communication
hops between the processors assigned to a job on a grideatcind. Our problem is: given a sBtof n
points inR¢, find a subsef of & points with minimum average pairwidg distance.

Processor Allocation in Supercomputers. As part of the Advanced Simulation and Computing Initia-
tive! [18], the Department of Energy Laboratories are purchasiogeasingly powerful custom supercom-
puters. In a parallel effort to increase the scalability @ihenodity-based supercomputers, Sandia National
Laboratories is developing the Computational Plant or @i, 28]. Sandia’s diverse computing resources
rely on scheduling/queueing software such as NQS [10] or PBEto determine which job to run next.
This decision is based on policy enforcement (fairness aiudity) rather than optimal use of resources.
When a job is selected to run, the allocator assigns it to afggbcessors, which are exclusively dedicated
to this job until it terminates. Security constraints fatbiigration, preemption, or multitasking.
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To obtain maximum throughput in a network-limited compgtsystem, the processors that are allo-
cated to a single job should be physically near each otheis dlacement reduces communication costs
and avoids bandwidth contention caused by overlapping. jdbcessor locality is particularly impor-
tant in commodity-based supercomputers, which typicadlyehhigher communication latencies and lower
bandwidth than supercomputers with custom networks. Famgle, in Cplant supercomputers, where
the switches roughly form two- or three-dimensional meshitls some toroidal wraps, a good processor
allocation occupies an approximate subcube of switches.

Experiments have shown that processor allocation affaotsighput on a range of architectures [3, 19,
22,23,25]. On Cplant in particular, when two high-commaiian jobs are hand-placed on the machine so
that their communication paths overlap significantly, Goths’ running times approximately double [19].

Several papers suggest that minimizing #vwerage number of communication hdpsan appropriate
metric for job placement [17, 22, 23]. Experiments with a commication test suite demonstrate that this
metric correlates with the job’s completion time. See Féfllirreproduced from [19]. While this correlation
may not be strong for all communication patterns, it doesnsieehold for the most intense: all-to-all [7].
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Figure 1. Job flow time (completion time minus arrival time) @ function of the average number of
communication hops between processors assigned to thbplofted jobs used 30 processors on a 128-
processor machine configured as a 2D mesh with toroidal wraps

Early processor-allocation algorithms allocate only avearset of processors to a job [5,9,20,33]. This
design decision means that each job’'s communication caaulted entirely within the processors assigned
to that job, so jobs contend only with themselves. Unfortelya this design decision also reduces the
achievable system utilization to levels unacceptable fgrgovernment-audited system [16, 30].

More recent work [8, 19, 21, 24, 30] allows discontiguous@dkions but tries to cluster processors and
minimize contention with previously allocated jobs. Mache, and Windisch [24] propose the MC al-
gorithm for grid architectures. MC assumes that jobs reguexscessors in a particular rectangular shape.
Each free processor evaluates the quality of an allocatmteced on itself. It counts the number of free
processors within a submesh of the requested size centengseti and within “shells” of processors sur-
rounding this submesh. The processors are weighted by élecshtaining them§) for the initial submesh,

1 for the first shell out? for the second, and so on. The sum of the weights gives theottst allocation.
MC chooses the allocation with lowest cost; see Figlire 2odtmred from [24]. Since users of Cplant do
not request processors in a particular shape, MC cannotdak tifius, in this paper, we consider a variant
called MC1x1, in which shell 0 i$ x 1 and subsequent shells grow in the same way as in MC.

Until recently, processor allocation on the Cplant systeas mot based on the locations of the free
processors. The allocator simply verified that a sufficiemhber of processors were free before dispatching
a job. The current allocator uses space-filling curves andihEpacking techniques based upon the results
of [19]. The mature version of our research will determinedlocation algorithm for both the next release
of Cplant system software [28] and the initial release of Bamm system software [29].
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Figure 3: (Left) Optimal unconstrained clusters for small valuescphumbers shown are the sums of Manhattan
distances. (Right) Plot of a quarter of the optimal limitingundary curve; the dotted line is a circle.

Related Algorithmic Work. A natural special case of the allocation problem isuheonstrainedorob-
lem, in the absence of occupied processors: for any nukbigrd a set ofk grid points of minimal average
Manhattan distance. For moderate size&,ahese allocations can be computed by exhaustive seareh; se
Figure[3. The resulting shapes appear to approximate saieal®irounded shape, with better and better
approximation for growing:. Karp et al. [15] and Bender et al. [4] study the exact natdrthis shape.
They show that for largé, the optimal solution doesot approach any basic simple shape. Instead, it is
bounded by a convex curve described by a differential egoathe closed-form solution is unknown. The
complexity of even this special case remains open.

Krumke et. al. [17], motivated by processor allocation om @M5, consider the constrained problem.
They prove that for distances obeying the triangle inetyadi greedy algorithm gives Zxapproximation
and they prove hardness of approximation for arbitraryadises.

In the context of reconfigurable computing on field-prograabte gate arrays (FPGAS), we are faced
with a generalization of the problem considered in this paps the size of processors may vary: The
objective is to place a set of rectangular processors (nesyloh a given grid, such that the overall weighted
sum of Manhattan distances is minimized. See [1], who giv@ @nlog n) algorithm for finding an optimal
feasible location for one additional module between a seteXisting modules. At this point, no results are
known on the general off-line problem (plagenodules simultaneously) or on on-line versions.

Another related problem is calledin-sumk-clustering separate a graph infoclusters to minimize the
sum of pairwise distances between nodes in the same cliéstegeneral graphs Sahni and Gonzalez [27]
show that this problem is NP-hard to approximate within amiystant factor fox > 3. In a metric space
the problem is easier to approximate: Guttmann-Beck andif§$3] give a2-approximation, Indyk [14]
gives a PTAS fokk = 2, and Bartel et al. [2] give a® (1 /¢ log! ¢ n)-approximation for general.



The problem oimaximizingthe average Manhattan distance has also been considelate ead Mei-
jer [12] give a PTAS for thiglispersionproblem in}¢ for constantd, and show that for any fixed, an
optimal set ofk of n given points can be determined in time lineanin
Our Results. This paper gives exact and approximate algorithms for nimig the average Manhattan
distance between allocated processors. One of thesethlgerhas been implemented on Cplant, a super-
computer at Sandia National Laboratories. In particularhave the following results:

e Improving on the previous best factor of 2, we prove that anahtmedian-based heuristic isga
approximation algorithm fo2.D grids and show this analysis is tight.

e We present a simple generalization to gendrdlmensional space with fixadland prove that it is a
2 — -approximation algorithm, which is tight.

e We give an efficient polynomial-time approximation schefA&AS).
e We present a PTAS for the clustering problem®ihifor constant.

e We describe how our results have been applied in practice.

In addition, we have a number of other results whose detel®mitted due to space constraints: We
have a linear-time exact algorithm for the 1D case based oardic programming. We prove that the
MC1x1 algorithm is @d-approximation. We can solve the 2-dimensional casé fer3 intime O(nlogn).

The rest of the paper is organized as follows. Sedflon 2 giv%sapproximation for two-dimensional
point sets. Sectio 3 gives a PTAS in the plane. Seflion 4ls&sthow to extend the 2-dimensional results
to general, fixed-dimensional space: We show that a median-based heuriskis\a2 — % approximation,
and describe how to get a PTAS. Secfibn 5 uses simulatioitsésuliscuss our results in the context of the
original allocation problem. We conclude with Section 6.

2 TheManhattan Median Algorithm for Two-Dimensional Point Sets

2.1 Median-Based Algorithms

Given a setP of k points in the plane. A point that minimizes the total (Mam&a} distance to these
points is called anl{;) median: It is straightforward to deduce from the nature ainklattan distances that
this is a point both of whose- andy-coordinates are medians of the given point sets. Cleadyam always
pick a median whose coordinates are from the coordinatés if & is odd, then there is a unique median;
if kis even, possible median coordinates may form intervals.

The natural greedy algorithm is as follows:

Build the set of all possible medians by drawing a horizoatad vertical line through every point,
and consider all th&(n?) intersection points. For each of these pojnto:

1. Take thék points closest tp (using thelL; metric).

2. Compute the total pairwise distance betweerk @ibints.

Return the set of points with smallest pairwise distance.

We call this strategy MM, foManhattanM edian algorithm. We will see in the following that MM
yields a performance ratio @fon 2D meshes. (Note that this algorithm was shown to be 2-ettive in
arbitrary metric spaces by Krumke et al. [17], who calledénGAlg.)
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2.2 Analysisof the Algorithm

ForS C P, let|S| denote the sum of the pairwidg distances between points #h If p is a point in
the plane, we usg, andp, to denote the:- andy-coordinate of respectively.

Lemmal MM is not better than & /4 approximation.

Proof: For a class of examples establishing the lower bound, censfié situation as shown in Figure 4.
For anye > 0, it consists of a cluster d¢/2 points at(0, 0), four clusters of:/8 points each at+1, +1),
a cluster of3k/8 points at(—1 — ¢,0), three clusters ok/8 points each af—2 — ,0), (-1 — ¢, £1).
Choosing(0, 0) as median yields a total distance7f /16 for MM(and more for any other median), while
choosing the points &0,0), (—1,0), and(—1 — ¢, 0) yields a total distancé?/4(1 + ©(¢)). O

—1 —
€ ® /8 points

o 3k/8 points
+ k/2 points

Figure 4: A class of examples where MM yields a ratica/ pi.

Now we will show that7/4 is indeed worst case. We will focus on possible worst-casmgements
and use local optimality to restrict the possible arrangamantil the claim follows.

Let OPTbe a subset oP of sizek for which |OPT] is minimal. Without loss of generality assume that
the origin is a median point dPT. This means that the number of points@®PTwith positive or negative
x- or y-coordinates is at mogt/2. Let MM be the set o points closest to the origin. (Since this is one
candidate solution for the algorithm, its sum of pairwisstahice is at least as high as that of the solution
returned by the algorithm.)

Without loss of generality, assume that the largest digtafi@ point inMM to the origin is equal to 1,
soMM lies in the unit circleC'. We say that points are either inside on C or outsideC'. All points of S
insideC are inMM and at least some points 6hare inMM. If there are more thah points on and inside
C, we select all points insid€' plus those points o6’ that give the largest value foMM]|.

Clearly1 < [MM|/|OPT]. Let p; be the supremum dMM|/|OPT|. By assuming that ties are broken
badly, we can assume that there is a configuraidar which [MM|/|OPT| = p.

Lemma2 For anyn andk, there are point set§ with |S| = n for which|MM|/|OPT] attains the valugy,.

Proof: The set of arrangements af points in C' is a compact set iRd-dimensional space. By our

assumption on breaking tiedIM|/|OPT] is upper semi-continuous, so it attains a maximum. O
The following observation allows us to restrict our attentto a subset of possible

Lemma3 Letk; < kg. Thenpy, < pi,

Proof: Let P be a configuration that attains the worst-case ratia Placingk, — ki points at the

corresponding median yields at least the same performanég elected points, proving the claim. O

Thus, the following suffices for the overall claim.



Lemma4 For values ofk that are multiples of 8 we haye, = 7/4.

Proof: For ease of presentation, we assume without loss of getyettadit S = MM U OPT. Let B =
OPTNMM, O = OPT— B andA = MM — B. See Figur€l5 (a).

Claim 0: Nop € O lies outsideC'.

If a pointp € O lies outsideC we can move it a little closer to the origin without enterifig Since it
remains outsid€’, the point does not become part\dM, so|OPT| is reduced|MM| remains the same and
the ratioMM|/|OPT] increases, which is impossible.

Claim 1: All points insideC' are in MM.
It follows from the definition oMM that all points inside”’ are inMM. Notice that this implies that no
pointp € O can lie insideC.

Claim 2: The origin is also a median of MM.

Suppose that the origin is not a medianM¥1. Without loss of generality assume that there are more
thank /2 points fromMM with positive y-coordinate. So any median MM has a positive/-coordinate.
Moving the point ofMIM with the smallest positivg-coordinate downward moves it away from all medians
of MM. So|MM| increases anfDPT| does not increase. SMM|/|OPT]| increases, which is impossible.

Claim 3: Nop € A lies insideC.

Suppose there is@ € A that lies insideC. Moving p away from the origin increasédM because
is moved further away from the median MM. Sincep ¢ OPT, OPT does not increase, although it may
decrease. SIMM|/|OPT] increases, which is impossible. This implies that all ppinsideC' are inB and
that points fromA4 andO lie on the boundary of’.

Claim 4: Without loss of generality we may assume that all pgintgs A on C lie in a corner ofC.

Suppose € A lies on an edge of’ but not in a corner. LeD be the sum of the distances frgnto all
points inMM — p. Consider the set of all pointsfor which the sum of the distances frajrto all points in
MM — pis equal toD. The set is a convex polygaR throughp. Therefore we can movyealong the edge
of C on which it lies, so that it either moves outside®f in which casgMM)| increases, or it remains on
the boundary ofP, in which caséMM| remains equal or possibly increaseg ieavesMM. In either case
|OPT]| stays the same or decreasegMM| increases and/dOPT| decreasesMM|/|OPT| increases which
is impossible. If both stay the same, we can mpwutil it reaches a corner @f. For an illustration of what
the configuration may look like see Figlide 5(a).

Claim 5: Without loss of generality we may assume that all point@ in B lie in a corner ofC' or on
the origin.

We prove the claim by contradiction. Suppose there is a s@viots.S for which the claim is false. Let
p € OUB be a point that does not lie in a corner@br on the origin. Without loss of generality assume that
0 < py < 1. We now define up to four sets of points. D€t (p) be the points i with y-coordinate equal
to p,. If there is a poing € Y+ (p) with ¢, + g, = 1 then letX " (p) be the points irt with z-coordinate
equal tog,, otherwiseX *(p) is empty. If there is a poing € Y+ (p) with ¢, — ¢, = 1 then letX~(p) be
the points inS with z-coordinate equal tg,. If there is a poing € X *(p) U X~ (p) with ¢, + ¢, = —1 or
¢z — gy = 1 then letY ~(p) be the points it with y-coordinate equal tg,. So the four sets of points lie on
four axis-parallel line segments in the disk that mee€ohet XY (p) = X~ (p)UX T (p)UY ~ (p)UY *(p).
The setXY (p) is illustrated in Figurgl5(b). We move the pointsif’ (p) simultaneously, in such a way
that they stay on four axis-parallel line segments meetimg’o We move all points i *(p) not onC
upwards bye. We move all points i’ ™ (p) N C upwards while remaining o6'. Points inX~(p) move
to the right, points inX*(p) move to the left and points it ~(p) move down. We choosesmall enough

A
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Figure 5: Points oA, O and B (a) after claim 4 and (b) during motion used in claim 5.

such that no point fron$'\ XY (p) enters one of the four line segments definkily (p). This move changes
IMM| by some amouni,c and|OPT| by some amouni,c. However if we move all points in the opposite
direction (i.e. point inY*(p) downwards, etc.)MM| and|OPT| change by-d,e and—d,e respectively. So

if 0a/d0 # pr, ONe of these two moves increagbVl|/|OPT]|, which is impossible. 18,/6, = pir we keep
moving the points in the same direction until there is a coratarial change, i.e. a point IfY (p) reaches
C, a point inXY (p) reaches a corner, or a point frash\ XY (p) enters one of the line segments defining
XY (p). We can then repeat this argument until all point$'die on C' or on the origin.

We can now complete the proof. Lietdenote the number of points at the origin. kegtaq, a2, a3 and
09, 01, 02, 03 be the points oMM andOPT at the north, east, south and west corner§' oéspectively. The
value of[MM[is23 ;.3 aia; + D g<icabai = 23 <<z aiaj + b(k —b) which is maximal when
all valuesa; are equal td (k — b)/4] or [(k — b)/4]. The value of OPT[is 2}, ;3 0i0; + b(k —b)
which is minimal whervy = £ — b ando; = 05 = 03 = 0. However the origin is the median &fPT so
if b < k/2, the minimum value fofOPT| occurs whery = k/2 ando; = k/2 — b. Therefore ift > k/2

12(k—b)?

we have“—GMy-ll-l < W which is maximal wherb = £/2 in which casgMM|/|OPT| = 7/4.

2
MM 2450 ) ich i MM k2o
If b < k/2 we have‘op-l-| < k(éﬁ_b)%(k_b) from which it follows that|OPT| < S

increasing function ob in the interval0 < b < k/2 and approaches the value 7/4. Therefore the lemma
holds. O
We summarize:
Theorem 1 MM is a7/4-approximation algorithm for minimizing the sum of paire/iglanhattan distances
in a 2D mesh.

3 A PTASfor Two Dimensions

Let w(S,T') be the sum of all the distances between point$ iand points inZ". Let w,(S,T") and
wy(S,T') be the sum of all the:- andy- distances between points F1and points inl’ respectively. So
w(S,T) = we(S,T) +wy(S,T). Letw(S) = w(S,S5), wy(S) = wz(S, ) andwy(S) = wy(S,S).

LetS = {so,s1,...,s:—1} be a minimal weight subset @, wherek is an integer greater than 1. We
will label the z- andy-coordinates of a poirt € S by some(x,, yp) With 0 < a < kand0 < b < k such that

. This is an
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g < a1 <...<zp_qandyy <y < ... < yr—1. (Note that in general # b for a points = (z4,yp).)
We can derive the following equationv,(S) = (k — 1)(zx—1 — xo) + (k — 3)(zg—2 — 71) +

wy(S) = (k—1)(yp—1 —vo) + (k — 3)(yk—2 — v1) + ... We show that there is a polynomial time
approximation scheme (PTAS), i.e., for any fixed positive= 1/¢, there is a polynomial approximation
algorithm that finds a solution that is with{ii + ) of the optimum.

The basic idea is similar to the one used in [12] for the proldé selecting a set of points that maximizes
the overall distance: We find (by enumeration) a subdivisiban optimal solution inten. x m rectangular
cellsC;;, each of which must contain a specific numbgrof selected points. From each cé€l;, the points
are selected in a way that guarantees that the total distaredeother cells except for ther — 1 cells in
the same “horizontal” strip or thes — 1 cells in the same “vertical” strip is minimized. As it turnstpthis
can be done in a way that the total neglected distance witliistrips is bounded by a small fraction of the
weight of an optimal solution, yielding the desired appnoation property. See Figuké 6 for the setup.

Figure 6: Dividing the point set in horizontal and verticaiss.

For ease of presentation we assume thiata multiple ofm andm > 2. Approximation algorithms for
other values of can be constructed in a similar fashion. Consider an optaolaltion of% points, denoted
by OPT. Furthermore consider a division of the plane by a sehof 1 x-coordinategy < ... < & < &.
Let X; :={p = (x,y) | & < 2 < &41,0 < i < m} be the vertical strip between coordinatggandé; ;.

By enumeration of possible choices&f . . ., &, we may assume that tife have the property that, for an
optimal solution, from each of the strips X; preciselyk/m points of P are chosen. (A small perturbation
does not change optimality or approximation propertiesobfitions. This shows that in case of several
points sharing the same coordinates, ties may be broketraailyi in that case, points on the boundary
between two strips may be considered belonging to one orttiex of those strips, whatever is convenient
to reach the appropriate number of points in a strip.)

In a similar manner, suppose we knew-+ 1 y-coordinatesy; < nm; < ... < 7, such that from each
horizontal stripY; := {p = (x,y) | i <y < 1n;+1,0 < i < m} a subset ok/m points are chosen for an
optimal solution.

LetC;; := X; NY;, and letk;; be the number of points i@PTthat are chosen frory;;. Since

Y k=Y ky=k/m,
0<i<m 0<j<m

we may assume by enumeration over @g™) possible partitions of /m into m pieces that we know all
the numbers;;;.

Finally, define the vectoV;; := ((2i + 1 — m)k/m, (2j + 1 — m)k/m). Now our approximation
algorithm is as follows: from each cdll;;, choose somé;; points that are minimal in directiow;;, i.e.,

Q



select pointp = (x, y) for which (z(2i + 1 —m)k/m,y(25 + 1 —m)k/m) is minimal. For an illustration,
see Figuré&l?.

Figure 7: Select points in cell’;5.

It can be shown that if we select points in this way from eadhwe minimize the sum of the-distances
from each point inC;; to points not inX; and they-distances to points not ii;. (Overlap between the
selections from different cells is avoided by proceedintgiicographic order of cells, and choosing the
points among the candidates that are still unselected.)

Details are somewhat technical and described in Appendi¥@&summarize:

Theorem 2 The problem of selecting a subset of minimum total Manhattstance for a set of points in
2 allows a PTAS.

4 Higher-Dimensional Spaces

Using our techniques from the previous sections, it is nothard to get generalizations to higher
dimensions. We start by describing the performanci! lgf.

41 A (2—1/2d)-Approximation
As in two-dimensional space, we enumerate over all possiladians, using the(n?) combinations
of point coordinates. From each median, we pick/ihmints that are closest undég distances.

Lemma5 MM is not better than & — 1/2d approximation.

Proof: Consider the following class of examples, based on the golgope ind dimensions, i.e., the
d-dimensionalL; unit ball. Lete > 0. The example consists of a cluster/gf2 points at(0,...,0); in
addition, we haved clusters ofk/4d points each at+e;), wheree; is theith unit vector. Moreover, we
have a cluster o(% — ﬁ) points at(—1 — ¢,0,...,0), and clusters ok/4d points at(—2 — ¢,0,...,0),
and(—1—¢,0,...,0) = ¢;). Choosing the origin as median and performiby! yields a total distance of

% (2 — &); all other choices yield a worse sum. On the other hand, pickiek /2 points at the origin,

and thek /2 points near—e; yields a total distance df(l + 0O(e)). O
Establishing a matching upper bound can be done analogauSgctiofP. Lemmds 2 afdl 3 hold for
general dimensions. The rest is based on the following géf@amma:

Lemma6 Worst-case arrangements for MM can be assumed to have aliaf positiong0,...,0) and
+e;, wheree; is theith unit vector.

Sketch of Proof. Consider a worst-case arrangement within the cross-gmdytentered at the origin, with
radius 1. Local moves consist of continuous changes in maiatdinates, performed in such a way that
the existing number of coordinate identities is kept. Thisans that if there is a point to be moved at a
coordinate different fron, 1, —1, then all other points sharing that coordinate are moved wax that
changes keeps the identical coordinates the same, analtm&igurd® (b).



Note that under these moves, the functions OPT and MM ardydueear, so the ratio of MM and OPT
is locally constant, strictly monotonically decreasing,strictly monotonically increasing. If the ratio is
decreasing with respect to a move, it must be increasing negpect to the opposite move; this means the
arrangement was not worst-case optimal to start with.

If the ratio stays locally constant during a move, it will tiomie to be extremal until an event occurs,
i.e., when the number of coordinate identities betweentpadirtreases, or the number of point coordinates
at0, 1, —1 increase. While there are points with coordinates diffefiemm 0, 1, —1, there is always a move
that decreases the total degrees of freedom, untifralllegrees of freedom have been eliminated. This
means we can always reach an arrangement that fixesitheint coordinates to be from the et 1, —1}.
These leaves as only positions within the cross-polytopeotigin and thed positions+e;. O

Using symmetry, the remaining restricted set of arrangesneam be evaluated quite easily. This yields
Theorem 3 For points ind-dimensional space, MM is&a— 1/2d-approximation algorithm, which is tight.

4.2 A PTASfor General Dimensions

Theorem 4 For any fixedd, the problem of selecting a subset of minimum total Manhatiatance for a
set of points irR? allows a PTAS.

Sketch of Proof. For any chosem: = ©(1/¢), we subdivide the set of points byd(m + 1) axis-aligned
hyperplanes, such thét + 1) are normal for each coordinate direction. Moreover, anyo$éin + 1)
hyperplanes normal to the same coordinate axis is assumsabttivide the optimal solution inté/m
equal subsets, calleslices Enumeration of all possible structures of this type yiedstal ofn™ choices
of hyperplanes in each coordinate, for a totah®f’ possible choices. For each choice, we have a total®of
cells, each containing betweérandk points; thus, there ar@(m’fd) different distributions of cardinalities
to the different cells.

Just like in the two-dimensional case, each cell has a qoureling gradient direction. This allows it to
pick for each cell the assigned number of points that areeet in this gradient direction.

Itis easily seen that for each coordinatgethe above choice minimizes the total sumepfdistances be-
tween points not in the samg-slice. The remaining technical part (showing that the stidistances within
slices are small compared to the distances between diffglieas) is analogous to the details described in
Appendix(3 and omitted. O

5 Experiments

Although this paper has focused on allocating a single jobyeal allocator makes a decision for each
job that is scheduled and which processors are availabkafdr job depends on the previous allocations. In
order to understand the interaction between the qualitynohdividual allocation and the quality of future
allocations, we ran a simulation involving pairs of algomits. One algorithm, theituation algorithm is
run normally. Each allocation decision is treated as antifuthe other algorithm, called tha@ecision
algorithm The sum of pairwise distances for the decision algoritherecorded as the result for that pair.

Our simulation used the algorithms MC1x1, MM, MM+Inc, andidértBF. MM+Inc takes the allocation
of MM and then tries to improve it by replacing a processotuded in the allocation with an excluded
processor until a local minimum is reached. HilbertBF is thdimensional strategy developed by Leung
et al. [19] currently being run on Cplant. The simulationdiige LLNL Cray T3D trace from the Parallel
Workloads Archive [11]. This trace consists of 21323 jobsming on a machine with 256 processors,
treated as 46 x 16 mesh for the simulation. Tablé 1 shows the results.

Observe that, in each row, the algorithms are ranked bestotstvas MM+Inc, MM, MC1x1, and
HilbertBF. This is consistent with their worst-case residince MM is a 7/4-approximation, MC1x1 is
a 4-approximation, and HilbertBF has an unbounded appratiom facto? However, looking just at the

20n anN x N mesh, the approximation ratio can Q¢N).
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Situation Decision Algorithm

Algorithm [ MC1x1 | MM | MM+Inc | HilbertBF
MC1x1 5256 | 5218 5207 5432
MM 5323 | 5285 5276 5531
MM+Inc 5319 | 5281 5269 5495
HilbertBF 5090 | 5059 5046 5207

Table 1: Average sum of pairwise distances when the deciligorithm makes allocations with input
provided by the situation algorithm.

diagonal entries, where the free processors depend onrtieeadgorithm’s previous decisions, give the rank-
ing (from best to worst) HilbertBF, MM, MC1x1, and MM+Inc. &Hocally-better decisions of MM+Inc
seem to paint the algorithm into a corner over time.

We confirmed that locally-better decisions are not best foertire trace using Procsimity [31, 32],
which simulates messages moving through the network. W&l NASA Ames iPSC/860 trace from the
Parallel Workloads Archive [11], but scaled the number agessors for each job down by a factor of 4.
This made the trace run on a machine with 32 processors,iatious to solve for the optimal at each step.
In terms of average job flow time, MC1x1 was best, followed byiMind then the optimal. (MM+Inc was
not considered in this simulation. HilbertBF was much wdrem all three of the algorithms mentioned, but
this is at least partially because of problems with the ciovenachines that are not square meshes whose
dimensions are powers of 2.)

6 Conclusions

We have presented a number of new results on a natural gieadoal of a classical problem. Clearly,
there are several interesting extensions. As indicateduibyexperiments, studying the online version of
the problem may be of particular interest and relevance. &Y lto present results on this aspect in future
work.
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A Correctness of the PTAS

A.1 Notation

Let MM be the point set selected by the algorithm described in @e@i It is clear thatMM can
be computed in polynomial time. We will proceed by a serietenfmas to determine how weltl(MM)
approximatess(OPT). In the following, we consider the distances involving gsifrom a particular cell
Ci;. Let MM;; be the set of;; points that are selected frod;; by the heuristic, and |eDPT;; be a set
of k;; points of an optimal solution that are attributeddg. Let MM,,, OPT;,, MM,; andOPT,; be the
set ofk/m points selected fronk; andY; by the heuristic and an optimal algorithm respectively.aHijn
MM;, := MM \ MM;,, MM, := MM \ MM,;, OPT,, := OPT\ OPT,, andOPT,; := OPT\ OPT,,.

For the rest of the notation notice that

w(HEU) = [we(MMij, MM, + wy (MM, MM + >~ we (MMia) + > 1w, (MM,;).
i3 { J
We first show that the first part is smaller thatOPT). We then show that the second and third part are
small fractions ofw(HEU).
A.2 Details
Lemma? wx(MMij,Wio) + wy(MMij,W.j) < ’wx(OPTz'j, OPTz'o) + wy(OPTija OPT'j)'

Proof: Consider a poinp € OPT;; \ MM;;. Thus, there is a point’ € MM;; \ OPT;; that was chosen
by the heuristic instead ¢f. Letp — p’ = h = (hg, hy). When replacing’ in MM by p, we increase the
z-distance to thek /m points left ofC;; by h,, while decreasing the-distance tqm — i — 1)k/m points
right of C;; by h,. In the balance, this yields a change((#i + 1 — m)k/m)h,. Similarly, we get a change
of ((2j +1—m)k/m)h, for they-coordinates. Sincg’ was chosen to minimize the inner prodygt, V;;)
we know that the inner producgt, V;;) > 0, so the overall change of distances is positive.

Performing these replacements for all pointdM \ OPT, we can transfornMM to OPT, while in-
creasing the sum of distances (MM;;, MM;,) + w, (MM;;, MM,;) to the sum

w;(OPT;;j,OPT;s) + w, (OPT;;, OPT,).

Corollary 8
wa’(Mszawzo) + wy(l\/ll\/lij,W.j) < ’LU(OPT)
i,

In the following two lemmas we show that

D we(MM;,)
is a small fraction ofv(MM). Similar proofs can be given for
Zwy(MM-J‘)-
j
Lemma9
wyz(MM)
o) < —————.
2 we(MMa) < 3(m — 2)
0<i<m~—1
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Proof: Letd; = &1 — &. Sincei(m —i—1) >m —2for0 <i<m—1,wehavefol) <i<m—1
we(MM;) < %5,- < %(m_fn_l)kdi 2(ml_2). SinceMM hasik/m and(m — i — 1)k/m points to the left

of & and right of¢; 1, respectively, we have

we (MM) > Z ﬁwgl

4 m
0<i<m-—1
o) )
0<i<m-—1
O

- - w, (MM)
Lemma 10 Fori = 0andi = m — 1 we havew,(MM;,) < —-——.
Proof: Without loss of generality assunie= 0. Letzg, z1, - - - , 2 /m)—1 be thez-coordinates of the points

Pbo,P15--- Jp(k:/m)—l in MMOO- So

wy(MMoa) = (%—1) (x%_l—xo)+<%—3> (22 =)+ ...
< <%—1>(51—3:o)+<£—3>(£1—$1)+

<

< (51—330)4'%(51—331)4- +%<£1—$%_1>-

Sinceé; —z; < x —x; where0 < j < k/m andz is thez-coordinate of any point iMM,, and since there
are(m — 1)k/m points inMMy,, we havet; — z; < -5z wz(p;, MMos) SO

k m

MMgs) < —_—"" . MMo.
0<i< -

; Z wx(pi7WOo)

m—1 < i
0SZ<E

1 N
= mwx(MMO.,MMO.)

1

IN

A.3 Resault
Combining the three lemmas we get the claimed result.

wMM) = > we (MMy;, MM;,) + wy (MM, MM,;) + > we (MMie) + > wy (MM,;)
2% @ J

< w(OPT)+ m(wz(MM) + wy(MM)) + %(wx(MM) + wy(MM))
= W(OPT) + grgu(MM) + %w(MM).
Sow(MM)(1 — 5oy — z7) < w(OPT).

14



	Introduction
	The Manhattan Median Algorithm for Two-Dimensional Point Sets
	Median-Based Algorithms
	Analysis of the Algorithm

	A PTAS for Two Dimensions
	Higher-Dimensional Spaces
	A (2-1/2d)-Approximation
	A PTAS for General Dimensions

	Experiments
	Conclusions
	Correctness of the PTAS
	Notation
	Details
	Result


