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Abstract

Two GAO reports have questioned the utilization of computing resources
in the Department of Energy. While Jones and Nitzberg have observed that
utilization peaks at 60-80% for a variety of architectures and allocation policies.
This investigation examines the theoretical and observed average maximum effi-
ciencies of massively parallel computers, and shows that the observed efficiency
at Sandia is very nearly optimal.

Here, the average maximum efficiency is defined as the expected utilization
or efficiency when the queue is nonempty. We have developed a model that
allows us to compare the observed efficiency with the average maximum effi-
ciency, and allows us to forecast the expected maximum efficiency given the
average size of the smallest task, S, waiting in the queue. The model predic-
tions are in excellent agreement with the measured efficiencies obtained from
the Sandia data.

The average number of idle processors may be estimated by analyzing the
embedded renewal process. We let Y (¢) denote the number of idle processors,
and we set S equal to the random variable representing the size of the smallest
task in the queue. The stopping time 7™ denotes the time when exactly S
processors become available; the process Y () is reset to zero when the level
S is attained. Also, we let N denote the number of processors, v = E[S/N],
and we set p(7y) equal to the efficiency when E[S/N] = «; that is, p(y) is the
maximum efficiency when the smallest waiting task requires, on average, YN
nodes. We show that p(y) = A"'E[S/N]/E[T*], where A~! is the mean of the
exponentially distributed completion times.
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1 Introduction

Two GAO reports (see [2] and [3]) have questioned the utilization of computing
resources in the Department of Energy. While Jones and Nitzberg (see [5]) have
observed that utilization peaks at 60-80% for a variety of architectures and allocation
policies. This investigation examines the theoretical and observed average maximum
efficiencies of massively parallel computers, and shows that the observed efficiency at
Sandia is very nearly optimal.

Here, the average maximum efficiency is defined as the expected utilization or
efficiency when the queue is nonempty. We have developed a model that allows us to
compare the observed efficiency with the average maximum efficiency, and allows us to
forecast the expected maximum efficiency given the average size of the smallest task,
S, waiting in the queue. The dependence on the smallest task reflects the scheduling
policy of not blocking the smallest task in the queue; this is the policy at Sandia. The
model predictions are in excellent agreement with the measured efficiencies obtained
from the Sandia data.

The average number of idle processors may be estimated by analyzing the em-
bedded renewal process. We let Y (¢) denote the number of idle processors, and we
set S equal to the random variable representing the size of the smallest task in the
queue. The stopping time 7™ denotes the time when exactly S processors become
available; the process Y (¢) is reset to zero when the level S is attained, see Fig. 1.
Also, we let N denote the number of processors, v = E[S/N], and we set p(7) equal
to the efficiency when E[S/N] = ~; that is, p(y) is the maximum efficiency when the
smallest waiting task requires, on average, v/NV nodes.

In terms of the renewal process, we define the average maximum efficiency, p(7),
0<vy<1,by

p(v) = lim (1-Yu/N), (1.1)

M—oo

where we assume that the average, for t; = jA¢, At > 0,

Y

Il

% > Vi) (1.2)

converges in mean square (the limit in expression (1.1) is convergence in mean square).
Assuming that the completion times (the time required for a processor to complete a
task) are independent, exponentially distributed random variables, S > 1, and that
S is constant between renewal times , it can be shown that Y, converges. Also,
under the same assumptions on the completion times and S, it is possible to derive a
theoretical expression for p(7), namely,

E[fy" Y ()] 1 EIS/N

NE[T*] E[T*]’ (1.3)

p(y) = lim (1—7M/N) =1-

M—x
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where A™! is the mean of the exponential random variable. Expression (1.3) allows
us to make a comparison between theoretical and experimental efficiencies.

We have observed, from empirical studies, that the distribution of S approximately
obeys a Beta law (see Fig. 2),

[(a+B) (n—l)a_1< n—1)ﬂ—1 1
P(S=n)= 1-— — 1.4
(S=m~rorE N N N’ (1.4)
where n = 1,...,N; a,8 > 1, ['(z) denotes the gamma function and LA g the

F(a)L'(8)
approximate normalization constant. The mean of S/N is given by v = E[S/N] ~

af(a + B); that is, the average number of nodes required for the smallest task is
approximately (ﬁ) N. At Sandia, there are two possible values for N depending
on whether the machine is in large or small configuration.

If « is an integer and f is ”"large” (but not too large since we also require that

J%O(ZL)% — 0, as N — oo) we have (see Fig. 3)

ol B 1
In(l—7v) 14+7/2++2/3+---

p(7) ~ (1.5)

In particular, if E[S/N] ~ .2 the model predicts a maximum efficiency of 90%;
p(.2) ~ —.2/In(1 — .2) = .9, which is in excellent agreement with the measured max-
imum utilization of approximately 90%. Here, the measured maximum efficiency was
obtained by computing the efficiency over periods in which the queue was nonempty.

The ratio of the average maximum efficiency and the observed utilization may be
used to provide a relative efficiency. Using the relative efficiency as a figure of merit,
we found that the Sandia computers performed better than expected. The Sandia
data may be summarized as follows:

e Measured maximum efficiency is 90% over 73% of snapshots

e Measured low efficiency is 49% over 27% of snapshots

e Observed efficiency is approximately 79% over 100% of snapshots

e Relative efficiency = .79/.9 ~ .88 or approximately 88%
The key point is that the ratio of the observed efficiency, 79%, to the maximum effi-
ciency, 90%, or the relative efficiency is approximately 88%, which is nearly optimal.
Additionally, the curve for p(y) (see Fig. 3) may be used to predict the maximum
utilization for other values of the parameter 7, provided estimates of the expected
value E[S/N] are available for the time period of interest. We further broke out the
smallest job waiting in the Sandia queues into fourteen ranges and collected the corre-
sponding efficiencies. Fig. 4 shows the top seven ranges. Note that not all the ranges
are populated in both the small and large configurations. The difference between the
predicted and observed values could be due to the sparsity of the observed values.

The Sandia data also revealed some trends for average daily usage, see Fig. 5.
The highest average daily usage occurs on Fridays, 94%. The average daily usage
decreases steadily over the weekend with 83% on Saturdays and 75% on Sundays
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before reaching the lowest average daily usage on Mondays, 70%. A similar trend
occurs during the work week with 80% on Tuesdays, 76% on Wednesdays, and 75%
on Thursdays. These trends could be the result of the Sandia queues being loaded
with production jobs before the weekend, but the job queues being exhausted before
the work week begins and the Sandia queues being loaded with development jobs
shortly after the work week begins, but the development work diminishing over the
work week going into the next weekend cycle.

In the second section, we define the embedded renewal process more precisely,
and derive relation (1.3). The third section presents an asymptotic analysis for the
distribution of the smallest task size, and, in turn, this expansion provides an estimate

for p(7).

2 Expected Maximum Efficiency

In this section we present an outline of the proof that mean square limit of Y, exists
and equals \™'E[S/N|/E[T*] so that p(y) = A\"'E[S/N]/E[T*]. The key idea is that
the number of idle processors may be represented by an embedded renewal process. In
turn, we use the renewal theorem and the fact the process is approximately covariance
stationary to derive convergence.

We begin by defining the renewal process more precisely. We let S; denote the
size of the smallest task in the queue for the first renewal period, and we let 77 =T,
be the time for enough processors to become available to accommodate the task of
size Si. For the second renewal period we set Sy equal to the smallest task in the
queue, we let T, be the time for S, processors to become available, and we define
Ty = Ts, +Ts,. The i*h renewal period is defined similarly, if S; denotes the size of
the smallest task in the queue during the i*h period, T} = Ts, + Ts, + ... + Ts,, where
Ts, is the time required for S; processors to become available. We let Y'(¢) denote the
number of idle processors at time t, Y (¢) = Y (¢t —7}) if t > T*. Here, we assume that
the number of idle processors is immediately reset to zero when enough processors
become available for the smallest task in the queue, and the process begins again with
another randomly chosen minimum task size. Also, we assume that the size of the
smallest task remains constant throughout the period. The renewal process may be
viewed as a hitting process that begins anew whenever the number of idle processors
reach a random level S.

Next, to analyze the stopping times, we assume that the time, 7, required for
a processor to complete a task is exponentially distributed with mean A\™! (P(1 >
t) = exp(—At)), and is independent of the other processors’ completion times. If k
processors are idle, the time, 7, for another processor to become available is given by
the minimum over N — k independent, exponentially distributed random variables.
For a given renewal period, let us denote by; 75 the time for the first processor to
become idle, 79+7; the time for the second to become available, T}, = 1o+71 +...+ 7,1
the time for the k' processor to become idle, and for, say, the first renewal period,
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we note Ts, = 79 + ... + 7s, 1, see Fig. 1.
The following is a partial list of symbols:

N = number of processors,

Tr = duration of time that exactly k£ processors are idle,

Ty, =Ty + -+ -+ Tp_1 = time that the k' processor becomes idle,

S; = size of the smallest task in the queue during renewal period i,

T =Ts, = Ef;é Tr = time for exactly S; processors to become available,

Y(t) = Y=o I ,1) (t) = number of processors idle at time ¢ if ¢ < Tg,),
where I7, 1, ,,)(t) denotes the indicator function on the set [T}, Tj41).

The distribution of 73 is given by the minimum of N — k independent, identically
distributed random variables, 7, that is,

_ : _ N—k _ ,~AN-k)t
P(r,>t)=P (15?%11{[1% Th; > t) P(7y; > 1) e . (2.1)

Here, the N — k random variables represent the N — k processors that are working on
a task, so that, exactly k processors are idle. In the last step we used the assumption
that 7, is exponentially distributed with parameter A.

Let us establish a renewal equation for

A(t) = BlY (1)]. (2.2)

We condition on the time of the first renewal, 77 = s, and consider two cases; t < s,
so that 77 > t, and ¢ > s so that Y (t) = Y (¢ — T}). We have

« 1. | EY®)|T =s], t<s,
B == { SONT=k s 23)
Invoking the law of total probabilities, we obtain
A(t) = E[Y ()]
= JFEY(@)[T; = s|P(T; € ds) -

JUBIY (- )Ty = s|P(T; € ds) + [ BY (0)|T; = s|P(T; € ds)
= a(t)+ JTA(t — s)P(T7 € ds)

where a(t) = [ E[Y ()T = s|P(Ty € ds), and [z P(I7 € ds) = P(I} € B)
denotes the probability measure for 77.
We have shown that A(t) satisfies the renewal equation

A(t) = a(t) + /OtA(t — s)P(17 € ds). (2.5)

By the renewal theorem (see Karlin and Taylor [6]) we obtain

lim A(t) = ﬁ [ atwar (2.6)
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where a(t) = [ E[Y (t)|T} = s|P(T} € ds).
Interchanging the order of integration we arrive at the expression

JPalt)dt = [ 2 EIY (0)|T = s|P(TY € ds)dt

xS * * Ty 27
= R REY QT = sldtP(T; € ds) = B[ v(a] D
The change in order of integration is justified by the estimate
/ E[Y(O)|T = s]P(T} € ds) = 0(e™)
¢
obtained from expression (2.1). We have, from expressions (2.6) and (2.7),
. E Y (t)d]
where T* = T7. It follows that
1M 1M E[f" Y (t)dt]
— Y EY(t) =) Al = 2.9
j= j=
as M — oo. Now assuming
1
T X EIY() - m)(Y (k) — )] = 0, (210)
1<j,k<M
as M — oo, it follows that (see Karlin and Taylor [6])
E[(Ya - w?] =0, (2.11)

as n — oo, where Yy = - M, Y (t;). Expression (2.10) follows from the observation
that for |t — s| sufficiently large, Y (¢) and Y (s) are ”essentially” independent, see
Karlin and Taylor [6].

We have arrived at the desired result,

M E [T v(s)ds
%;Y(tj)% [IE[TE]) ] (2.12)

Yar

as M — oo; convergence is in mean square. We have shown the first half of
expression (1.3), namely, that Y, converges, and that it converges to the ratio

E [ I Y(s)ds] / E[T*]. It remains to show that this ratio can be expressed in terms
of the random variable S = 5;.
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The expected values F [fOT Y(t)dt] and E[T*| (recall that T* = T}) may be
expressed in terms of the exponential random variables 7 (see expression 2.1); that
is,

E[T*] = ElZ_}Tk]

(2.13)

and

E[ffY(t)dt] = E [ Ts Y(t)dt]

It follows that

E[ Y(t)dt] =

N-NK) p(g 5 f)

N L PS>k -1 PS> k) (2.14)
k=0

E[T*] — A7 LE[S].
Here, we used the identity >p o P(S > k) = E[S]. Using expressions (2.12) and

(2.14), we have arrived at the desired conclusion,

1y, F [ Y(9)ds] N E[T] - ATELS] _ A B[]
N N E[T¥] N E[T¥] N E[T*]’

(2.15)

as M — oo; convergence is in mean square. This completes the proof of relation
(1.3).

This relation allows the experimentalist to compare the statistic Yj;s, obtained
from observations, with the theoretical prediction, provided the distribution of the
smallest task size, S, is known.

3 Distribution of the Smallest Task

We turn, now, to an analysis of the distribution of the smallest task size, S, and we
use an asymptotic expansion for the distribution to obtain an analytical expression
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for the ratio \™'E[S/N] E[T*] = p()\). As we noted in the introduction, our empirical
studies indicate that S may be approximately represented by a beta distribution; that

is,
¢ (n—1\*" n—1\#"1
P(S = — 1— =1,...,N 1
(S n) 7‘7( N ) ( N ) , g erey iV (3 )

where c is chosen so that ) P(S = n) =1, a > 0, and 8 > 1 (we note that
P(S = 1) = 0). To relate the beta distribution to the efficiency, p(y), for a given
v = E[S/N], the parameters o and 8 must be chosen so that F[S/N] =~v+ O(1/N),
for the specified 7y, 0 < v < 1. For this we use the beta integral

a+5 / Yy y)?~ldy, (3.2)

which holds true for « > 0 and S > 0. This integral may also be used to provide an
estimate of ¢; that is, assuming o > 0 and 8 > 1, we have

N N-1 n\o1 n B-1
1 = n;zal(s_n)_cng::1 ()" (1-2)" %
= cfy Yy 1-y)ldy+ O (N7

= chy ' (1-y)*dy+ O (N7 = S L O (V).

(3.3)

It follows that ¢ = 55 + O(N 1),

The expected value of S/N is approximately given by (assuming that 3 > 1),

EISIN) = o2 (3)"(1-%)" k+4
= ¢ f(}‘% (1 — )Pty + O (N (3.4)
¢lyy*(L—y)Ptdy+O (N

_ a+1)I'(B
= C((a—{—iﬁ—f—(l—i_O( )_a+ﬁ+0( )

In the last step we used the fact that ¢ = Llatp) +O( ~1), and the identity I'(z+1) =

)T(B)
zI'(z). In order that E[S/N] satisfy the relation E[S/N] =~ + O(1/N) ~ 7 we set
[0
= . 3.5
- ialt] (3-5)

We note that the parameters o and 3 are not uniquely determined by this identity.
To evaluate E[T*] we need an expression for the incomplete beta integral, namely,

k

1
S0 = =k G) [ A (36)
v=0

where, if 7 is a real number, v a positive integer, we set (}) = %, H=1

and we assume k a positive integer, r — k > 0, 0 < p < 1. Identity (3.6) may be
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verified by differentiating both sides with respect to p, see Feller [1] or Hogg and
Craig [4]. (By allowing p | 0 this identity may be used to derive relation (3.2) for
integer o and real §; in this case, « = k+ 1 and 8 = r — k.) Using identity (3.6), we
have, fora=k+1and =1 —k,

P(S>m) = sz () (1-4)"" 4
= clpny" 1=y ldy+ O (N7 (3.7)

N

= o L, WP ) O (N,

where p,, = m/N. For E[T*|, by applying the estimate (3.7) and expression (2.13),
we obtain,

E[TY] = X1 2_1 ~=P(S > m)
A—?Z_ Nt

N f (3) Do (1 = pr)" " + O (N71) (3.8)

(r=k)(3) =0 " m=1
The inner sum in expression (3.8) may rewritten as
N1 v r—uv—1
S (-5 5 = foz N gty + 0 (N-1)
I'(v+1)D
W +O (N (3.9)
= W +ONT)
(r—v () +0 (N )
ini i i ion ¢ = Lt
Combining expressions (3.8), (3.9), and using the relation ¢ = A +O( b,

since « = k+ 1 and 8 = r — k, we obtain

k
*] Ac
BT = o 2 0) emam TO W)

r
m

— A1 T(r+1) k 1 1

T (r—k)(3) TR (r—k) EO r—v +O (N (3.10)
k

= X! Z m +O (N 1)

Using relation (1.3), expression (3.4), and expression (3.10), we obtain for the effi-

cleney £(1) A LE[S/N 1
p(7) = E[[Tg I = 5 T +O<N)' (3.11)

Rewriting expression (3.5) using the substitutions o = k + 1 and § = r — k, together
with expression (3.11), we obtain the relations

Y
S

v=0 r—y

p(7) ~ (3.12a)
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k41
S or417
where £ is an integer, r is a real number, and r — k > 1.
We may approximate the denominator in equation (3.12a) using the expansion
for harmonic sums (Xp_; + =Inn+y + 5= + O (n—g), where 7, is Euler’s constant),
k+1

provided r — k is sufficiently large, and making the substitution v = =7,

(3.12b)

M=

L = In(r)—In(r—k-1)+0 ()
= —n(1-2)+0 (%) =-ml-7+0(%).

where r — k >> 1.
It follows that

In particular for v = .2, we have that p ~
measured efficiency, see Fig. 3.
We remark that the parameters r and k£ can not grow too rapidly since we must
Nat+B) 1 _ T(r+1) 1 M(a+B8) - ..
have M@ N — TEITr B N, — 0, as N — oo, where ONORS the normalization
constant for the beta distribution.

v=0 (313)

-1

+%2+...> +O( 1k>- (3.14)

b
2 r—
.9

, which is in close agreement with the

4 Summary

This work was motivated, in part, by an attempt to explain the observation that
utilization peaks in the 60-80% range for a variety of parallel architectures and allo-
cation procedures. Our study confirms the intuition which holds that the efficiency
of a parallel computer is effectively limited by the fact that the machine must spend
a significant fraction of the time ”draining” to accommodate a new task; more im-
portantly, we have quantified the relationship between efficiency and the size of the
smallest task in the queue. We have shown that the average maximum efficiency
decreases, approximately, as the —y/In(1 — «y) for increasing -y, where the average
size of the smallest task equals yN.

The functional relationship between the smallest task size and average maximum
efficiency may provide some useful insights into the observed efficiencies. For 7
”small”, the function —vy/In(1 — ) is approximately linear, so the inefficiency as-
sociated with modest sized tasks is not significant. On the other hand, as 7 increases,
the function —y/In(1 —+) decreases more rapidly than linear, so that the incurred in-
efficiency becomes more significant. This may partially explain the observed uniform
grouping of efficiencies in the 60-80% range.

The key idea in the analysis is the observation that the underlying stochastic
process is a renewal process. The renewal theorem and the asymptotic covariance
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stationarity are used to prove convergence and to derive an explicit form for the
limit. The assumption that the smallest task size, approximately, obeys a Beta law
allows us to derive an analytic expression for the expected maximum efficiency.
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