
Implementation of the Jacobian-free Newton-Krylov1

method for solving the first-order ice sheet momentum2

balance3

Jean-François Lemieux∗,a,1, Stephen Priceb, Katherine J. Evansc, Dana4

Knollb, Andrew G. Salingere, David Hollanda, Tony Payned5

aCourant Institute of Mathematical Sciences, New York University, 251 Mercer Street,6

New York, NY, 10012-1185, USA7

bLos Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 875458

cOak Ridge National Laboratory, 1 Bethel Valley Road P.O. Box 2008, Oak Ridge,9

Tennessee 3783110

dCenter for polar observation and modelling, school of geophysical sciences, University of11

Bristol, Bristol, UK12

eSandia National Laboratories, New Mexico PO Box 5800, Albuquerque, NM 8718513

Abstract14

We have implemented the Jacobian-free Newton-Krylov (JFNK) method15

for solving the first-order ice sheet momentum equation in order to improve16

the numerical performance of the Community Ice Sheet Model (CISM), the17

land ice component of the Community Earth System Model (CESM). Our18

JFNK implementation is based on significant re-use of existing code. For ex-19

ample, our physics-based preconditioner uses the original Picard linear solver20

in CISM. For several test cases spanning a range of geometries and bound-21

ary conditions, our JFNK implementation is 1.84-3.62 times more efficient22

than the standard Picard solver in CISM. Importantly, this computational23

gain of JFNK over the Picard solver increases when refining the grid. Global24

convergence of the JFNK solver has been significantly improved by rescaling25

the equation for the basal boundary condition and through the use of an in-26

exact Newton method. While a diverse set of test cases show that our JFNK27

implementation is usually robust, for some problems it may fail to converge28

with increasing resolution (as does the Picard solver). Globalization through29

parameter continuation did not remedy this problem and future work to im-30

prove robustness will explore a combination of Picard and JFNK and the use31

of homotopy methods.32

33

∗Corresponding author
Email address: lemieux@cims.nyu.edu (Jean-François Lemieux)

Preprint submitted to Journal of computational physics December 23, 2010



Key words: ice sheet model, ice rheology, Newton-Krylov, GMRES, ILU34

1. Introduction35

During the past decade, there have been major changes on both the36

Greenland and Antarctic ice sheets as a result of ice dynamics. In Green-37

land, many outlet glaciers underwent acceleration, thinning and retreat [1,38

2, 3, 4, 5, 6] with a consequent increased contribution to global sea level.39

In Antarctica, land-based glaciers flowing into the Larsen A and Larsen B40

ice shelves sped up after those ice shelves collapsed [7, 8], and the Pine Is-41

land and Thwaites glaciers continued to accelerate and thin [9, 10]. For both42

Greenland and Antarctica, these dynamical changes are largely attributable43

to atmospheric and oceanic forcing [6, 11, 12, 13].44

45

For 2000-2008, one half of the total sea level rise from Greenland can be46

attributed to ice dynamics [14]. In Antarctica, recent analytical and numer-47

ical modeling studies confirm the potential for large-scale, dynamical insta-48

bility, which could increase Antarctica’s contribution to sea level by orders49

of magnitude [15, 16, 17]. The overall consensus in the scientific literature50

from the past decade is that Earth’s large ice sheets respond to external cli-51

mate forcing much faster than was previously thought possible and that ice52

dynamics plays an important role in controlling the rate of mass loss to the53

oceans [18, 19, 20].54

55

Because our understanding of ice sheet dynamics and the controlling phys-56

ical processes is limited, it remains difficult to make plausible estimates for57

the magnitude of sea level rise associated with future changes in the Green-58

land and Antarctic ice sheets. In its Fourth Assessment Report (AR4), the59

Intergovernmental Panel on Climate Change [21] failed to provide a best esti-60

mate or even an upper bound for future sea level rise from ice sheets, largely61

due to this limited understanding. Our current inability to predict the fu-62

ture evolution of ice sheets is demonstrated by the fact that most existing63

ice sheet models fail to mimic or provide insight into the observed, dramatic64

changes occurring on ice sheets.65

66

One reason for this failing is the prevalence of models based on the ”Shal-67

low Ice Approximation” (SIA) for ice dynamics (e.g. [22]), which assumes68

2



that all of the geometric driving stress is balanced locally through vertical69

shearing in the ice column [23]. While the SIA greatly simplifies the numerical70

solution of the momentum and mass conservation equations, the underlying71

assumptions do not hold for the regions of the ice sheet that control the ma-72

jority of the mass flux to the oceans (e.g. outlet glaciers, ice streams, and ice73

shelves). To accurately simulate the flow in these regions, a more complete74

description of the momentum balance is required, for example that given by75

solving the Stokes flow [24] or first-order equations [25, 26, 27]. However,76

the numerical implementation of these ”higher order” momentum approxi-77

mations is much more challenging than for the SIA approximation.78

79

In this work, we focus on improving the numerical performance of ice80

dynamics represented in the Community Ice Sheet Model, Glimmer-CISM.81

The original model [22] was based on the SIA, but a first-order momen-82

tum balance has recently been added [28]. Unlike the SIA, the first-order83

formulation also accounts for the effects of longitudinal and lateral stress84

gradients and, assuming appropriate boundary conditions, is able to repre-85

sent the full continuum of ice flow observed on ice sheets, from relatively86

slow inland flow to relatively fast ice stream and ice shelf flow. The model87

participated in the higher-order model inter-comparison benchmarking study88

(ISMIP-HOM) and, for tests A-E, all outputs were within one standard devi-89

ation of the mean defined by other models of its type (additional information90

on the results of the benchmarking study can be found in [29]).91

92

The existing solution to the first-order momentum equations in Glimmer-93

CISM involves (1) a splitting of the momentum equation into its u and v com-94

ponents (x and y directions in map view) [25], (2) solution of the linearized95

system for v by moving the u terms to the right-hand side and treating them96

as known source terms (and vice versa), (3) a Picard iteration to handle97

the nonlinearity associated with the ice rheology (as discussed below), and98

(4) when appropriate, a correction to the solution from the Picard iteration99

using the ”unstable manifold correction” scheme of [30]. However, as has100

been shown in previous work [31, 32], a Picard treatment of the nonlinearity101

generally leads to undesirably slow rates of convergence.102

103

This paper describes the implementation of a more computationally ef-104

ficient nonlinear solver, the Jacobian-Free Newton-Krylov (JFNK) method,105

into Glimmer-CISM. The JFNK method has many advantages: the rate of106

3



convergence can be nearly quadratic in the vicinity of the solution, it is scal-107

able (if care is taken with the preconditioning operator), and the Jacobian108

does not need to be explicitly formed and stored. This last point is especially109

important; for complicated problems, forming the Jacobian is a difficult de-110

velopment task. While the JFNK method has been applied successfully to111

other fields in the Earth sciences (e.g., [33, 34, 35]), to our knowledge this is112

the first time it has been applied to ice sheet modeling.113

114

Our JFNK implementation re-uses much of the code from the existing115

nonlinear solver. This approach has two clear advantages. First, because it116

takes advantage of existing code it is easy to implement, and second, the ma-117

jority of that code has already been extensively tested. Following this, the118

preconditioning operator is derived directly from the existing linear solver119

of the Picard scheme, an approach sometimes referred to as physics based120

preconditioning (e.g., [33]).121

122

The next section (section 2) gives an overview of the first-order momen-123

tum equation and the related boundary conditions that govern the ice dy-124

namics in Glimmer-CISM. Section 3 describes the standard Picard solver and125

the new JFNK solver in detail. In section 4, we describe a number of test126

cases used to compare the Picard and JFNK solvers. The results of that com-127

parison, the computational efficiency and robustness of Picard versus JFNK,128

are given in section 5. Finally, in section 6 we summarize, make concluding129

remarks, and discuss ongoing work to further improve the numerical perfor-130

mance of Glimmer-CISM.131

132

2. Ice sheet momentum equation with a first-order formulation133

A complete description of the ice-sheet-evolution problem requires so-134

lution of the relevant mass, momentum, and energy conservation equations.135

Our numerical implementation involves a splitting in time such that ice thick-136

ness and temperature are treated explicitly in the momentum equation. Here,137

we focus only on the efficient solution of the momentum balance equation.138

Consistent with an incompressible viscous fluid in a low Reynolds number139

flow, the inertial and advective terms on the left-hand side of the momentum140

equations are ignored, (similarly, the Coriolis term is neglected).141

142

4



A brief description of the first-order momentum equations and boundary143

conditions is given here. For more details, the reader is referred to [28] and144

[25]. More discussion on the derivation of the first-order equations (starting145

from the full Stokes equations) and their formal accuracy can be found in146

[26, 27]. In the discussion below we assume a right-handed Cartesian coor-147

dinate system with x, y, and z representing the two horizontal and vertical148

directions, respectively.149

150

Consistent with a first-order scaling of the full Stokes equations [26, 27],151

the vertical normal stress is balanced by the hydrostatic pressure. This sim-152

plification, along with incompressibility and some rearranging reduces the153

full Stokes equations with four unknowns (the three velocity components u,154

v and w and the pressure) to two equations for the two horizontal velocity155

components, u and v,156

∂

∂x

(
2σ

′

xx + σ
′

yy

)
+
∂σ

′
xy

∂y
+
∂σ

′
xz

∂y
= ρg

∂s

∂x
(1)

∂

∂x

(
2σ

′

yy + σ
′

xx

)
+
∂σ

′
xy

∂y
+
∂σ

′
yz

∂y
= ρg

∂s

∂y
(2)

where the σ
′
ij are the deviatoric stresses, ρ is the ice density, g is the gravita-157

tional acceleration and z = s(x, y) defines the upper surface of the ice sheet.158

The vertical component of velocity, w, can be recovered from the solutions159

for u and v through incompressibility.160

161

The right-hand side (RHS) terms in equations (1) and (2) represent the162

volumetric body forces. For the constitutive equation (i.e. the relation be-163

tween applied stresses and resulting deformations) we use Glen’s flow law164

[23] in a Newtonian form:165

σ
′

ij = 2η ˙εij (3)

where the ˙εij are the strain rates (spatial gradients of the velocity compo-166

nents u, v and w) and η is the effective viscosity, which is given by167

168

η =
1

2
A−1/ng

g (ε̇+ ε̇0)
(1−ng)/ng (4)

5



As is common practice, the value of the power-law exponent ng is set to 3169

[23]. The minimum strain rate ε̇0 in equation (4) is a mathematical require-170

ment that prevents an infinite effective viscosity when ε̇, the second invariant171

of the strain rate tensor, tends to zero. The flow law rate factor Ag depends172

on temperature and (weakly) on ice pressure. Because temperature is taken173

as a known quantity here (it is explicit), Ag is also assumed known.174

175

By assuming that ∂w/∂x � ∂u/∂z and ∂w/∂y � ∂v/∂z, which is valid176

for small aspect ratios [26, 27], and combining equations (1), (2) and (3), the177

v and u momentum equations can be written as178

4
∂η

∂y

∂v

∂y
+
∂η

∂x

∂v

∂x
+
∂η

∂z

∂v

∂z
+ η

(
4
∂2v

∂y2
+
∂2v

∂x2
+
∂2v

∂z2

)

= ρg
∂s

∂x
− 2

∂η

∂y

∂u

∂x
− ∂η

∂x

∂u

∂y
− 3η

∂2u

∂x∂y
(5)

4
∂η

∂x

∂u

∂x
+
∂η

∂y

∂u

∂y
+
∂η

∂z

∂u

∂z
+ η

(
4
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)

= ρg
∂s

∂x
− 2

∂η

∂x

∂v

∂y
− ∂η

∂y

∂v

∂x
− 3η

∂2v

∂x∂y
(6)

Equations (5) and (6) are written in ”split” form, where all terms on the179

left-hand side (LHS) of the equation for v involve v and all terms on the180

RHS of the equation for v involve u (and vice versa for the equation for u).181

This is the form used by the standard Picard solver in Glimmer-CISM and182

the preconditioning operator for our JFNK implementation (the respective183

solution procedures are discussed further below).184

185

2.1. Boundary conditions186

The free surface boundary conditions for the v and u equations are re-187

spectively188

(
2σ

′

yy(s) + σ
′

xx(s)
) ∂s
∂y

+ σ
′

xy(s)
∂s

∂x
− σ′

yz(s) = 0 (7)

(
2σ

′

xx(s) + σ
′

yy(s)
) ∂s
∂x

+ σ
′

xy(s)
∂s

∂y
− σ′

xz(s) = 0 (8)

6



Using the constitutive equation, equations (7) and (8) can be written as189 (
4
∂v

∂y
+ 2

∂u

∂x

)
∂s

∂y
+

(
∂u

∂y
+
∂v

∂x

)
∂s

∂x
− ∂v

∂z
= 0 (9)

(
4
∂u

∂x
+ 2

∂v

∂y

)
∂s

∂x
+

(
∂u

∂y
+
∂v

∂x

)
∂s

∂y
− ∂u

∂z
= 0 (10)

Similarly, the basal boundary conditions for the v and u momentum equa-190

tions are respectively191

τby = σ
′

yz(b)−
(
2σ

′

yy(b) + σ
′

xx(b)
) ∂b
∂y
− σ′

xy(b)
∂b

∂x
(11)

τbx = σ
′

xz(b)−
(
2σ

′

xx(b) + σ
′

yy(b)
) ∂b
∂x
− σ′

xy(b)
∂b

∂y
(12)

where z = b(x, y) defines the lower ice (basal) surface. τby and τbx are the192

components of the basal traction vector. They are formulated here as193

194

τby = −β2v(b) (13)

τbx = −β2u(b) (14)

where β2 = β2(x, y) is a sliding parameter. Its value controls the degree of195

basal sliding at any location; a very large number (> 106 Pa s m−1) allows196

for a quasi no-slip condition, a smaller number (< 102 Pa s m−1) allows for197

a moderate amount of basal sliding, and a value of ∼0 allows for free slip at198

the ice base, as in the case of a freely floating ice shelf (i.e., water drag at199

the base is negligible).200

201

3. Numerical implementation202

3.1. The nonlinear system of equations203

A ghost cell approach is used to impose the boundary conditions at the204

top and at the base. Equations (5) and (6) and the equations related to205

the boundary conditions are discretized using finite differences and can be206

written in a compact form as the nonlinear system of n equations at time t,207

7



F(v,u) =

[
Avv(v,u) Avu(v,u)
Auv(v,u) Auu(v,u)

] [
v
u

]
−
[

sv
su

]
= 0 (15)

where v and u are vectors of size n/2, sv and su include the purely geometric208

terms that do not depend on v and u, the matrix Avv (Auu) is associated209

with the v (u) components of the v (u) equation and the off-diagonal matrix210

Avu (Auv) is associated with the u (v) components of the v (u) equation.211

Notice that the matrices Avv, Auu, Avu and Auv are functions of v and u.212

Together, these four n/2 block matrices form the n×n matrix A. F(v,u) is213

the residual vector.214

215

3.2. The Picard solver216

The Picard solver is based on a splitting of the v and u momentum equa-217

tions. To describe this splitting, we first write the system of equations (15)218

as219 [
Avv(v,u) 0

0 Auu(v,u)

] [
v
u

]
=

[
bv(v,u)
bu(v,u)

]
(16)

where bv(v,u) = sv −Avuu and bu(v,u) = su −Auvv.220

221

This can be written as two similar coupled systems of equations of size222

n/2:223

Avv(v,u)v = bv(v,u) (17)

and224

Auu(v,u)u = bu(v,u) (18)

The Picard solver in Glimmer-CISM is based on an outer loop, the split-225

ting described above and a linear solver. Here is the algorithm of the Picard226

solver:227

228

1. Start with an initial iterate v0,u0
229

do k = 1, kmax230

2. Calculate η(vk−1,uk−1)231

3. ‘‘Solve’’ Avv(vk−1,uk−1)vk = bv(vk−1,uk−1) using a linear solver232

8



4. ‘‘Solve’’ Auu(vk−1,uk−1)uk = bu(vk−1,uk−1) using a linear solver233

5. if ‖ F(vk,uk) ‖< γnl ‖ F(v0,u0) ‖ stop234

enddo235

236

The initial iterate is the previous time step solution or the zero vector237

if t = 0. γnl defines the tolerance of the nonlinear solver. In the algorithm238

above, ‖ ‖ is the L2-norm. ‖ F(v0,u0) ‖ is the initial nonlinear residual norm.239

In Glimmer-CISM, the matrix Avv(vk−1,uk−1) and the vector bv(vk−1,uk−1)240

are formed in order to solve Avv(vk−1,uk−1)vk = bv(vk−1,uk−1) for vk with241

a linear solver. The same process is repeated to obtain uk. Notice that for242

step 4, the matrix Auu and the vector bu are formed using vk−1 not vk.When243

close to a converged solution, the ”unstable manifold correction” scheme of244

[30] may also be applied after step 4. The standard linear solver, which is part245

of the SLAP package [36], is the Generalized Minimum RESidual (GMRES,246

[37]) method preconditioned by an Incomplete LU (ILU) factorization [38].247

The criterion for convergence in step 3 is (an analogous criterion is applied248

to step 4) :249

‖ P−1
ILU(bv −Avvvk) ‖
‖ P−1

ILUbv ‖
< γl (19)

where P−1
ILU is the preconditioning operator for the Picard solver.250

3.3. The JFNK solver251

Unlike the Picard solver in Glimmer-CISM, the JFNK method does not252

split the v and u equations. However, there is a splitting in the precondi-253

tioning step because we use the Picard linear solver for this operation. We254

introduce the vector x = [v u]T , which is formed by stacking the v com-255

ponents of velocity followed by the u components. We then have the same256

nonlinear system of equations (15) to solve as discussed previously but writ-257

ten as258

F(x) = F(v,u) =

[
Fv(v,u)
Fu(v,u)

]
= 0 (20)

The Newton method is based on a multivariate Taylor expansion around259

a previous iterate (xk−1):260

F(xk−1 + δxk) ≈ F(xk−1) + F
′
(xk−1)δxk (21)

9



where the higher order terms are neglected in the Taylor expansion.261

262

Setting F(xk−1+δxk) = 0, the correction δxk = xk−xk−1 can be obtained263

by solving the linear system of n equations, here using a Krylov method:264

J(xk−1)δxk = −F(xk−1) (22)

where the system matrix J ≡ F
′

is the Jacobian, an n × n matrix with ele-265

ments given by Jij = ∂Fi(x
k−1)/∂(xk−1

j ) (with i = 1, n and j = 1, n).266

267

The Newton-Krylov algorithm is:268

269

1. Start with an initial iterate x0
270

do k = 1, kmax271

2. Calculate η(xk−1)272

3. ‘‘Solve’’ J(xk−1)δxk = −F(xk−1) using a Krylov method273

4. xk = xk−1 + δxk
274

5. if ‖ F(xk) ‖< γnl ‖ F(x0) ‖ stop275

enddo276

277

As with Picard, the initial iterate is the previous time step solution or278

the zero vector if t = 0. In step 3, the convergence criterion for the linear279

solver is ‖ J(xk−1)δxk + F(xk−1) ‖< γl(k) ‖ F(xk−1) ‖. The parameter γl(k),280

which is a constant smaller than unity, defines the tolerance of the linear281

solver. Solving J(xk−1)δxk = −F(xk−1) to a very high accuracy (γl(k)→ 0)282

might overall increase the total CPU time in finding the nonlinear approxi-283

mate solution and might even decrease the robustness of the solver. When284

the approximate solution to the linear system of equations is not “accurate”,285

the approach is referred to as an inexact Newton method [39]. This is the286

approach adopted in this work, as discussed further below.287

288

Our implementation of JFNK relies on code re-use from the existing289

Picard solver within the Glimmer-CISM model. First, the residual vector290

F(xk−1) can be obtained as291

F(xk−1) =

[
Avv(xk−1)vk−1 − bv(xk−1)
Auu(xk−1)uk−1 − bu(xk−1)

]
(23)

To calculate the residual vector F, we just had to code a simple MATVEC292

10



subroutine as we reuse the part of the Glimmer-CISM code that calculates293

the matrices Avv and Auu and the vectors bv and bu. As opposed to the294

Picard solver implementation which requires only one matrix to be stored295

(because of the splitting), both matrices Avv(xk−1) and Auu(xk−1) are stored296

for JFNK because they are used for the preconditioning step.297

298

Obtaining the Jacobian matrix is a difficult development task for compli-299

cated problems such as the one considered here. Moreover, forming this sys-300

tem matrix could be computationally expensive. For these reasons, we adopt301

a Jacobian-free approach, which is possible when using a Krylov method as302

the linear solver. Indeed, Krylov methods approximate the linear solution in303

a subspace of the form (r0,Jr0,J
2r0...) where r0 is the initial linear residual304

given by J(xk−1)δxk
0 + F(xk−1) [39], with an initial guess δxk

0 usually taken305

to be zero. Because Krylov methods require only the product of the system306

matrix (the Jacobian) and a vector, the Jacobian matrix does not need to be307

formed and stored explicitly. Rather, only its action on a vector is required.308

This property is fundamental for the implementation of a Jacobian-free ap-309

proach, which relies on the fact that the product of J times a vector w can310

be approximated by a first-order Taylor series expansion311

J(xk−1)w ∼ F(xk−1 + εw)− F(xk−1)

ε
, (24)

where ε is a small number (10−7 in our implementation).312

313

The approximation of J times a vector can be calculated using the ma-314

chinery previously described in equation (23).315

316

Krylov methods for solving linear systems of stiff equations are likely to317

converge very slowly and to exhibit robustness issues unless preconditioning318

is applied [40]. By using preconditioning, one solves an equivalent system319

of equations that has the same solution as the original system but which320

is numerically easier to solve. In this work we use the Flexible GMRES321

(FGMRES) approach which relies on right preconditioning [40]. In this case,322

equation (22) becomes323

J(xk−1)P−1
p δz = −F(xk−1) (25)

where δz = Ppδx
k and P−1

p is referred to as the preconditioning operator.324

11



The subscript p indicates that the Picard solver is used for the JFNK pre-325

conditioning operator (as discussed further below).326

327

Note that P−1
p is an operator that should not be necessarily considered328

as the inverse of a matrix. We are looking for an operator that approxi-329

mates the inverse of the system matrix (J−1). As before, we are looking for330

a Jacobian-free approach.331

332

The matrix J can be divided into two matrices [35]333

J(xk−1) = A(xk−1) + G(xk−1) (26)

where A(xk−1) is the matrix described in equation (15, linearized with xk−1)334

and G(xk−1) is a matrix with entries made up of sums of terms like335

xk−1
j ∂aij(x

k−1)/∂(xk−1
j ) (the aij being the elements of the matrix A). The336

matrix G reflects the nonlinear nature of the ice sheet rheology, i.e., the fact337

that the viscosity depends on the velocity field as opposed to a Newtonian338

fluid. Using the block matrices introduced in equation (15), we can write339

J(xk−1) as340

J(xk−1) =

[
Avv(xk−1) 0

0 Auu(xk−1)

]
+

[
0 Avu(xk−1)

Auv(xk−1) 0

]
+G(xk−1)

(27)
While the off-diagonal matrices Avu(xk−1) and Auv(xk−1) are never formed341

within the existing Picard solver and getting G(xk−1) is very complicated342

(the reason why the system matrix J(xk−1) is so difficult to obtain), we do343

have access to the matrices Avv(xk−1) and Auu(xk−1). It is therefore possible344

to use these two matrices for the preconditioning operator. Given a vector345

q, the preconditioning operator applied to it leads to the vector r = P−1
p q346

where q and r are vectors formed during the Krylov iteration process. In347

more details, based on the splitting approach of the Picard solver and the348

matrices Avv(xk−1) and Auu(xk−1), the preconditioning operator leads to349

rv = Ã−1
vvqv (28)

ru = Ã−1
uuqu (29)

12



where q = [qv qu]T and r = [rv ru]T , and the tilde indicates that we solve350

equations (28) and (29) to a very loose tolerance (γl = 10−3, see equation (19)351

for details). In other words, rv is the approximate solution of Avvtv = qv352

where tv would be the exact solution.353

354

3.4. Robustness of the solvers355

For the Picard solver, γl in equation (19) is set to 10−12. This is a very356

small value of γl. Tests have shown that this high tolerance increases the357

robustness of the Picard solver [28]. Note that the same criterion is used for358

the u equation in step 4.359

360

We have included two small modifications to our JFNK solver to improve361

its robustness. As was observed by [41] and [35], a small value of the forcing362

term γl (see equation (30)) in early Newton iterations increases the CPU363

time and can even prevent convergence of the approximate solution. We364

have substantially improved the robustness of our JFNK solver by using an365

inexact Newton method. Following [42], the value of the parameter γl(k) in366

our inexact Newton approach depends on previous values of the L2-norm. It367

is given by368

γl(k) = α

(
‖ F(xk−1) ‖
‖ F(xk−2) ‖

)m

(30)

where the parameters α and m are 1 and 2, respectively. We have not done369

a thorough investigation to optimize these parameters. For the first Newton370

iteration, γl(k) = 0.9 and it is limited to 0.01 ≤ γl(k) ≤ 0.9 for subsequent it-371

erations. As discussed later, this progressive tolerance (equation (30)) might372

only be needed for a few time steps at the beginning of the run when the373

initial iterate is far from the solution. Later in the simulation, a more aggres-374

sive tolerance (e.g., γl(k) = 0.01) could be used to improve the computational375

efficiency without affecting the robustness.376

377

The second modification is related to the basal boundary condition. Strong378

friction at the base (β2 � 1) leads to large off-diagonal elements in the Avv379

and Auu matrices. A rescaling of the elements in Avv and Auu associated380

with the basal boundary conditions has proven to significantly improve the381

robustness of the JFNK solver. Note that the same scaling is used here for382

13



test case domain problem size β2 (Pa s m−1)
dome-2km 30x30x10 6640 1010

dome-1km 60x60x10 27760 1010

dome-0.5km 120x120x10 111520 1010

dome-0.25km 240x240x10 448960 1010

ISMIP-HOM-C 91x91x11 182116 variable and periodic
shelf 51x51x11 48576 10−5

GIS-20km 76x141x11 94644 1010

GIS-10km 151x281x11 371602 1010

GIS-5km 301x561x11 1483196 1010

Table 1: The different test cases

the Picard solver but that it does not affect its robustness and performances.383

384

4. The test cases385

We have used a suite of test cases to assess the robustness and compu-386

tational efficiency of the JFNK method and to compare these to the Picard387

solver. A wide range of problem sizes, configurations, and boundary condi-388

tions are covered. Table 1 gives relevant details about the different test cases.389

390

The name of each test case is given in the first column of Table 1. The391

horizontal (East-West and North-South) dimensions and the number of ver-392

tical levels are given in the second column and the size of the problem is given393

in the third column. The size of the problem is defined as the number of grid394

cells where ice is present (at the beginning of the simulation) times two (for395

the two components of velocity). The last column gives some information396

about the sliding coefficient β2.397

398

The first four test cases correspond to the same problem: a parabolic399

dome of ice with a circular, 60 km diameter base. The horizontal spatial400

resolutions studied are 2 km, 1 km, 0.5 km and 0.25 km, and there are 10401

vertical levels. For this set of experiments, a quasi no-slip basal condition402

is imposed by setting β2 = 1010 Pa s m−1. A zero-flux boundary condition403

is applied at the dome margins. We refer to this set of experiments as the404

14



ρ ice density 910 kg m−3

g gravitational acceleration 9.81 m s−2

ng exponent in Glen’s law 3
Ag flow rate parameter 10−16 Pa−ngyr−1

Table 2: Physical constants used in the simulations

“dome” test cases. The next test case (“shelf”) involves a flat ice shelf of405

uniform thickness at flotation that is confined on three sides by solid walls406

but open to the ocean on the fourth side. Along the confined walls a zero-flux407

boundary condition is applied and along the open front the stress is balanced408

by the hydrostatic pressure due to a column of ocean water. The drag on409

the shelf bottom is negligible as β2 is set to 10−5. In the ISMIP-HOM-C test410

case, the β2 value is doubly periodic as described in [29]. The last set of test411

cases represent the Greenland ice sheet (GIS) at different spatial resolutions412

(20 km, 10 km and 5 km), based on the 5 km digital elevation model of [43].413

A quasi-no slip boundary condition is applied at the bed. As with the dome414

test cases, a zero-flux boundary condition is applied at the lateral margins.415

We refer to these respectively as GIS-20km, GIS-10km and GIS-5km. In all416

test cases, the ice is taken as isothermal with a constant and uniform rate417

factor of 10−16 Pa−ngyr−1.418

419

Table 2 gives the value of the physical constants used by the model for420

the simulations presented here.421

422

We treat the evolution of the ice thickness using the ”incremental remap-423

ping” scheme of [44], a higher-order advection scheme that has been applied424

successfully to the thickness evolution of sea ice [45].425

426

5. Results427

All simulations were performed on a desktop computer (Intel(R) dual-428

core(TM) E8400 3.00 GHz CPU, cache of 6144 KB with a RAM of 4 Gb).429

The fortran compiler is gfortran 4.1.2, 64 bits and the O3 optimization is430

used. We use revision 2002 of a Glimmer-CISM developmental branch (called431

the parallel branch) that will be released to the public in the near future.432

15



test case ite JFNK ite Picard CPU JFNK CPU Picard gain
dome-2km 11 51 1.39 3.13 2.25
ISHOM-HOM-C 15 58 170.97 522.81 3.06
shelf 8 60 37.09 101.42 2.73
GIS-20km 10 51 17.89 45.01 2.51
GIS-10km 15 55 136.36 251.42 1.84

Table 3: Number of outer iterations and CPU time required to calculate a diagnostic
velocity field when using either the Picard solver or the JFNK solver and computational
gain of JFNK over Picard depending on the test case.

433

5.1. Robustness434

In the first series of experiments, we assess the robustness of the JFNK435

and Picard solvers in calculating a diagnostic velocity field. The initial it-436

erate is the zero vector, which provides a good test to evaluate the global437

convergence1 properties (and therefore robustness) of a nonlinear solver as438

this initial iterate is far from the solution. Changing the size of the time439

step for a diagnostic solution does not affect the robustness results presented440

here because the inertial term is neglected in the momentum equations (i.e.441

a steady-state solution given a temperature and thickness fields). For all the442

following robustness experiments, the nonlinear tolerance (γnl) is set to 10−8.443

444

Figure 1 shows the evolution of the L2-norm for the Picard solver (dashed445

curves) and the JFNK solver (solid curves) with the number of outer itera-446

tions. Table 3 summarizes the results for the number of outer iterations and447

CPU time required to get the approximate solution. The current focus is ro-448

bustness so we assess if the solvers are able (or not) to calculate the required449

approximate solution. We also give the number of iterations and CPU time450

required for the simulations, but given that the first step is a very particular451

case, the iteration count and computational gain of JFNK over Picard might452

not be representative.453

454

1an iterative method is said to be globally convergent if the approximate solution
converges to the true solution given some arbitrary initial iterate

16



20 40 60

10
−5

10
0

L
2

−
n

o
rm

outer iterations

dome−2km

20 40 60

10
−5

10
0

L
2

−
n

o
rm

outer iterations

ISHOM−HOM−C

20 40 60

10
−5

10
0

L
2

−
n

o
rm

outer iterations

shelf

20 40 60

10
−5

10
0

L
2

−
n

o
rm

outer iterations

GIS−20km

20 40 60

10
−5

10
0

L
2

−
n

o
rm

outer iterations

GIS−10km

20 40 60

10
−5

10
0

L
2

−
n

o
rm

outer iterations

GIS−5km

Figure 1: L2-norm as a function of the number of outer loop iterations for the Picard solver
(dashed curves) and the JFNK solver (solid curves). The test cases are: a) dome-2km, b)
ISHOM-HOM-C c) shelf d) GIS-20 km, e) GIS-10 km and f) GIS-5 km.

.

Both solvers converge to the solution for the dome-2km, ISHOM-HOM-C,455

shelf, GIS-20km and GIS-10km test cases. However, Picard and JFNK fail456

to converge at 5 km resolution for the Greenland ice sheet test case. For both457

solvers, the residual initially decreases by almost three orders of magnitude458

but then levels off. A plot of the residual on the grid shows that this con-459

vergence issue only affects a few grid cells (not shown). We discuss several460

potential strategies for addressing this problem in the conclusions.461

462

The JFNK solver requires between 3.7 to 7.5 times fewer outer iterations463

than the Picard solver to get the solution. Nevertheless, because a Newton464

17



iteration involves more computations, the computational gain is not as high465

as the iteration count ratio. Here, we find that the JFNK solver is between466

1.84-3.06 times faster than the Picard solver depending on the particular test467

case.468

469

5.2. Computational efficiency470

Because the initial iterate is far from the solution, both solvers have a471

harder time solving the nonlinear system of equations at the beginning of472

the runs (for a few time steps). After this transition phase, the behavior of473

each solver is fairly constant (i.e., the CPU time and number of outer iter-474

ations required per time step do not vary significantly). The main goal in475

developing a JFNK solver is to significantly reduce the computational time476

for long-term simulations. In this section, we assess the computational gain477

of JFNK over the Picard solver in the context of long-term simulations by478

looking at the performances of both solvers after the initial transition phase.479

We are also interested in understanding how this computational gain evolves480

as the problem size increases.481

482

To this end, we perform two sets of experiments. In the first one, we483

compare the computational efficiency of JFNK to the one of Picard for the484

dome test cases with increasing horizontal spatial resolution. In the second485

set of experiments, we investigate the performance of JFNK and Picard in486

simulating the Greenland ice sheet (under the conditions given above) at 20487

km and 10 km resolutions. For all these experiments, γnl = 10−6 and the488

time step is 1 year. The simulations are run for 20 years. The mean CPU489

time per time step required by Picard is compared to the mean CPU time490

needed by JFNK. The mean values are calculated based on time steps 11 to491

20 (i.e. sufficiently far from the initial iterate).492

493

As an aside, Figure 2 shows a typical velocity field solution. It is the sur-494

face ice speed calculated with the JFNK solver for the GIS-10km test case495

at t = 10 years. In accordance with observations, the fastest velocities are496

found close to ice margins.497

498

Figure 3 shows the relative computational gain of JFNK versus Picard499

as a function of the problem size for the dome test cases (solid curve with ∗500

data points) and the Greenland ice sheet experiments (the + data points).501

18



Figure 2: Surface ice speed calculated with the JFNK solver for the GIS-10km test case
at t = 10 years. Values are in m/year.

.

The computational gain is calculated as the mean CPU time per time step502

required by Picard divided by the mean CPU time per time step for JFNK.503

The JFNK solver is clearly more efficient than Picard for all the spatial504

resolutions tested and for both sets of experiments. Furthermore, the com-505

putational gain increases as the grid is refined. For the dome experiments,506

JFNK is 2.6 times faster than Picard for a 2 km resolution. This gain in-507

creases to 3.62 at 0.25 km resolution. Although the computational gains508

are lower, JFNK is still significantly faster than Picard for the Greenland509

experiments: the gain is 2.14 at 20 km and 2.44 at 10 km resolution. The510

computational gain of JFNK over the Picard solver also increases when a511

more accurate solution (a smaller γnl) is required (results not shown). Note512

that these numbers (the computational gain) are slightly biased in favor of513

19



the Picard solver because the final L2-norm of the JFNK solver is often sig-514

nificantly lower than that from the Picard solver; from one iteration to the515

next, the L2-norm drops by a larger amount for a single Newton iteration516

than for a single Picard iteration (see Figure 5 for an example of this).517

518

10
4

10
5

10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

C
o

m
p

u
ta

ti
o

n
a

l 
g

a
in

size of problem

Figure 3: Mean CPU time needed by Picard divided by the mean CPU time for JFNK
as a function of the problem size for the dome test cases (∗) and the Greenland ice sheet
simulations (+).

Figure 4 gives additional information on the behavior of JFNK as the grid519

is refined. First, Figure 4a shows on a log-log plot how the CPU time evolves520

as the resolution is increased. The relationship between the CPU time and521

the problem size is linear (on a log-log plot) but the slope is slightly larger522

than 1 (for both sets of experiments). The “extra work” is performed by523

the inner GMRES (Figure 4c) as the number of FGMRES iterations is fairly524

constant when changing the spatial resolution (Figure 4b). At 2 km resolu-525

tion with the “dome” test case, the percentage of CPU time associated with526

the preconditioning operator is slightly larger than 25% while this percentage527

increases to 45% with a 0.25 km grid. The use of a more efficient precondi-528

20



tioner such as an algebraic multigrid will likely result in better scaling (slope529

close to 1).530

531

10
4

10
6

10
0

10
1

10
2

10
3

C
P

U
 t
im

e
 f
o
r 

J
F

N
K

 (
s
)

size of problem

10
4

10
6

0

5

10

15

20

25

F
G

M
R

E
S

 i
te

ra
ti
o
n
s
 p

e
r 

ti
m

e
 s

te
p

size of problem

10
4

10
6

0

200

400

600

800

1000

G
M

R
E

S
 i
te

ra
ti
o
n
s
 p

e
r 

ti
m

e
 s

te
p
 

size of problem

Figure 4: a) Average CPU time per time step required by JFNK as a function of the
problem size. b) Average number of FGMRES iterations per time step for the JFNK
solver as a function of the problem size. c) Average number of GMRES (the preconditioner)
iterations per time step for the JFNK solver as a function of the problem size. The data
points for the “dome” test cases are the ∗ while the + correspond to the Greenland ice
sheet simulations.

Figure 5 shows a typical evolution of the L2-norm of the nonlinear system532

of equations when using either JFNK or the Picard solver for the GIS-10km533

test case at t = 10 years. The L2-norm as a function of the number of outer534

iterations for the Picard solver is shown with the dashed curve. The solid535

curve with the ∗ data points shows the L2-norm with the number of New-536

ton iterations for JFNK when using the progressive linear tolerance given by537

equation (30) (the default approach). Because this progressive linear toler-538

ance is only needed for the first few time steps to increase robustness, more539

aggressive tolerance values can be used for later times. We have done this here540

by setting γl(k) = 0.01 at t = 10 years, for the solid curve with the + data541

points on Figure 5. With this tighter tolerance, JFNK only needs 3 Newton542

iterations to reach the convergence criterion while 5 Newton iterations are543

required with the progressive tolerance. In terms of computational efficiency,544

JFNK is 2.45 faster than Picard with the progressive tolerance and 2.95 faster545

21



with a fixed γl(k) of 0.01. As expected from theory, the convergence rate of546

Picard is linear. For JFNK, the convergence rate is not quadratic because an547

inexact Newton approach is used. Asymptotic quadratic convergence could548

be achieved by using very small values of γl(k) [39].549

550

0 5 10 15 20 25 30 35
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

L
2

−
n

o
rm

outer iterations

 

 

Picard

JFNK

JFNK(γ=0.01)

Figure 5: L2-norm as a function of the number of outer iterations for the Picard solver,
JFNK with γl(k) given by equation (30) and JFNK with γl(k) = 0.01. This is for the
GIS-10km test case at t = 10 years.

.

The use of the Picard solver (GMRES+ILU) as a preconditioner has lead551

to a quick implementation of the JFNK solver. One might argue however552

that a more computationally efficient approach would be to simply use ILU553

for the preconditioning step and therefore put aside the inner GMRES. Re-554

sults indicate that at low resolution, JFNK with ILU as the preconditioner555

(referred here as JFNK-ILU) is as efficient as our standard JFNK (with556

GMRES+ILU for the preconditioning step). However, as the resolution is557

increased, JFNK-ILU is less and less efficient (results not shown). This is558

caused by a significant increase in the number of FGMRES iterations when559

22



compared to our standard JFNK approach. This is detrimental on the CPU560

time as function evaluations in the approximation of the Jacobian times a561

vector (equation (24)) are costly. As it was observed by others, ILU does562

not perform well when refining the grid as it leads to a lot more of Krylov563

iterations (e.g., [46]).564

565

6. Conclusion566

We have implemented a Jacobian-Free Newton-Krylov (JFNK) method567

to solve the first-order ice sheet momentum equations. This new solver has568

been implemented into the framework of the Community Ice Sheet Model569

(Glimmer-CISM), the land ice component of the Community Earth System570

Model (CESM). It was developed by re-using many parts of the existing571

Picard solver in Glimmer-CISM. Specifically, we have developed a physics572

based preconditioner with the existing Glimmer-CISM Picard solver. The573

re-use of previously tested code has led to a quick implementation.574

575

Two minor modifications considerably improved the robustness of our576

JFNK implementation. First, we apply a loose linear tolerance during the577

early stage of the Newton process. As observed by others (e.g., [41], [35]),578

the use of a tight tolerance in the early Newton iterations can be detrimental579

in terms of CPU time and can even prevent the method from converging. A580

loose tolerance of γl(k) = 0.9 is applied for the first Newton iteration and581

subsequent values are calculated according to the evolution of the L2-norm582

(based on [42]). Second, the imposition of the boundary condition at the583

base can lead to very large matrix coefficients. To improve the robustness,584

a rescaling of the rows of the matrix associated with this basal boundary585

condition is employed.586

587

With these modifications, JFNK converges for a range of different test588

cases even when starting with an initial iterate that is far from the solution.589

However, our tests also indicate that JFNK sometimes does not converge590

for high resolution simulations. We note that the existing Picard solver also591

exhibits a lack of robustness for these same fine grid test cases. Additional592

work needs to be done to eliminate this problem. A parameter continuation593

method [39] has not been able to resolve this issue. This was done by slowly594

adjusting the value of the exponent in Glen’s law (equation (3)) during the595

23



Newton iteration. We are currently investigating the use of a combination596

Picard (in the early stage) and Newton (at the end of the process) solver to597

improve the overall solver robustness [32]. We are also investigating homo-598

topy and pseudo-transient continuation [39] methods as possible globalization599

approaches.600

601

The computational efficiency of JFNK (and its comparison to the one of602

Picard) was studied for two different sets of experiments with variable hori-603

zontal spatial resolution. These tests indicate that JFNK is between 2.14 to604

3.62 times faster than the Picard solver. The computational gain of JFNK605

over Picard increases as the grid is refined. Moreover, the computational606

gain increases when a tighter nonlinear tolerance is required. In other words,607

the JFNK solver is increasingly more efficient compared to Picard when a608

more accurate solution is desired. The JFNK method is therefore a signif-609

icant improvement in terms of computational efficiency when compared to610

the standard solver of Glimmer-CISM (the Picard solver).611

612

Because the percentage of CPU time associated with the preconditioning613

step increases with the spatial resolution of the problem, a more efficient pre-614

conditioner, such as algebraic multigrid, could further improve the results.615

We are currently implementing the Trilinos solver package [47], after which616

we will replace our “homemade” JFNK solver with the Trilinos NOX solver,617

using multi-level (ML) for the preconditioning step. We are also developing618

a multi-pass Picard preconditioner (which involves the use of the off-diagonal619

block matrices) to reduce the CPU time associated with the preconditioning620

operator. Current work also includes a complete parallelization of the model.621

622

Acknowledgments623

We would like to thank Carl Gladish for his help in setting up and compil-624

ing Glimmer-CISM and William H. Lipscomb for helpful discussions. Jean-625

François Lemieux is grateful to FQRNT and NSERC for Postdoctoral fel-626

lowships. This work has been funded by the Department of Energy Office627

of Advanced Scientific Computing project, A Scalable, Efficient, and Accu-628

rate Community Ice Sheet Model, within the ISICLES initiative. Sandia is a629

multiprogram laboratory operated by Sandia Corporation, a Lockheed Mar-630

tin Company, for the United States Department of Energy under contract631

24



DE-AC04-94AL85000.632

633

References634

[1] I. Joughin, A. W, F. M, Large fluctuations in speed on Green-635

land’s Jakobshavn Isbrae glacier, Nature 432 (2004) 608–610,636

doi:10.1038/nature03130.637

[2] I. M. Howat, I. Joughin, T. S, S. Gogineni, Rapid retreat and accelera-638

tion of Helheim glacier, east Greenland, Geophys. Res. Lett. 32 (2005)639

L22502, doi:10.1029/2005GL024737.640

[3] E. Rignot, P. Kanagaratnam, Changes in the velocity struc-641

ture of the Greenland ice sheet, Science 311 (2006) 986–990,642

doi:10.1126/science.1121381.643

[4] I. M. Howat, I. Joughin, T. A. Scambos, Rapid changes in ice discharge644

from Greenland outlet glaciers, Science 315 (5818) (2007) 1559–1561,645

dOI: 10.1126/science.1138478.646

[5] A. Luckman, T. Murray, R. de Lange, E. Hanna, Rapid and synchronous647

ice-dynamic changes in East Greenland, Geophys. Res. Lett. 33 (2006)648

L03503, doi:10.1029/2005GL025428.649

[6] T. Murray, K. Scharrer, T. D. James, S. R. Dye, E. Hanna, A. D. Booth,650

N. Selmes, A. Luckman, A. L. C. Hugues, S. Cook, P. Huybrechts, Ocean651

regulation hypothesis for glacier dynamics in southeast Greenland and652

implications for ice sheet mass changes, J. Geophys. Res. 115 (2010)653

F03026, doi:10.1029/2009JF001522.654

[7] H. De Angelis, P. Skvarca, Glacier surge after ice shelf collapse, Science655

299 (5612) (2003) 1560–1562, doi:10.1126/science.1077987.656

[8] T. A. Scambos, J. A. Bohlander, S. C. A, P. Skvarca, Glacier ac-657

celeration and thinning after ice shelf collapse in the the Larsen658

B embayment, Antarctica, Geophys. Res. Lett. 31 (2004) L18402,659

doi:10.1029/2004GL020670.660

25



[9] E. Rignot, J. L. Bamber, M. R. Van den Broeke, C. Davis, Y. Li, W. J.661

Van de Berg, E. Van Meijgaard, Recent Antarctic ice mass loss from662

radar interferometry and regional climate modelling, Nature Geoscience663

1 (2) (2008) 106–110.664

[10] D. J. Wingham, D. W. Wallis, A. Shepherd, Spatial and temporal evo-665

lution of Pine Island Glacier thinning, 1995–2006, Geophys. Res. Lett.666

36 (17) (2009) L17501, doi:10.1029/2009GL039126.667

[11] D. M. Holland, R. H. Thomas, B. de Young, M. H. Ribergaard, B. Ly-668

berth, Acceleration of Jakobshavn Isbræ triggered by warm subsurface669

ocean waters, Nature Geoscience 1 (2008) 659–664.670

[12] M. Thoma, A. Jenkins, D. Holland, S. Jacobs, Modelling Cir-671

cumpolar Deep Water intrusions on the Amundsen Sea continental672

shelf, Antarctica, Geophys. Res. Lett. 35 (18) (2008) L18602, doi:673

10.1029/2008GL034939.674

[13] A. Shepherd, A. Hubbard, P. Nienow, M. King, M. McMillan, I. Joughin,675

Greenland ice sheet motion coupled with daily melting in late summer,676

Geophys. Res. Lett. 36 (1) (2009) L01501, doi:10.1029/2008GL035758.677

[14] M. van den Broeke, J. Bamber, J. Ettema, E. Rignot, E. Schrama, W. J.678

van de Berg, E. van Meijgaard, I. Velicogna, B. Wouters, Partitioning679

recent Greenland mass loss, Science 326 (5955) (2009) 984–986, doi:680

10.1126/science.1178176.681

[15] C. Schoof, Ice sheet grounding line dynamics: steady states, sta-682

bility, and hysteresis, J. Geophys. Res. 112 (2007) F03S28, doi:683

10.1029/2006JF000664.684

[16] R. F. Katz, M. G. Worster, Stability of ice-sheet grounding lines, Proc.685

R. Soc. A 466 (2010) 1597–1620.686

[17] D. Goldberg, D. M. Holland, C. Schoof, Grounding line movement and687

ice shelf buttressing in marine ice sheets, J. Geophys. Res. 114 (F4)688

(2009) F04026, doi:10.1029/2008JF001227.689

[18] R. Alley, P. U. Clark, P. Huybrechts, I. Joughin, Ice-sheet690

and sea-level changes, Science 310 (5747) (2005) 456–460, doi:691

10.1126/science.1114613.692

26



[19] J. Bamber, R. B. Alley, I. Joughin, Rapid response of modern day ice693

sheets to external forcing, Earth Planet. Sc. Lett. 257 (1-2) (2007) 1–13,694

doi:10.1016/j.epsl.2007.03.005.695

[20] A. Shepherd, D. Wingham, Recent Sea-Level Contributions of the696

Antarctic and Greenland Ice Sheets, Science 315 (5818) (2007) 1529–697

1532, doi:10.1126/science.1136776.698

[21] R. Alley, Climate Change 2007: The Physical Science Basis. Contribu-699

tion of Working Group I to the Intergovernmental Panel on Climate700

Change, chapter 1: Summary for Policymakers., Cambridge University701

Press, 2007.702

[22] I. C. Rutt, M. Hagdorn, N. R. J. Hulton, A. J. Payne, The Glimmer703

community ice sheet model, J. Geophys. Res. 114 (2009) F02004, doi:704

10.1029/2008JF001015.705

[23] W. Paterson, The physics of glaciers, Oxford, Pergamon, Tarrytown,706

N.J., 1994.707

[24] G. Durand, O. Gagliardini, B. Fleurian, T. Zwinger, E. Le Meur, Marine708

ice sheet dynamics: Hysteresis and neutral equilibrium, J. Geophys. Res.709

114 (2009) F03009, doi:10.1029/2008JF001170.710

[25] F. Pattyn, A new three-dimensional higher-order thermomechanical ice711

sheet model: Basic sensitivity, ice stream development, and ice flow712

across subglacial lakes, J. Geophys. Res. 108 (B8) (2003) 2382, doi:713

10.1029/2002JB002329.714

[26] C. Schoof, R. C. A. Hindmarsh, Thin-film flows with wall slip: an asymp-715

totic analysis of higher order glacier flow models, Q. J. Mechanics Appl.716

Math. 63 (2010) 73–114, doi:10.1093/qjmam/hbp025.717

[27] J. K. Dukowicz, S. F. Price, W. H. Lipscomb, Consistent approx-718

imations and boundary conditions for ice-sheet dynamics from a719

principle of least action, J. Glaciol. 56 (197) (2010) 480–496, doi:720

10.3189/002214310792447851.721

[28] T. Payne, S. Price, A three-dimensional, first-order model of ice flow:722

numerical implementation and benchmarking. In preparation.723

27



[29] F. Pattyn, L. Perichon, A. Aschwanden, B. Breuer, B. de Smedt,724

O. Gagliardi, G. H. Gudmundsson, R. Hindmarsh, A. Hubbard, J. V.725

Johnson, T. Kleiner, Y. Konovalov, C. Martin, A. J. Payne, D. Pollard,726

S. Price, M. Rückamp, F. Saito, O. Souček, S. Sugiyama, T. Zwinger,727

Benchmark experiments for higher-order and full Stokes ice sheet models728

(ISMIP-HOM), The Cryosphere Discuss. 2 (2008) 111–151.729

[30] R. Hindmarsh, A. Payne, Time-step limits for stable solutions of the730

ice-sheet equation, Ann. Glaciol. 23 (1996) 74–85.731

[31] J.-F. Lemieux, B. Tremblay, Numerical convergence of viscous-732

plastic sea ice models, J. Geophys. Res. 114 (2009) C05009,733

doi:10.1029/2008JC005017.734

[32] C. Paniconi, M. Putti, A comparison of Picard and Newton iteration735

in the numerical solution of multidimensional variably saturated flow736

problems, Water Resour. Res. 30 (12) (1994) 3357–3374.737

[33] J. M. Reisner, V. A. Mousseau, A. A. Wyszogrodzki, D. A. Knoll, An738

implicitly balanced hurricane model with physics-based preconditioning,739

Mon. Wea. Rev. 133 (2005) 1003–1022.740

[34] K. J. Evans, D. A. Knoll, M. A. Pernice, Development of a 2-D algorithm741

to simulate convection and phase transition efficiently, J. Comput. Phys.742

219 (2006) 404–417, doi:10.1016/j.jcp.2006.03.025.743

[35] J.-F. Lemieux, B. Tremblay, J. Sedláček, P. Tupper, S. Thomas,744

D. Huard, J.-P. Auclair, Improving the numerical convergence of viscous-745

plastic sea ice models with the Jacobian-free Newton Krylov method, J.746

Comput. Phys. 229 (2010) 2840–2852, doi:10.1016/j.jcp.2009.12.011.747

[36] M. Seager, A SLAP for the masses, Tech. Rep. UCRL-100267, Lawrence748

Livermore Nat. Lab., Livermore, Calif. (1988).749

[37] Y. Saad, M. H. Schultz, GMRES: a generalized minimal residual al-750

gorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat.751

Comput. 7 (3) (1986) 856–869.752

[38] O. Axelsson, Iterative Solution Methods, Cambridge University Press,753

New York, 1994.754

28



[39] D. A. Knoll, D. E. Keyes, Jacobian-free Newton-Krylov methods: a755

survey of approaches and applications, J. Comput. Phys. 193 (2) (2004)756

357–397, doi:10.1016/j.jcp.2003.08.010.757

[40] Y. Saad, Iterative methods for sparse linear systems, PWS, 1996.758

[41] R. S. Tuminaro, H. F. Walker, J. N. Shadid, On backtrack-759

ing failure in Newton-GMRES methods with a demonstration for760

the Navier-Stokes equations, J. Comput. Phys. 180 (2002) 549–558,761

doi:10.1006/jcph.2002.7102.762

[42] S. C. Eisenstat, H. F. Walker, Choosing the forcing terms in an inexact763

Newton method, SIAM J. Sci. Comput. 17 (1996) 16–32.764

[43] J. L. Bamber, R. L. Layberry, S. P. Gogenini, A new ice thickness and765

bed data set for the Greenland ice sheet 1: Measurement, data reduction,766

and errors., J. Geophys. Res. 106 (D24) (2001) 33773–33780.767

[44] J. K. Dukowicz, J. R. Baumgardner, Incremental remapping as a trans-768

port/;advection algorithm, J. Comput. Phys. 160 (2000) 318–335, doi:769

10.1006/jcph.2000.6465.770

[45] W. H. Lipscomb, E. C. Hunke, Modeling sea ice transport using incre-771

mental remapping, Mon. Wea. Rev. 132 (2004) 1341–1354.772

[46] D. A. Knoll, W. J. Rider, A multigrid preconditioned Newton-Krylov773

method, SIAM J. Sci. Comput. 21 (1999) 691–710.774

[47] M. A. Heroux, R. A. Bartlett, V. E. Howe, R. J. Hoekstra, J. J. Hu,775

T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps,776

A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,777

A. Williams, An overview of the Trilinos project, ACM Trans. Math.778

Soft. 31 (3) (2005) 397–423.779

29


