
A Minimal Linux Environment for High

Performance Computing Systems

James H. Laros III∗[1], Cynthia A. Segura[2], and Nathan Dauchy[2]

March 16, 2006

Abstract

This paper describes the use of standard Linux R©[3] and Open Source
software to produce an environment to support parallel scienti�c applica-
tions on High Performance Computers (HPC). The goals of this approach
are to maximize the HPC resources delivered to the application, to im-
prove system stability and predictability, and to reduce software man-
agement burdens. The simplicity of this approach provides an additional
bene�t. The paper presents the reader with background, motivations, and
a discussion of advantages and drawbacks of the light-os.

Keywords: Linux, Open Source Software, Clusters, High Performance
Computer, Light Weight Kernel

1 Introduction

This paper describes the use of Linux and Open Source software to produce an
environment designed to be run on nodes (which we call compute nodes) that
support High Performance Computing (HPC) applications†. This approach,
which we call light-os, reduces system overhead to a bare minimum so that
as many resources as possible are devoted to the scienti�c applications that
run on the system. Each compute node will host only the light-os, a run-time
component (such as described in Section 5) and the HPC application. For a more
detailed list of requirements for the light-os component see Section 2 (Related
Work).

The light-os draws upon research at Sandia National Laboratories[1] in the
areas of Light Weight Kernels (LWK)[4] and disk-less Linux clusters. Sandia has
a long history in research and use of Light Weight Kernels on large HPC systems
with up to 10K nodes, and has also implemented disk-less Linux clusters with
up to 2K nodes[5][6][7][8]. This work targets a gap that we feel exists between

∗Corresponding Author James H. Laros III, jhlaros@sandia.gov
†We sometimes use the more general term HPC rather than Linux cluster, because many

of the concepts discussed here are derived from and/or are applicable to systems that are not
generally considered Linux clusters.

1

the LWK environment on capability systems and the disk-less Linux Operating
System (OS) implementation on our capacity systems. While our traditional
disk-less Linux implementations were light we feel that by taking a more focused
approach we can eliminate many of the requirements imposed on the operating
system and thereby allow the light-os environment to more closely emulate a
custom LWK environment. By leveraging Linux in this way we hope to achieve
many of the bene�ts of a LWK with far less e�ort‡.

The original motivation for this work emerged from research funded in 2003
by the Computer Science Research Foundation (CSRF)[9] at Sandia Labs. The
initial e�ort involved a survey of the current state of embedded systems, software
and hardware, to determine the practicality of designing a Reliability Availabil-
ity and Serviceability (RAS) system based on embedded technology. The light-
os work was developed to mimic loading a LWK to a large number of nodes
from a single embedded device. (Porting a LWK to the test architecture was
far beyond the scope of the project.) By leveraging some of the new (at the
time) additions to the Linux kernel, like tmpfs§, implementing what eventually
became the light-os was surprisingly simple.

After serving the original purpose, it quickly became evident that this ap-
proach could be useful for HPC systems in general. In Section 2 (Related Work)
we detail the criteria for the light-os and provide a survey of related e�orts. In
Section 3 (Argument for this Approach), we describe the logic and reasoning
behind the light approach. Section 4 provides an overview of the light-os envi-
ronment. While not directly part of the work described in this paper, runtime,
and systems management are integral parts of any HPC system. A few examples
and their relationship with light-os can be found in Section 5 (Runtime) and
Section 6 (Systems Management). Clearly, there are advantages and disadvan-
tages to this approach. We discuss some of the drawbacks and considerations
where appropriate. Some thoughts on future work can be found in Section 7
(Future Work). In Appendix A, we provide an example implementation of the
light-os using generic and popular runtime components.

2 Related Work

In our short survey we found some interesting projects that relate, at least some-
what, to the work described in this paper. The following are the requirements
we set out to meet with this e�ort which will aid in the discussion of these
related e�orts.

• No local disk - The compute nodes will not require or, even if present, use
a local disk for the root or any other �le-system including swap. Swap
space will not be available to the application.

‡It is important to note that we do not expect even a stripped down Linux environment
to be as scalable or e�cient as a LWK implementation on a well balanced platform.

§tmpfs is a �le system, which according to the 2.6 kernel documentation, �puts everything
into the kernel internal caches and grows and shrinks to accommodate the �les it contains.�

2

• No root remote �le-system - The compute nodes will not require a re-
motely mounted root �le-system for the purposes of system operation.
In particular, no NFS-root �le-system will be required. (This does not
include access to a �le-system for application input and output.)

• No dependency on a Linux Distribution - The light-os environment will
not have a dependency on any speci�c Linux Distribution. Typically only
Linux kernel source will be required.

• No kernel source modi�cation - The light-os environment will not require
any code modi�cations to the Linux kernel source. Tuning the kernel by
existing methods is permissible.

• No Linux system daemons - The goal is to eliminate all non-application
or runtime processes on the compute nodes.

• No static memory allocation for system use - No static memory will be
allocated such as static ram-disk space for root �le-system or run-time
libraries.

The Warewulf project[10] stood out among other disk-less cluster e�orts that
we surveyed. In their online documentation we found many important guiding
principles that we share. The authors seem to have come to many of the same
conclusions as we have about how to best build a disk-less cluster[6]. While
Warewulf is an interesting project, it does not meet all of our requirements;
notably, Warewulf uses both a static ram-disk and an NFS-mounted root �le-
system. The documentation also seems to allude to a Linux Distribution depen-
dency which they seem to be working to remove. While Warewulf is not a good
�t to satisfy our goals we are interested in testing it locally for other purposes.

The Clustermatic[11] e�orts, more speci�cally BProc, at Los Alamos Na-
tional Labs[12] (LANL) is another e�ort that has some similar goals. BProc
has been around for a long while and is probably best contrasted with the
Cplant[5] work done at Sandia Labs. In comparison with the light-os work
BProc shares the desire of minimizing the system environment that runs on
the compute nodes. BProc requires kernel modi�cations and also uses a static
ram-disk for shared libraries. BProc has proven to be a very successful e�ort
at LANL but is a much more broad e�ort that does not �t well with the other
components such as the run-time system, used in this e�ort.

While there are other disk-less cluster e�orts or more aggressive full system
solutions like Clustermatic, we did not �nd any e�orts targeted to the area we
are addressing, or components of larger projects that we could leverage. The
light-os work is attempting to bridge a gap between clusters and more integrated
HPC systems.

3 Argument for this Approach

The light-os philosophy assumes that, on systems designed to run scienti�c ap-
plications, as many computing resources as possible should be dedicated to the

3

application running on the system. In turn, non-application software should
consume as few system resources as possible, and should be limited to the soft-
ware that is essential to support the application. By eliminating unnecessary
overhead, the light-os makes more resources available to the application, and
reduces the complexity and overhead of the system. A less complex environment
should in theory require less maintenance and support, and could exhibit such
advantages as increasing the Mean Time Between Failure (MTBF), decreas-
ing application wall clock run times, reducing administrative requirements, and
shortening boot times.

To illustrate, let us �rst compare the light-os approach to a standard Linux
implementation. Both the light-os and the standard Linux environment depend
on a Linux kernel, built from standard kernel source. In this area, the light-
os displays an advantage in that it requires less hardware and software service
support, which in turn can reduce the footprint¶ of the running kernel. Since the
kernel consumes less memory, more is available for the application. Additionally
by reducing the complexity of the kernel, we expect an increase in the stability
of the system. While MTBF is a metric that is commonly discussed in relation
to hardware, it can logically be applied to software. As the number of hardware
components increase, the MTBF of the overall system generally decreases‖.
Similarly, as the number of software components increase, the more likely there
is to be an error, thereby decreasing the MTBF of the system. By omitting
unnecessary components, we reduce the potential for errors∗∗.

In a standard Linux environment there are many system services and dae-
mons that take system resources and require administrative attention. The
light-os environment runs few additional services and/or daemons, returning re-
sources to the application and reducing complexity and administrative require-
ments. The additional system services present in a standard Linux environment
impose an additional impact. HPC systems generally run large-scale parallel
applications that often have barrier points that all nodes participating in the
application must reach before progress beyond the barrier can be made. When
nodes are interrupted by system services, progress among the nodes used in the
application becomes unpredictable and it is possible, if not common, for many
nodes to sit idle waiting for a single node to catch up[13]. By minimizing the
number of processes on a node, the light-os approach reduces the frequency
that the user application is interrupted. This may result in shorter wall clock
run times, which increase overall system resource availability, and, more impor-
tantly to users, more predictable run times for their applications. The greater
the complexity of the system, the greater the chances of failure. By reducing the
processes running on the nodes, we likely increase the stability of the system.

A light-os implementation requires no Linux distribution. In contrast on a
disk-full†† cluster, some distribution mechanism must be employed to copy the

¶Footprint in this context is the amount of memory used.
‖For hardware components with less than an in�nite reliability.

∗∗By reducing components we mean both reducing the number of processes or daemons
running and reducing components compiled into the kernel.

††The term disk-full is used to describe nodes (computers) that require disks to boot and

4

distribution to the disk-full nodes. The distribution mechanism requires some
support, if not development cost. It is our opinion that, especially for HPC
systems, disk-less nodes are superior for many reasons outlined in Implement-

ing Scalable Disk-less Clusters Using the Network File System[6]. The light-os
approach extends the bene�ts discussed in this paper by minimizing server in-
volvement and removing the need to maintain a Linux distribution. In the case
of disk-less clusters that use NFS as their root �le-system, the node continues to
be dependent on the server. By contrast, the light-os node becomes independent
from the server node once it receives its environment.

For large HPC systems, boot time can become a real factor in system avail-
ability, especially if the MTBF is small. The light-os boot process is simple and
fast, constrained primarily by the time it takes to retrieve the light-os package
from the server. The node does not have to perform many aspects of the boot
sequence, such as mounting additional �le-systems, �le-system checks, or initial-
izing a large number of services. This process enables each node to be largely
autonomous, and allows the boot process to be highly parallel throttled only by
the ability of the server to deliver the light-os package‡‡.

There are many ways to implement a light environment. One approach
would be to use a LWK in conjunction with the same runtime system used in
the light-os environment. If we contrasted our proposed minimal Linux OS with
a LWK speci�cally designed for the target platform the LWK would likely prove
to be superior in all cases except the e�ort to produce and maintain the LWK
itself. At some scale this cost is certainly warranted. It is our contention that
the light-os environment can provide value in the gap between traditional Linux
cluster implementations and very high end custom platforms that warrant the
additional expense of LWK development.

4 Light-os: In Brief

The light-os is simply a minimal Linux kernel running on a compute node.
By minimal we mean only what is required to serve the runtime component
(described in Section 5) and the HPC application. We start by building a Linux
kernel from standard source code. There are no restrictions imposed on where
the source comes from other than it must support the hardware that you will be
running on. We have used source from kernel.org[14] and various other Linux
distributions. During the con�guration step of building the kernel we are careful
to include only the components that are necessary to support the hardware that
is present on the compute node that will host the light-os. Additionally we
typically choose to build all capabilities into the kernel, which saves us from
having to load them as modules later in the initialization process. For example,
during the con�guration process we would select the speci�c ethernet driver for
the node hardware to be built into the kernel. Other than building the kernel for

operate as part of a system.
‡‡The use of tftp while not the only way to deliver the light-os package has been tested on

a ratio of up to 256 to 1.

5

the speci�c hardware that will host the light-os, we need to choose appropriate
options to be able to use an initial ram disk (initrd) and tmpfs. (Refer to
Appendix A.2 for speci�c con�guration options). The primary purpose of the
initrd is to act as a container that will be used to ship everything necessary for
initialize to the node. The linuxrc program (in our case typically a script) will
orchestrate the initialization. This initialization will di�er dependent on factors
like what hardware is present or what run-time is being used but will follow the
same basic sequence.

In the following sequence we assume the kernel that we built with the process
described previously is delivered to the node along with the initrd. The node
loads and initializes the kernel, notices that there is an initrd, mounts it and
executes the linuxrc script. At this point we take control of the initialization
of the node. Our �rst step is to establish what will be our root �le-system,
located in tmpfs, with the software and utilities that are contained in the initrd.
We create only the devices and directories that will be absolutely necessary to
support the runtime and application, and copy only the software that will be
needed on the node for the long term. (We optionally load BusyBox[15] into
the tmpfs root �le-system since the trade-o� of functionality versus space is
acceptable to us.) Once constructed we pivot root into our new root �lesystem.
At this point we can load any kernel modules that were not able to be built into
the kernel; for example, modules to support high speed network for the system.
It is important to note that these kernel modules are still located in the initrd
�lesystem.

At this point we can accomplish any additional setup required. Keep in mind
that any scripts or temporary �les remain in the initrd �lesystem. When setup
is complete, we unmount the initrd �lesystem to free up as much memory as
possible. This allows us the luxury to be less careful about what we put in the
initrd since it will not remain past the system initialization step. The �nal step
is to execute chroot. In our case we pass our runtime program as a parameter to
chroot to be executed. The runtime program becomes the only process running
on the system when initialization is completed.

These are the basic steps taken during the initialization of a node running
the light-os in conjunction with a runtime system designed for HPC. The design
of this runtime system allows us to strip down the Linux OS to this minimal
state. Taking this approach does present challenges. Some of the trade-o�s to be
considered are discussed in Section 5 Runtime, and in Section 6 Systems Man-
agement. In Appendix A we describe a more generic approach, using additional
Open Source packages, that we hope will provide an easy way to experiment
with these concepts.

5 Runtime

The light-os does not require this speci�c runtime system, but a runtime system
with these characteristics that is speci�cally designed for HPC systems is the

6

optimal compliment for the light-os∗. A discussion of all of the characteristics
of the runtime system is beyond the scope of this paper, but we will provide
enough detail to familiarize the reader with the basic functionality provided.

Sandia Labs has produced a long lineage of HPC systems with scalable
runtime components. Many of these systems have used a LWK. Cplant[5],
however, implemented the same runtime components on a commodity cluster
system using a typical Linux OS. The runtime components that we will discuss
perform the same basic function whether implemented for use with a LWK or
a commodity Linux kernel. The components of the runtime system important
for this discussion are named pct and yod. Pct is the runtime component that
is executed during system initialization (Section 4) on each compute node. The
pct process remains persistent for the life of the node. Yod is the command used
to launch the HPC application. In the most basic usage of yod, an application
is executed on the system by using the yod command combined with a �ag
that speci�es the list of nodes the HPC application should be launched on.
Yod communicates with the pct processes on all of the nodes on the list and
distributes the application to each of the nodes. In our implementation the
application executable is e�ectively copied, although in a scalable fanout fashion,
to each nodes �lesystem. Recall from the discussion in Section 4 that each node's
�lesystem is a memory resident �lesystem. Once the fanout process is complete
the pct starts the application. After the application is started pct basically gets
out of the way to allow the application the maximum amount of node resources
possible.

One trade-o� to this approach is that statically compiled executables are
required. The light-os environment, similar to the LWK environment, does not
make shared libraries available to applications. Another trade-o� is that if the
above method is used to distribute the executable to each node, both the running
executable and the executable �le take up memory resources. The LWK uses
a more sophisticated approach which does not cause this e�ective duplication.
An alternative approach is to make the application executable available to each
node via a parallel �lesystem, such as Lustre[20, 16], the Parallel Virtual File
System[17], Panasas[18] or IBRIX[19]. Although the use of a scalable parallel
�lesystem is essential for input and output this method of launching an exe-
cutable also presents trade-o�s and is beyond the scope of this paper. Another
point worth mentioning is that while the runtime system we have discussed is
freely available it is not as ubiquitous as the MPI runtime system.

6 Systems Management

Because the light-os does not have any daemons or services, it requires an �out-
of-band� monitoring solution; namely, the management and monitoring of the
node should be done from some point external to the node with no host pro-
cessor involvement. An out-of-band monitoring solution ensures that a user's

∗As demonstrated in Appendix A.6, a light-os implementation can accommodate a typical
Linux MPI runtime environment.

7

application will not be interrupted by extraneous processes.
Ideally, the light-os would be used in conjunction with a Reliability, Avail-

ability, and Serviceability (RAS) system like those found on Red Storm[21] or
Blue Gene[22]. These systems provide specialized out-of-band monitoring to to
support custom hardware. Currently there is no RAS solution for the light-os,
although research in this area is well underway[23]. Many vendors are intro-
ducing primarily out-of-band alternatives; for example Hewlett-Packard's Inte-
grated Lights Out[24], Sun's Advanced Lights Out Manager[25], and Dell's Dell
Remote Access Card[26]. These solutions provide basic capabilities for system
control, such as the ability to power cycle a node. Unfortunately, these solutions
are typically proprietary and are only useful on the speci�c system for which
they were designed. In contrast, the Intelligent Platform Management Interface
(IPMI)[27] provides a feasible Open Source out-of-band monitoring solution to
manage a node. IPMI also provides out-of-band access to detailed information
about the general health of the system, including things such as temperature
and fan speeds.

The light-os approach reduces or eliminates non-application processes, which
can in turn impact the capability to manage or monitor a system. Although,
the light-os requires an out-of-band monitor solution, it also reduces the need
for monitoring; for example, the light-os nodes do not need to track disk ca-
pacity and health or monitor running processes (the runtime system monitors
the activity of the HPC application). Similarly, since there are fewer software
components, there is less opportunity for problems. (For a discussion of the
advantages of the light-os see Section 3).

7 Future work

The most important work yet to be accomplished is to test this concept on as
large a system as possible for long durations. While some of the thoughts put
forward in this paper might seem logical, they lack the empirical evidence that
can only be provided by testing. During initial development, these concepts
were tested with the Cplant runtime system on a 128 node development cluster.
Although some application testing was accomplished, the primary motivation
was testing the scalability of initialization. It is our hope to accomplish further
testing either at Sandia or in cooperation with another laboratory or interested
site.

In the area of systems management and monitoring there is ongoing research
into the use of IPMI and development of a portable RAS system at Sandia Labs,
funded by the CSRF. It is anticipated that this work will lead to much improved
capabilities in this area and provide a compatible environment for the light-os
or even a true LWK on cluster systems.

Integration of a scalable parallel �le-system, as mentioned previously, would
be bene�cial for many reasons. We hope to accomplish integration with Lustre,
Panasas, and possibly others. We also hope to investigate loading applications
along with the light-os package. If this proves to be e�cient it could reduce the

8

complexity of runtime software. If not, it may still have utility for systems that
run few applications.

8 Acknowledgments

We would like to thank the Computer Science Research Foundation for funding
the initial program that allowed this work, and their continued support in many
of the related areas mentioned in this paper. We would also like to thank our
department manager, James Ang, and our previous manager, Doug Doer�er,
for their continued support for work in this area.

9

A Prototype Implementation of Light-os

This Appendix details a light-os implementation, which was created using stan-
dard and freely available Linux tools and software. This implementation was
created as a prototype for a more targeted implementation. In so doing, we at-
tempted to create a version of the light-os that could be replicated by someone
using freely available tools and resources.

A.1 Overview

This implementation requires a server (admin) node and one client (compute)
node. The admin node must be con�gured as a Dynamic Host Con�guration
Protocol (DHCP) and Trivial File Transfer Protocol (TFTP) server, since the
admin node will provide the kernel and initrd to the compute node over the
network. The compute node uses the Pre-boot Execution Environment (PXE)
to begin the boot process. It obtains boot information from the DHCP server
and its kernel and initrd via TFTP. During the kernel initialization process, the
initrd is mounted and the linuxrc program is executed.

At this point, we take advantage of the fact that the linuxrc program can
be any valid executable or script. For the light-os implementation, we created
a specialized linuxrc script (detailed in in Section A.3) that prepares a tmpfs
�le-system with only what is necessary for the �nal root �le-system and executes
a call to pivot_root to switch into that new root �lesystem. The novelty of our
approach lies in the specialization of the linuxrc script and the use of tmpfs
as the �nal root �le-system. In general, the process to create a light-os is as
follows:

• Build a kernel

• Create and populate an initrd

• Customize the linuxrc script

• Boot the node

• Compile MPICH

The following sections describe our approach in greater detail†.

A.2 Build a Kernel

We started with standard Linux kernel source rpms. As a baseline, we started
with Fedora Core 3 (kernel-smp-2.6.11-1.27_FC3.x86_64.rpm) and Suse 9.1
(kernel-source-2.6.4-52.x86_64.rpm). We then removed all non-essential kernel
support for both devices and services (by non-essential, we mean anything that

†The Cluster Integration Toolkit provides a light-os module that automates the steps
for building an initrd and customizing your linuxrc script. To download this module, see
http://www.cs.sandia.gov/cit/.

10

is not directly required to support the �nal system environment). In removing
these services and devices, we aimed to minimize the kernel as much as possible.
The following section describes some speci�c kernel options that are required
in the kernel con�guration �le[29]. It is important to note that all of these
capabilities were compiled directly into the kernel and not built as loadable
modules.

A.2.1 Kernel Details

During initialization the initrd is loaded into ramdisk, which requires the fol-
lowing Block Device options:

• CONFIG_BLK_DEV_RAM

• CONFIG_BLK_DEV_INITRD

Since a DHCP server provides the kernel, initrd, and each node's IP address,
we included the following Networking options:

• CONFIG_IP_PNP

• CONFIG_IP_PNP_BOOTP

• CONFIG_IP_PNP_DHCP

We enabled Networking device support for the speci�c NIC used by our
system:

• CONFIG_TIGON3

Since tmpfs is a key part of the light-os environment, we included the following
Filesystems option:

• CONFIG_TMPFS

We used NFS to mount the users' executables on the compute node, so under
Network File Systems we included:

• CONFIG_NFS_FS

We used Dropbear for ssh access, which required two options that are not in-
cluded as part of the default kernel con�guration. The following Networking
Options had to be included in the kernel:

• CONFIG_PACKET

And tty support had to be selected as a Pseudo Filesystem option:

• CONFIG_DEVPTS_FS

11

A.3 Create and populate an initrd

After we con�gured and built the kernel, we created and populated the initrd
with the libraries and tools for the �nal system environment. In particular we
used Buildroot[28], which provides a skeletal root �le-system, and uClibc[31], a
C library alternative to glibc for embedded Linux systems development. Within
the Buildroot environment, we included Busybox, which provides a surprisingly
extensive suite of standard utilities, but occupies a minimal amount of physical
space. Additionally, we included Dropbear for ssh access. In our tests, the �nal
light-os environment was typically smaller than 1 Megabyte.

A.3.1 Details: Buildroot

Buildroot includes a con�guration utility, similar to the one for the Linux kernel
that supports make defconfig, make config, and make menuconfig. The default
con�guration for Buildroot includes Busybox, but we had to explicitly select
Dropbear from Package Selection for Target.

• BR2_PACKAGE_DROPBEAR

Because our light-os was a low entropy environment, we compiled Dropbear to
use /dev/urandom by selecting the following con�guration option from Package
Selection for Target.

• BR2_PACKAGE_DROPBEAR_URANDOM

This option prevents Dropbear from blocking while waiting for entropy. While
this is a less secure option, since it does not ensure that the ssh host key is
su�ciently random, our node was on a private network, and therefore security
was less of a concern.

Buildroot constructs the target �le-system under the following path:
$BUILDROOT_HOME/build_$ARCH/root/, where $ARCH is the target architecture.
When adding or removing options from Busybox, the recommended proce-
dure is to build with the Buildroot default options, run make menuconfig in
the build_$ARCH/busybox directory, copy the new .con�g �le to
package/buildroot/busybox/busybox.config, and recompile Buildroot. For the
light-os, we used the default Busybox con�guration options, but explicitly se-
lected the following option from Linux System Utilities:

• CONFIG_FEATURE_MOUNT_NFS

A.3.2 Details: initrd

The process for creating an initrd for Linux is quite standard and well docu-
mented; however, we have reproduced it here to be complete. The one important
caveat is that we increased the number of inodes from the default as the light-os
requires a lot of inodes relative to its small physical size.

12

• We created and zeroed out our new initrd �le from within the tftp directory
using the dd command.

dd if=/dev/zero of=initrd bs=1024 count=2048

• We created the �le-system, increasing the number of inodes using the -N

option.

mke2fs -F -m 0 -b 1024 -N 1000 initrd

• We mounted the �le-system so we could populate it with the newly built
Buildroot environment.

mount -t ext2 -o loop initrd initrd_mnt

• Finally, we populated the �le-system. From within our
$BUILDROOT_HOME/build_$ARCH/root/ directory, we executed the following
command:

find . -print |cpio -pdmv /initrd_mnt

A.3.3 Details: the root �le-system

Some additional modi�cations to the root �le-system were required in order to
boot the node. Buildroot creates the /dev entries as regular �les, so they must
be recreated using the mknod command. Secondly, we changed the permissions of
the entire root �le-system to be owned by root. We also removed the /etc/mtab

�le, and edited the /etc/fstab �le to include the entries for proc and devpts as
follows:

<file system> <mount pt> <type> <options> <dump> <pass>

proc /proc proc defaults 0 0

devpts /dev/pts devpts defaults,gid=5,mode=620 0 0

Although Buildroot provides an inittab �le, it made certain assumptions
that did not suit the light-os environment. For example, we removed any com-
mands associated with logging functionality, which unnecessarily increased the
size of our light-os environment. We edited the /etc/hosts �le to re�ect the
organization of our network.

The init process is slightly di�erent for Busybox than for standard Linux
distributions. Instead of having a variety of run levels with links to scripts, the
inittab simply invokes /etc/init.d/rcS, which sequentially starts all the scripts
in the init.d directory.

To enable ssh keys, we followed a procedure typical for OpenSSH, and then
copied the keys into the correct directory within the initrd. We ensured that
~, ~/.ssh, and ~/.ssh/authorized_keys were writable only by the user (or root),
otherwise Dropbear will ignore the �les.

13

A.4 Customize the linuxrc script

The linuxrc script orchestrates the con�guration of the �nal system environ-
ment. It creates a tmpfs root �le system in /tmpfs_root, which keeps all �les in
memory, and has the advantage over RAM disks of being able to dynamically
increase and decrease in size. Our customized linuxrc copies /bin, /lib, /etc,
/sbin, /usr, /root, and /var into /tmpfs_root, which will become the new root
�le-system. It creates any new directories that might be required; in this case,
/proc, /initrd (where our old initrd will be mounted) and /dev/pts (for ssh). It
also uses mknod to create the necessary devices relative to our new root (mknod
/tmpfs_root/dev/mem c 1 1)†. It then moves into the new root (cd /tmpfs_root)
where it creates a link, called linuxrc, to the Busybox executable. (Since Busy-
box is a multi-call binary, by creating a link to Busybox, called linuxrc, we are
e�ectively setting up our environment so that Busybox's default init process can
be invoked upon changing into the new root.) Then, the pivot_root command
is invoked from within the new root, which also mounts the old root on the ini-
trd directory (/sbin/pivot_root . initrd). The script unmounts the original
initrd after changing into the new root in order to save additional space. As a
last step, the script chroots into the new root, launches the new linuxrc, and
redirects output to a console:

exec /usr/sbin/chroot . /bin/busybox linuxrc dev/console 2>&1.

A.5 Boot a node

We edited our pxecon�g on the admin node �le to re�ect the new method of
booting. The following is an example entry in a pxecon�g �le used to boot
the light-os. The kernel DHCP client provides the compute node with its IP
address so that there is no need for networking or con�guration scripts within
our light-os environment.

LABEL light-os

KERNEL /vmlinuz-2.6.8-24-smp

APPEND initrd=/initrd root=/dev/ram0 ip=dhcp rw console=tty0

init=/linuxrc

A.6 Compile MPICH

We also added support for MPICH[30], a free implementation of the Message
Passing Interface (MPI). To do so, we cross-compiled mpich against the uClibc
libraries, since the glibc system calls, getpwuid and gethostbyname, cannot be
statically linked into the user executable. Fortunately, Buildroot provides a
cross-compilation toolchain, which enabled us to compile mpich with the uClibc
libraries available on our compute node. Mpich also requires either rsh or ssh.

†For a complete listing of the necessary devices, see the linuxrc script that is included as part
of the light-os CIT module (http://www.cs.sandia.gov) or alternatively, the following website
provides an example: http://www.cybcon.com/~coert/linux/siso/kernel-busybox.html.

14

To accommodate these requirements, we �rst had to set some environment vari-
ables.

• We added the path of the Buildroot cross-compilation toolkit to our $PATH
environment variable.

export PATH=$PATH:/cluster/src/buildroot/build_i686/staging_dir/bin

• We set our default C compiler to be the uClibc compiler.

export CC=/cluster/src/buildroot/build_i686/staging_dir/bin

/i686-linux-uclibc-gcc

• We set the RSHCOMMAND environment variable to use ssh.

export RSHCOMMAND=/usr/bin/ssh

• We then built mpich with the following commands:

./configure --with-device=ch_p4 --without-romio --disable-sharedlib

make

The --with-device option speci�es that this version of mpich will be compiled
to support Ethernet (ch_p4). Since the light-os and the full Linux distribution
on the admin node used a di�erent set of libraries, we disabled shared libraries,
and for the sake of simplicity, we disabled romio.

After creating a working version of the mpich tools and libraries, we then
compiled several test programs, provided with the mpich distribution. We com-
piled these programs statically, so that they would not rely on shared libraries
that might not be available in the light-os environment. Static compilation can
produce large executables. The executable size can be reduced using the strip
command. In our tests, this typically reduced the �le size by about two-thirds.

cd $MPICH_HOME/installtest

../bin/mpicpp -static -o cpi cpi.c

strip -o cpi.stripped cpi

We executed the test programs with mpirun, which assumes that the exe-
cutable is available under the same path on all the compute nodes. To satisfy
this assumption, we NFS-mounted the directory containing the executable on
the light-os node. Although the use of NFS may seem contrary to the aims
of the light-os, in this case we used NFS to simulate a high speed �le-system,
which is typically available in an HPC environment.

15

References

[1] Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy
under contract DE-AC04-94AL85000. Contact: jhlaros@sandia.gov

[2] High Performance Technologies Incorporated, 11955 Freedom Drive,
Suite 1100 Reston, VA 20190, Contact: csegura@hpti.com and
ndauchy@hpti.com

[3] Linux is the registered trademark of Linus Torvalds in the U.S. and other
countries

[4] Kelly, Suzanne M, Ronald B Brightwell, "Software Architecture of the Light
Weight Kernel, Catamount," Conference Paper, Cray User Group, May
2005. http://gaston.sandia.gov/cfupload/ccim_pubs_prod/CUG2005-
CatamountArchitecture.pdf

[5] Massively Parallel Computing using Commodity Components, Ron
Brightwell, Lee Ann Fisk, David S. Greenberg, Tramm Hudson, Mike Lev-
enhagen, Arthur B. Maccabe, Rolf Riesen, Parallel Computing 26 (2000)
243-266. ftp://ftp.cs.sandia.gov/pub/papers/bright/cplant-journal.pdf

[6] Implementing Scalable Disk-less Clusters Using the Network File System
(NFS), James H. Laros III and Lee H. Ward, Proceedings of the 4th Sym-
posium of the Los Alamos Computer Science Institute: LACSI 2003, 27-29,
October 2003. http://www.cs.sandia.gov/cit/publications/index.html

[7] An Extensible, Portable, Scalable, Cluster Management Software Ar-
chitecture. James H. Laros III, Lee Ward, Nathan W. Dauchy, Ron
Brightwell, Trammell Hudson, Ruth Klundt, Proceedings of the 2002
IEEE International Conference on Cluster Computing, 23-26 Sept. 2002.
http://www.cs.sandia.gov/cit/publications/index.html

[8] The Cluster Integration Toolkit - An Extensible, Portable, Scal-
able Cluster Management Software Implementation. James H. Laros
III, Lee Ward, Nathan W. Dauchy, James Vasak, Ruth Klundt,
Glen Laguna, Marcus Epperson, Jon R. Stearley Proceedings of
the 1st Cluster World Conference and Expo 23-26 June, 2003.
http://www.cs.sandia.gov/cit/publications/index.html

[9] Computer Science Research Institute at Sandia National Labs,
http://www.cs.sandia.gov/CSRI/About_CSRI/AboutCsriSidebar.htm

[10] Warewulf - http://www.warewulf-cluster.org/cgi-bin/trac.cgi

[11] http://www.clustermatic.org/

[12] Los Alamos National Labs, www.lanl.gov

16

[13] The Case of the Missing Supercomputer Performance: Achiev-
ing Optimal Performance on the 8,192 Processors of ASCI Q,
Fabrizio Patrini, Darren J. Kerbyson, Scott Pakin. www.sc-
conference.org/sc2003/paperpdfs/pap301.pdf

[14] www.kernel.org

[15] BusyBox - www.busybox.net

[16] http://www.lustre.com

[17] http://www.parl.clemson.edu/pvfs/

[18] http://www.panasas.com/

[19] http://www.ibrix.com

[20] http://www.clusterfs.com

[21] http://www.cs.sandia.gov/platforms/RedStorm.html

[22] http://www.llnl.gov/asci/platforms/bluegenel/bluegene_home.html

[23] A Software and Hardware Architecture for a Modular, Portable Extensi-
ble Reliability Availability and Serviceability System- James H. Laros III,
presented at the 2nd Workshop on HIgh Performance Computing Reliabil-
ity Issues in conjunction with the 12th International Symposium on High
Performance Computer Architecture, February 11th 2006.

[24] http://h18004.www1.hp.com/products/servers/management/ilo/

[25] http://www.sun.com/servers/alom.html

[26] http://www1.us.dell.com/content/topics/
global.aspx/power/en/ps2q02_bell?c=us&cs=19&l=en&s=dhs

[27] http://www.intel.com/design/servers/ipmi/index.htm

[28] Download and documentation for Buildroot can be found at
http://buildroot.uclibc.org/.

[29] For a more detailed discussion of the requirements for disk-less kernels,
consult the diskless.kernel document that is included in the diskless module
of the Cluster Integration Toolkit. This can be downloaded of the CIT
website: http://www.cs.sandia.gov/cit/.

[30] Message Passing Interface (MPI) standard. (http://www-
unix.mcs.anl.gov/mpi/) Download of mpich can be found at (http://www-
unix.mcs.anl.gov/mpi/mpich/download.html).

[31] http://www.uclibc.org

17

