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Introduction
 Context: Landauer’s Principle connecting information loss with 

entropy increase is a key motivation for reversible computing, but 
continues to be frequently misinterpreted/misunderstood.
 As a result of these misunderstandings, the validity of Landauer’s Principle 

has often been (misguidedly) challenged by engineers & physicists…
 This has been a substantial barrier to R&D investment in reversible computing

 We should all be well prepared to answer in-depth questions about the 
Principle, so we are better equipped to help defend & promote our field.

 There are a number of important subtleties that must be 
appreciated in order to have an understanding of Landauer’s
principle that allows one to answer questions about it properly:
 Transformations of complex states – Focus of a paper at ICRC’16
 Role of conditional reversibility – Focus of my RC’17 paper
 Treatment of stochastic operations – Addressed in the current paper

 I also first mentioned this issue many years ago, e.g., at ISMVL’05
 Importance of correlations – Addressed in the current paper

 Landauer’s Principle follows as a rigorous theorem of fundamental 
physics, but only given a proper treatment of these issues.

3



Talk Outline
 Review of historical development of the concept of entropy

 Shows how information theory emerged from, and is intimately connected 
with, statistical physics

 Review of some basic information theory concepts: 
 Entropy, known information, conditional entropy, mutual information

 Fundamental connections between computation and physics:
 Bijective time evolution and the second law of thermodynamics
 Relationship between computational and physical states
 Types of computational operations, and thermodynamic implications

 Many-to-one operations, and implications for entropy ejection
 Stochastic (one-to-many) operations, and implications for entropy intake

– Some physical examples

 Essential role of mutual information in proving Landauer’s Principle
 Review of empirical demonstrations of Landauer’s Principle

 Not needed if you know the physics, but helpful in countering skepticism
 Conclusion
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A brief history of entropy… (1/5)
 Clausius (1862) identified a quantity Δ𝑄𝑄/𝑇𝑇 (with 
Δ𝑄𝑄 = change in heat, 𝑇𝑇 = temperature) that is 
always ≥ 0 when summed over all of the systems 
involved in any given thermodynamic process… 
 An early version of the Second Law of Thermodynamics

 In 1865 he proposed to call this quantity entropy, 
from Greek τροπή (tropḗ,  transformation), 
 Connoting, that which gives an inherent (en-) direction 

to a physical transformation (tropḗ)…  
 He also introduced the use of the symbol 𝑆𝑆 for it

 Possibly to honor Sadi Carnot?  (The inventor of the 
concept of a thermodynamically reversible heat engine)

 Note: Entropy 𝑆𝑆 has physical units of heat/temperature.
 Nowadays, we actually define temperature 𝑇𝑇 in 

terms of the marginal change in the (maximum) 
entropy 𝑆̂𝑆 of the system as heat is added to it…

5(continued on next slides…)

1
𝑇𝑇

=
𝜕𝜕𝑆̂𝑆
𝜕𝜕𝜕𝜕

𝑇𝑇 = Thermodynamic 
temperature

𝑆̂𝑆 = Maximum entropy
(𝑆𝑆 at equilibrium)

𝑄𝑄 = Quantity of heat

Rudolph Clausius
Discoverer of entropy



History of Entropy, cont. (2/5)
 Ludwig Boltzmann (1872) proved his H-theorem

suggesting that entropy might have a statistical basis:
 This paper was essentially an early exploration into what 

we now call chaos theory…
 Boltzmann showed that statistical uncertainty about the 

states of common (classical) physical systems (e.g. gas 
molecules) tends to become amplified when those systems 
interact (e.g., collide)…

 This paper defined an abstract quantity 𝐻𝐻 = ∫𝑓𝑓 log𝑓𝑓
that, in essence, quantified the degree of certainty of (or 
amount of knowledge implicit in) any (continuous) 
probability density function 𝑓𝑓.  
 Note: This paper deserves significant credit as the historical 

antecedent (70 years ahead!) of Shannon’s entropy 𝐻𝐻, and 
the entire field of information theory!

 Boltzmann showed, in his theorem, that 𝐻𝐻 tends to 
decrease over time as gas molecules collide, and suggested 
that physical entropy 𝑆𝑆 was related (negatively) to 𝐻𝐻, 

– but he did not yet know how to derive an exact relation 
between these quantities…

6

Ludwig Boltzmann
Sire of statistical mechanics,
“great-grandfather” of chaos 
theory & information theory!
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History of Entropy, cont. (3/5)
 Max Planck (1901) inferred, via his 

study of blackbody spectra, that 
physical states must be quantized, 
 As opposed to the continuous state variables used in 

classical mechanical models…

 I.e., you can count a (finite) number of distinct states!
 This let Planck finally give Boltzmann’s intuition (that entropy 

is a statistical quantity) a precise quantitative foundation.

 Planck was first to calculate the magnitude, in physical 
units, of a natural logarithmic quantum of entropy 𝑘𝑘:
 [log e] = 𝑘𝑘 = 𝑘𝑘B ≅ 1.38 × 10−23 J/K

 Called “Boltzmann’s constant” to honor Boltzmann’s earlier role

 Defining 𝑘𝑘 physically lets us write 𝑆̂𝑆 = log𝑊𝑊 = 𝑘𝑘 ln𝑊𝑊. 
 Rendered as 𝑆𝑆 = 𝑘𝑘 log𝑊𝑊 on Boltzmann’s tombstone… 

 The separate quantity 𝐻𝐻 was, at this point, no longer needed…



History of entropy, cont. (4/5)
 John von Neumann developed not only the 

ENIAC’s “von Neumann” architecture, but also 
(among many other things) the mathematical 
formulation of quantum mechanics…
 Unifying the Schrödinger and Heisenberg formalisms

 In a 1927 paper, he showed how to translate the 
Boltzmann-Planck entropy concept (for the 
general case of nonuniform probabilities) to the 
language of quantum states: 𝑆𝑆 = −𝑘𝑘 Tr (𝜌𝜌 ln𝜌𝜌).
 𝜌𝜌 = density matrix; Tr = matrix trace operator

 This is (exactly) just 𝑆𝑆 = −𝑘𝑘∑𝑝𝑝 ln𝑝𝑝, where the 𝑝𝑝
are the probabilities of the pure quantum states 
that the 𝜌𝜌 matrix represents a statistical mix of.
 If you already know about Shannon entropy, this 

formula should be starting to look awfully familiar…
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John von Neumann
Formulated the modern

concept of entropy



History of entropy, cont. (5/5)
 Shannon (1948) is usually credited with “inventing the 

information-theoretic concept of entropy,”

 However, in that formula, Shannon was really just 
reformulating and reapplying already-existing concepts 
that were already very well-established in physics:
 Note: Shannon explicitly cites Boltzmann’s contribution!

 The symbol 𝐻𝐻, and the use of the expected log-probability 
quantity come straight out of Boltzmann’s 1872 H-theorem!

– The sign of 𝐻𝐻 here is just changed to match that of 𝑆𝑆
 Also, the transition from Boltzmann’s continuous ∫ to the 

discrete Σ case had already been completed over the period 
1901-1927 (21 years prior!) by Planck and von Neumann.

 Further, the change of the entropy unit from 𝑘𝑘 to bit only reflects a shift in the 
conventional choice of the logarithmic unit from log e to log 2, nothing more.

 So really, the only true innovation in Shannon’s entropy concept was:
 The states that Shannon was explicitly concerned with in his work were not 

microscopic physical states, but macroscopic digital or symbolic states.
 Yet, Shannon’s entropy connects fundamentally to physical entropy, as we’ll see…
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Claude Shannon
Applied entropy in

communication theory

𝐻𝐻 = −�𝑝𝑝 log2 𝑝𝑝 bits,



Entropy in a Nutshell
 Define the “surprisingness” or surprise 𝑠𝑠(𝑥𝑥) of any event 𝑥𝑥 that 

has a 1 in 𝑚𝑚 chance of occurring as 𝑠𝑠 = 𝑠𝑠 𝑥𝑥 = 𝑠𝑠 𝑚𝑚 = log𝑚𝑚 .
 Call the 𝑚𝑚 ≥ 1 “improbability;” it can be a non-integer.

 𝑠𝑠 is logarithmic b/c the improbabilities of independent surprises multiply.
 Indefinite logarithm; dimensioned in arbitrary logarithmic units.

 Some example units:  log 2 = 1 bit;  log e = 1 nat = 𝑘𝑘B;  log 10 = 1 bel.
 In terms of event’s probability 𝑝𝑝 = 𝑝𝑝 𝑥𝑥 = 𝑝𝑝 𝑚𝑚 = 1/𝑚𝑚,

𝑠𝑠(𝑝𝑝) = log
1
𝑝𝑝

= − log𝑝𝑝 .

 Define event’s psychological “heaviness” ℎ = ℎ 𝑥𝑥 = ℎ(𝑝𝑝) as 
its surprise, weighted by its probability:

ℎ 𝑝𝑝 = 𝑠𝑠/𝑚𝑚 = 𝑝𝑝 ⋅ 𝑠𝑠 = 𝑝𝑝 log𝑚𝑚 = −𝑝𝑝 log𝑝𝑝.
 Then for any probability distribution 𝑝𝑝(𝑥𝑥) over any mutually exclusive and 

exhaustive set of events 𝐗𝐗 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛}, we have that the expected surprise
𝑆𝑆 𝑋𝑋 = E𝑝𝑝[𝑠𝑠 𝑥𝑥 ] and the total heaviness 𝐻𝐻 𝑋𝑋 = ∑𝑥𝑥∈𝑋𝑋 ℎ(𝑥𝑥) associated with 
that particular set of possible events are the same, and are given by: 

𝑆𝑆 𝑋𝑋 = �
𝑥𝑥∈𝑋𝑋

𝑝𝑝 𝑥𝑥 ⋅ 𝑠𝑠(𝑥𝑥) = 𝐻𝐻 𝑋𝑋 = −�
𝑥𝑥∈𝑋𝑋

𝑝𝑝 𝑥𝑥 ⋅ log𝑝𝑝 𝑥𝑥 .

 We call this quantity 𝐻𝐻 = 𝑆𝑆 the entropy of the given epistemic situation.
 By convention, we’ll prefer 𝐻𝐻 for “computational” entropy, 𝑆𝑆 for “physical” entropy.
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Improbability: 
𝑚𝑚 = 6 × 6 = 36

Surprise:
𝑠𝑠 = 2 log 6

Heaviness:
ℎ = 𝑠𝑠

𝑚𝑚
= 2

36
log 6

Basic review + coining
some useful terminology



Surprise and Heaviness Functions
 For an individual state’s

contribution to entropy.
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Known Information & 
Information Capacity
 Given a discrete variable 𝑉𝑉 with a state set 𝐕𝐕, and a 

probability distribution 𝑃𝑃(𝑉𝑉),
 The amount of known information 𝐾𝐾(𝑉𝑉) about 𝑉𝑉 is given by the 

maximum entropy �𝐻𝐻 minus the entropy 𝐻𝐻:

𝐾𝐾 𝑉𝑉 = �𝐻𝐻 𝑉𝑉 − 𝐻𝐻 𝑉𝑉
= log |𝐕𝐕| − 𝐻𝐻 𝑉𝑉

 The information capacity 𝐈𝐈(𝑉𝑉) of 𝑉𝑉 is the maximum known 
information or entropy, and is also the sum of known information and 
entropy.

𝐈𝐈 𝑉𝑉 = �𝐾𝐾 𝑉𝑉 = �𝐻𝐻 𝑉𝑉 = log |𝐕𝐕|
= 𝐾𝐾 𝑉𝑉 + 𝐻𝐻(𝑉𝑉)
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Conditional Entropy & 
Mutual Information
 Given a discrete variable 𝑉𝑉 with a state set 𝐕𝐕 expressible as a 

cartesian product 𝐗𝐗 × 𝐘𝐘 of two state sets 𝐗𝐗,𝐘𝐘 for variables 
𝑋𝑋,𝑌𝑌, and a joint probability distribution 𝑃𝑃(𝑋𝑋,𝑌𝑌),
 The conditional entropy 𝐻𝐻 𝑋𝑋 𝑌𝑌) = 𝐻𝐻 𝑋𝑋,𝑌𝑌 − 𝐻𝐻 𝑌𝑌 .

 Expected value of 𝐻𝐻(𝑋𝑋) that would result from learning the value of 𝑌𝑌.
 The mutual information is a symmetric function given by:

𝐼𝐼 𝑋𝑋;𝑌𝑌 = 𝐼𝐼 𝑌𝑌;𝑋𝑋 = 𝐾𝐾 𝑋𝑋,𝑌𝑌 − 𝐾𝐾 𝑋𝑋 − 𝐾𝐾 𝑌𝑌
= 𝐻𝐻 𝑋𝑋 + 𝐻𝐻 𝑌𝑌 − 𝐻𝐻 𝑋𝑋,𝑌𝑌
= 𝐻𝐻 𝑋𝑋 − 𝐻𝐻 𝑋𝑋 𝑌𝑌)
= 𝐻𝐻 𝑌𝑌 − 𝐻𝐻 𝑌𝑌 𝑋𝑋).

 The amount of shared/redundant information between 𝑋𝑋 and 𝑌𝑌.
– The degree of information-theoretic correlation between the variables.
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Entropy and Time Evolution
 Microscopic dynamics is one-to-one (injective).

 A consequence of unitary quantum time evolution.
 If we could track fully-detailed physical time evolution 

perfectly, we would see no entropy increase!
 Probability distribution unchanged, just on new states

 In fact, this reversibility of microphysics underlies
the Second Law of Thermodynamics.
 If physics was not injective, entropy could decrease!

 But, entropy can be seen to increase, from our 
subjective perspective as modelers if we have any 
uncertainty about the microscopic dynamics, or 
cannot keep track of it in detail…
 Thus, entropy increase only exists as a subjective 

epistemological phenomenon…
 It is always fundamentally just a reflection of our degree 

of ignorance & incompetence in modeling the world…
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Bijective microphysics 
No “true” entropy change

True dynamics uncertain
(or not tracked in detail)
 Entropy increases

𝑆𝑆I =
1.03 𝑘𝑘

𝑆𝑆F =
1.03 𝑘𝑘

𝑆𝑆I =
1.03 𝑘𝑘

𝑆𝑆F =
1.29 𝑘𝑘

𝑆𝑆I =
0.69 𝑘𝑘

𝑆𝑆F =
0 𝑘𝑘

Irreversible microphysics
 Entropy would decrease
(Second Law of Thermo.

would be violated)
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From Physics to Computation
 Thermodynamics and quantum mechanics 

show that any bounded physical system 
admits only a finite set Φ = {𝜙𝜙1, … ,𝜙𝜙𝑛𝑛} of 
measurably distinguishable detailed 
physical states (microstates).
 E.g., Φ could be any orthogonal set of basis 

vectors for the system’s Hilbert space.
 We can group these microstates, that is, 

partition them into subsets 𝑐𝑐𝑗𝑗 of micro-
states that we consider as equivalent to 
each other for some designated purpose… 
 e.g., for purposes of representing some 

specific computational information
 Any probability distribution 𝑝𝑝 𝜙𝜙𝑖𝑖 over the 

physical state space Φ induces a probability 
distribution 𝑃𝑃 over the computational state 
space (subsystem) 𝐶𝐶 = 𝑐𝑐𝑗𝑗 as well…

𝑃𝑃 𝑐𝑐𝑗𝑗 = �
𝜙𝜙𝑖𝑖∈𝑐𝑐𝑗𝑗

𝑝𝑝(𝜙𝜙𝑖𝑖) .

 This implies a computational entropy 𝐻𝐻 𝐶𝐶 .
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Example of a computational 
state space 𝐶𝐶 consisting of 3
distinct computational states
𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, each defined as a set 
of equivalent physical states.

𝜙𝜙1

𝜙𝜙2𝜙𝜙3

𝜙𝜙4

𝜙𝜙6

𝜙𝜙5

𝜙𝜙7

𝜙𝜙9

𝜙𝜙11

𝜙𝜙8

𝜙𝜙12

𝑐𝑐1
𝑐𝑐2

𝑐𝑐3

𝐶𝐶

𝜙𝜙10



Visualizing Entropy of Grouped States
 Can represent a hierarchy of events in a tree structure…

 Branch thickness = event probability 𝑝𝑝.
 Branch length = incremental surprise Δ𝑠𝑠 associated w. event, 

 relative to whatever base event it’s branching off from.
 Branch area = event’s incremental heaviness ∆ℎ = 𝑝𝑝Δ𝑠𝑠, i.e.,

 its contribution to total entropy, in addition to its base event’s.
 Grouping events into larger events has these effects:

 Thicknesses (probs.) of branches combine in parent branch
 A corresponding part of the total length (surprise) of each 

branch is reassociated to parent (stem) branch.
 Note: The total heaviness 𝑯𝑯 of all branches and stems (total 

entropy S) is not changed at all by any grouping/ungrouping!!
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𝑺𝑺 𝝓𝝓 = 𝐻𝐻 𝑐𝑐 + 𝑆𝑆(𝜙𝜙|𝑐𝑐)

Grouping

Total system entropy = computational entropy + non-computational entropy

𝜙𝜙1

𝜙𝜙2

𝜙𝜙3

𝜙𝜙4

𝜙𝜙5

𝑐𝑐1

𝑐𝑐2

𝐶𝐶

𝑐𝑐1

𝑐𝑐2

𝜙𝜙1
𝜙𝜙2

𝜙𝜙3
𝜙𝜙4

𝜙𝜙5

𝜙𝜙1
𝜙𝜙2

𝜙𝜙3
𝜙𝜙4

𝜙𝜙5
Ungrouping



Grouping of States (slide 1 of 3)
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𝑺𝑺 𝝓𝝓 = 𝑬𝑬 𝒔𝒔 𝝓𝝓 = 𝟏𝟏.𝟒𝟒𝟒𝟒𝟒𝟒

𝑝𝑝tot = 1
(null event)

𝑐𝑐 1
=

{𝜙𝜙
1,
𝜙𝜙
2}

𝑐𝑐 2
=

{𝜙𝜙
3,
𝜙𝜙 4

,𝜙𝜙
5}

𝑝𝑝 𝜙𝜙3 = 1
9 = 0.111

𝑝𝑝 𝜙𝜙5 = 1
3 = 0.333

𝑝𝑝 𝜙𝜙4 = 2
9 = 0.222

𝑝𝑝 𝜙𝜙1 = 1
12 = 0.083

𝑠𝑠 𝜙𝜙1 = 2.484

𝑠𝑠 𝜙𝜙3 = 2.197

𝑠𝑠 𝜙𝜙5 = 1.099

𝑠𝑠 𝜙𝜙4 = 1.504

𝑝𝑝 𝜙𝜙2 = 1
4 = 0.25

𝑠𝑠 𝜙𝜙2 = 1.386



𝑝𝑝 𝜙𝜙3 = 1
9 = 0.111

Grouping of States (slide 2 of 3)
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𝑝𝑝 𝜙𝜙5 = 1
3 = 0.333

𝑝𝑝 𝜙𝜙2 = 1
4 = 0.25

𝑝𝑝 𝜙𝜙4 = 2
9 = 0.222

𝑝𝑝 𝜙𝜙1 = 1
12 = 0.083

𝑠𝑠 𝑐𝑐1 = 1.099

𝑠𝑠 𝜙𝜙1 = 2.484

𝑠𝑠 𝜙𝜙3 = 2.197

𝑠𝑠 𝜙𝜙5 = 1.099

𝑠𝑠 𝜙𝜙2 = 1.386

𝑠𝑠 𝜙𝜙4 = 1.504

𝑃𝑃 𝑐𝑐1 =
1
3

= 0.333

𝑝𝑝tot = 1
(null event)

𝑐𝑐 1
=

{𝜙𝜙
1,
𝜙𝜙
2}

𝑐𝑐 2
=

{𝜙𝜙
3,
𝜙𝜙 4

,𝜙𝜙
5}

𝑠𝑠 𝑐𝑐2 = 0.405

𝑝𝑝 𝜙𝜙2|𝑐𝑐1
= 3

4 = 0.75

Δ𝑠𝑠 𝜙𝜙2
= 𝑠𝑠 𝜙𝜙2|𝑐𝑐1
= 0.288

𝑺𝑺 𝝓𝝓 = 𝑬𝑬 𝒔𝒔 𝝓𝝓 = 𝟏𝟏.𝟒𝟒𝟒𝟒𝟒𝟒

𝑃𝑃 𝑐𝑐2 =
2
3

= 0.667

𝑆𝑆 𝜙𝜙|𝑐𝑐 = 𝐸𝐸 𝑠𝑠 𝜙𝜙|𝑐𝑐 = 0.862

Δ𝑠𝑠 𝜙𝜙1 = 𝑠𝑠 𝜙𝜙1|𝑐𝑐1 = 1.386

𝑝𝑝 𝜙𝜙1|𝑐𝑐1 = 1
4 = 0.25

𝑝𝑝 𝜙𝜙3|𝑐𝑐2 = 1
6 = 0.167

Δ𝑠𝑠 𝜙𝜙3 = 𝑠𝑠 𝜙𝜙3|𝑐𝑐2 = 1.792

𝑝𝑝 𝜙𝜙4|𝑐𝑐2 = 2
6 = 0.333

Δ𝑠𝑠 𝜙𝜙4 = 𝑠𝑠 𝜙𝜙4|𝑐𝑐2 = 1.099

Δ𝑠𝑠 𝜙𝜙5 = 𝑠𝑠 𝜙𝜙5|𝑐𝑐2 = 0.693

𝑝𝑝 𝜙𝜙5|𝑐𝑐2 = 3
6 = 0.5

𝑺𝑺 𝝓𝝓 = 𝐻𝐻 𝑐𝑐 + 𝑆𝑆(𝜙𝜙|𝑐𝑐)

𝑝𝑝 𝜙𝜙𝑖𝑖 = 𝑃𝑃 𝑐𝑐𝑗𝑗 ⋅ 𝑝𝑝 𝜙𝜙𝑖𝑖 𝑐𝑐𝑗𝑗
𝑠𝑠 𝜙𝜙𝑖𝑖 = 𝑠𝑠 𝑝𝑝 𝜙𝜙𝑖𝑖

= 𝑠𝑠 𝑃𝑃 𝑐𝑐𝑗𝑗 ⋅ 𝑝𝑝 𝜙𝜙𝑖𝑖 𝑐𝑐𝑗𝑗)
= − log 𝑃𝑃 𝑐𝑐𝑗𝑗 ⋅ 𝑝𝑝 𝜙𝜙𝑖𝑖 𝑐𝑐𝑗𝑗)
= − log𝑃𝑃 𝑐𝑐𝑗𝑗 − log 𝑝𝑝(𝜙𝜙𝑖𝑖|𝑐𝑐𝑗𝑗)
= 𝑠𝑠 𝑐𝑐𝑗𝑗 + 𝑠𝑠 𝜙𝜙𝑖𝑖 𝑐𝑐𝑗𝑗)



Grouping of States (slide 3 of 3)
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𝑠𝑠 𝑐𝑐1 = 1.099

𝑃𝑃 𝑐𝑐1 =
1
3

= 0.333

𝑝𝑝tot = 1
(null event)

𝑐𝑐 1
=

{𝜙𝜙
1,
𝜙𝜙
2}

𝑐𝑐 2
=

{𝜙𝜙
3,
𝜙𝜙 4

,𝜙𝜙
5}

𝑠𝑠 𝑐𝑐2 = 0.405

𝑝𝑝 𝜙𝜙1|𝑐𝑐1 = 1
4 = 0.25

𝑆𝑆 𝜙𝜙 = 𝐸𝐸 𝑠𝑠 𝜙𝜙 = 1.498

𝑃𝑃 𝑐𝑐2 =
2
3

= 0.667

𝑝𝑝 𝜙𝜙3|𝑐𝑐2 = 1
6 = 0.167

𝑝𝑝 𝜙𝜙4|𝑐𝑐2 = 2
6 = 0.333

𝑝𝑝 𝜙𝜙5|𝑐𝑐2 = 3
6 = 0.5

𝑝𝑝 𝜙𝜙3 = 1
9 = 0.111

𝑝𝑝 𝜙𝜙5 = 1
3 = 0.333

𝑝𝑝 𝜙𝜙2 = 1
4 = 0.25

𝑝𝑝 𝜙𝜙4 = 2
9 = 0.222

𝑝𝑝 𝜙𝜙1 = 1
12 = 0.083

𝑠𝑠 𝜙𝜙1 = 2.484

𝑠𝑠 𝜙𝜙3 = 2.197

𝑠𝑠 𝜙𝜙5 = 1.099

𝑠𝑠 𝜙𝜙2 = 1.386

𝑠𝑠 𝜙𝜙4 = 1.504

𝐻𝐻 𝑐𝑐 = 𝐸𝐸 𝑠𝑠 𝑐𝑐 = 0.637

𝑆𝑆 𝜙𝜙|𝑐𝑐 = 𝐸𝐸 𝑠𝑠 𝜙𝜙|𝑐𝑐 = 0.862

Total system entropy = computational entropy + non-computational entropy

𝑺𝑺 𝝓𝝓 = 𝐻𝐻 𝑐𝑐 + 𝑆𝑆(𝜙𝜙|𝑐𝑐)

𝑝𝑝 𝜙𝜙2|𝑐𝑐1
= 3

4 = 0.75

Δ𝑠𝑠 𝜙𝜙2
= 𝑠𝑠 𝜙𝜙2|𝑐𝑐1
= 0.288

Δ𝑠𝑠 𝜙𝜙1 = 𝑠𝑠 𝜙𝜙1|𝑐𝑐1 = 1.386

Δ𝑠𝑠 𝜙𝜙3 = 𝑠𝑠 𝜙𝜙3|𝑐𝑐2 = 1.792

Δ𝑠𝑠 𝜙𝜙4 = 𝑠𝑠 𝜙𝜙4|𝑐𝑐2 = 1.099

Δ𝑠𝑠 𝜙𝜙5 = 𝑠𝑠 𝜙𝜙5|𝑐𝑐2 = 0.693



Types of Computational Operations
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Entropy Ejection in Many-to-One Operations
 Again, a computational state 𝑐𝑐𝑗𝑗 is just an 

equivalence class of physical states 𝜙𝜙𝑖𝑖
 On the left we see two computational 

states 𝑐𝑐0, 𝑐𝑐1, each with probability 0.5

 The computational subsystem has an 
induced information entropy 𝐻𝐻(𝑐𝑐).
 Here, it is 𝐻𝐻(𝑐𝑐) = log 2 = 1 bit = 𝑘𝑘 ln 2.

 The non-computational subsystem 
(everything else) has expected entropy

 The conditional entropy of the physical 
state 𝜙𝜙, given the computational state 𝑐𝑐.

 Thus, if the computational entropy decreases (note here Δ𝐻𝐻 = −1 bit),
 The non-computational entropy must increase by Δ𝑆𝑆nc = −Δ𝐻𝐻 (here, 𝑘𝑘 ln 2).

 Thus, ejecting computational entropy 𝐻𝐻 = 1 bit implies we must add 
heat Δ𝑄𝑄 = 𝑘𝑘𝑘𝑘 ln 2 to an environment at some temperature 𝑇𝑇.
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𝑆𝑆nc = 𝑆𝑆 𝜙𝜙 𝑐𝑐 = 𝑆𝑆 𝜙𝜙 − 𝐻𝐻 𝑐𝑐 = 𝑆𝑆 − 𝐻𝐻



Heat Increase inflates State Count
 The Boltzmann relation 𝑆̂𝑆 = 𝑘𝑘 ln𝑊𝑊, together with the 

definition of temperature ⁄1 𝑇𝑇 = ⁄𝜕𝜕𝑆̂𝑆 𝜕𝜕𝜕𝜕, immediately 
implies that whenever a quantity of heat Δ𝑄𝑄 gets added to a 
thermal system, its total number of accessible microstates 
gets multiplied by a factor ∎𝑊𝑊 that is given by eΔ𝑄𝑄/𝑘𝑘𝑘𝑘:
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𝑆̂𝑆 = 𝑘𝑘 ln𝑊𝑊 ⇒ 𝑊𝑊 = e𝑆̂𝑆/𝑘𝑘

∎𝑊𝑊 =
𝑊𝑊2

𝑊𝑊1
= e(𝑆̂𝑆2−𝑆̂𝑆1)/𝑘𝑘 = eΔ𝑆̂𝑆/𝑘𝑘 = eΔ𝑄𝑄/𝑘𝑘𝑘𝑘

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

# microstates = 𝑊𝑊1

Add heat Δ𝑄𝑄 to system
State count ×= eΔ𝑄𝑄/𝑘𝑘𝑘𝑘

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

# microstates =
𝑊𝑊2 = 𝑊𝑊1eΔ𝑄𝑄/𝑘𝑘𝑘𝑘Example: Δ𝑄𝑄 = 1 eV, 𝑇𝑇 = 300 K

implies ∎𝑊𝑊 ≅ 6.3 × 1016



Energy Dissipation 
 For any means of dissipating some energy 𝐸𝐸1 (e.g.,

by discharging a capacitor), the dissipated energy 
𝐸𝐸diss = 𝐸𝐸1 ends up as increased heat Δ𝑄𝑄 = 𝐸𝐸diss in 
a thermal environment at some temperature 𝑇𝑇…
 Thus, any means of dissipating energy 𝐸𝐸1 results in 

the same state count multiplier ∎𝑊𝑊 = e𝐸𝐸diss/𝑘𝑘𝑘𝑘 = e𝐸𝐸1/𝑘𝑘𝑘𝑘…

 Thus, we can represent any energy dissipation process as a 
merging of computational state sets, as follows:
 Here, red shading indicates concentration of probability mass…
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+−
𝑉𝑉1 𝑄𝑄𝑒𝑒 = 𝐶𝐶𝑉𝑉1

𝐸𝐸diss = 𝐸𝐸1 =
1
2
𝐶𝐶𝑉𝑉12

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

Process starts Energy dissipates

𝑊𝑊1
states

𝑊𝑊2 = 𝑊𝑊1 ⋅ ∎𝑊𝑊
= 𝑊𝑊1 ⋅ e𝐸𝐸1/𝑘𝑘𝑘𝑘

𝑊𝑊2
states

𝑊𝑊0 = 𝑊𝑊2 −𝑊𝑊1
= 𝑊𝑊1(e𝐸𝐸1/𝑘𝑘𝑘𝑘 − 1)

𝑊𝑊0
states

(Before system
thermalizes)

Entropy increase of Δ𝑆𝑆 = 𝐸𝐸1/𝑇𝑇

(e.g., switch 
is closed)

(capacitor
is at 𝑉𝑉)

N
ote there is still a nonzero probability of 

still finding the capacitor to be charged at 
𝑉𝑉, corresponding to a therm

al fluctuation.



Asymptotically conditionally
reversible many-to-one operations
 In my RC’17 paper, I discussed how entropy ejected 

to the environment approaches 0 if the probability of 
all but one of a set of computational states being 
merged together approaches 0.
 Corresponds to the case in this circuit example where the capacitor was 

initially at logic zero (subject to uncertainty due to thermal fluctuations).
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𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙𝜙𝜙

States merge

𝑊𝑊1
states

𝑊𝑊2 = 𝑊𝑊1 ⋅ ∎𝑊𝑊
= 𝑊𝑊1 ⋅ e𝐸𝐸1/𝑘𝑘𝑘𝑘

𝑊𝑊2
states

𝑊𝑊0 = 𝑊𝑊2 −𝑊𝑊1
= 𝑊𝑊1(e𝐸𝐸1/𝑘𝑘𝑘𝑘 − 1)

𝑊𝑊0
states (e.g., switch 

is closed)

(capacitor
is at 𝑉𝑉1)

+−
𝑉𝑉0 = 0

𝐸𝐸diss = 0

• Here, the initial computational entropy is extremely tiny…
• Prob. of being in logic 1 state initially is only e−𝐸𝐸1/𝑘𝑘𝑘𝑘, e.g., 3.3 × 10−11 if 𝐸𝐸1 = 0.1 aJ).
• Entropy of initial computational state comes out to only 8.2 × 10−10𝑘𝑘.

• Thus, only that tiny amount of entropy gets ejected to non-computational form in this case.

Note: Ejection/intake of entropy does not imply net entropy increase! (more on this later)



Stochastic computational operations
 These can occur in bijective dynamics if different subsets of the 

set of physical microstates making up the initial computational 
state transition to different new computational states…
 In this example, initial computational state 𝑐𝑐I𝑖𝑖 at time 𝑠𝑠 has probability 
𝑃𝑃𝑖𝑖 𝑗𝑗 = ⁄11 24 of transitioning to final computational state 𝑐𝑐F𝑗𝑗
 because 11 out of the 24 (equally-likely) microstates transition into there
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𝑐𝑐I𝑖𝑖 = 𝑐𝑐𝑖𝑖(𝑠𝑠)
𝜙𝜙 𝜙𝜙 𝜙𝜙
𝜙𝜙 𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙 𝜙𝜙
𝜙𝜙𝜙𝜙

…
…

𝚽𝚽𝑖𝑖
𝑗𝑗

𝐂𝐂I = 𝐂𝐂(𝑠𝑠)

𝜙𝜙

𝜙𝜙

𝜙𝜙

𝜙𝜙

𝜙𝜙

𝜙𝜙

𝜙𝜙

𝜙𝜙
𝜙𝜙

𝜙𝜙

𝜙𝜙

𝜙𝜙
𝜙𝜙

𝐂𝐂F = 𝐂𝐂(𝑡𝑡)

𝑐𝑐F𝑗𝑗 = 𝑐𝑐𝑗𝑗(𝑡𝑡)

𝜙𝜙
𝜙𝜙

𝜙𝜙

𝜙𝜙
𝜙𝜙
𝜙𝜙

𝜙𝜙

𝜙𝜙
𝜙𝜙
𝜙𝜙

𝜙𝜙

…

𝜙𝜙

𝜙𝜙 𝜙𝜙

𝜙𝜙 𝜙𝜙

𝑃𝑃𝑖𝑖 𝑗𝑗 =
11
24

…



Reversing Entropy Ejection (1/2)
 The ejection of entropy can be reversible!

 Here, we do a many-to-one operation followed by a stochastic 
operation to restore the computational entropy back to 1 bit
 However, in this example, non-computational entropy increases by ~0.15 

bits (some information about the initial physical state has been lost)
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.1

.4

.3

.2

𝑐𝑐I1

𝑐𝑐I2

𝑐𝑐F1
.1

.4

.3

.2

𝐂𝐂 𝑡𝑡2 = 𝐂𝐂F𝐂𝐂 𝑡𝑡1 = 𝐂𝐂I

¼ 

¼

¼

¼

𝑐𝑐I1

𝑐𝑐I2

𝑐𝑐F1
¼

¼

¼

¼

𝐂𝐂 𝑡𝑡3 = 𝐂𝐂F 𝐂𝐂 𝑡𝑡4 = 𝐂𝐂I

Stochastic
physical

dynamics
�𝐷𝐷 (𝑡𝑡2, 𝑡𝑡3)

Δ𝑆𝑆 = 0.106 𝑘𝑘 = 0.153 bit



Reversing Entropy Ejection (2/2)
 The ejection of entropy can be reversible!

 Here, we do a many-to-one operation followed by a stochastic 
operation to return the computational entropy to 1 bit
 In this example, the initial non-computational entropy was already

maximal, so there is no entropy increase!
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¼ 

¼ 

¼ 

¼ 

𝑐𝑐I1

𝑐𝑐I2

𝑐𝑐F1
¼ 

¼ 

¼ 

¼ 

𝐂𝐂 𝑡𝑡2 = 𝐂𝐂F𝐂𝐂 𝑡𝑡1 = 𝐂𝐂I

¼ 

¼

¼

¼

𝑐𝑐I1

𝑐𝑐I2

𝑐𝑐F1
¼

¼

¼

¼

𝐂𝐂 𝑡𝑡3 = 𝐂𝐂F 𝐂𝐂 𝑡𝑡4 = 𝐂𝐂I

Stochastic
physical

dynamics
�𝐷𝐷 (𝑡𝑡2, 𝑡𝑡3)

Δ𝑆𝑆 = 0



Bistable potential well implementation
 A simple class of physical implementations of the entropy 

ejection and intake process on the previous slide
 Use two degenerate states separated by a potential barrier

 E.g., in quantum dots, superconducting circuits, many other systems
 Lowering the barrier partially will allow states to equilibrate
 Lowering the barrier fully will completely merge the states
 Going left and then right re-randomizes the digital state 

 If done adiabatically, there is no increase in entropy in this process
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Adiabatic demagnetization /
paramagnetic refrigeration
 A physical phenomenon that has been well

studied for a very long time, and that nicely
illustrates the reversibility of entropy ejection
 Utilized in practice in cryogenic applications!

 The randomly-oriented magnetic domains in a 
sample of paramagnetic material can be 
considered to contain entropy in a “frozen,” 
“digital,” “computational” form…
 When you apply a magnetic field and align the 

domains, this ejects the entropy from the domains
and heats their surrounding environment…

 But if you remove the magnetic field adiabatically, and allow the
domains to re-randomize themselves, this takes in entropy from
the thermal environment, locking it into this “digital” form, and cools
the thermal environment!  
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Thermodynamically Reversible
Erasure of an Uncorrelated Bit

 Overall map including mixing is non-injective
 No autocorrelation between initial & final state
 Not “logically reversible” in traditional sense
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Digital bits in
Computational

Subsystem
(“Logical” bits)

Comput.
Bit 𝐵𝐵

Input is
provided

𝜌𝜌0 + 𝜌𝜌1
2

0

Envir. 𝐸𝐸
Physical bits in

Non-computation-
al Subsystem

0
Represents available
extropy / free energy
in the overall system

Transfer of
digital bit

to the 
environment

(can be 
reversible)

?
Chaotic
mixing

Δ𝑆𝑆 = 0 bit

?

𝜌𝜌0 + 𝜌𝜌1
2

𝜌𝜌0 + 𝜌𝜌1
2

𝜌𝜌0 + 𝜌𝜌1
2

0

1

0

1

Transfer
of entropy
back to the
digital state

0

0



Role of Correlations
 In light of the foregoing points, this is essential for understanding the 

true reason for the entropy increase in Landauer’s principle!
 Suppose we have two one-bit computational state variables, 𝑋𝑋 and 𝑌𝑌, and 

suppose that initially 𝑋𝑋 is random, but we know that 𝑌𝑌 = 𝑋𝑋.
 E.g., this would be the case if 𝑌𝑌 was computed earlier using 𝑌𝑌 ∶= 𝑋𝑋.

 Thus, the joint system 𝑋𝑋𝑋𝑋 contains 1 bit of entropy, but also 1 bit of known 
information that is shared between 𝑋𝑋 and 𝑌𝑌 (i.e., mutual information).

 If 𝑌𝑌 is then erased, this known computational information is ejected to become 
(briefly) known non-computational information, which then rapidly becomes 
thermalized, (permanently) increasing entropy by 1 bit’s worth (𝑘𝑘 ln 2).
 This is why erasing computed bits (in particular) is not thermodynamically reversible!
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Logically Irreversible, Oblivious
Erasure of a Correlated Bit
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Input 𝐼𝐼Digital bits in
Computational

Subsystem
(“Logical” bits) Result 𝑅𝑅

?0

Input is
provided

𝜌𝜌0 + 𝜌𝜌1
2

𝜌𝜌00 + 𝜌𝜌11
2

0

Envir. 𝐸𝐸
Physical bits in

Non-computation-
al Subsystem

0
Represents available
extropy / free energy
in the overall system

0

Transfer of
computed bit

to the environment
(can be reversible at
the immediate level)

𝜌𝜌00 + 𝜌𝜌11
2

?

𝜌𝜌00 + 𝜌𝜌01 + 𝜌𝜌10 + 𝜌𝜌11
4

But: Environment
re-random-
izes the bit!

Moving a computed, correlated bit to an (unpredictable!) thermal environment
necessarily, inevitably loses its correlations, and thus increases entropy!

Δ𝑆𝑆 = 1 bit

Compu-
tation

CNOT

0

1

0

1



Logically Reversible, Non-oblivious
Decomputation of a Correlated Bit
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Input 𝐼𝐼Digital bits in
Computational

Subsystem
(“Logical” bits) Result 𝑅𝑅

?0

Input is
provided

𝜌𝜌0 + 𝜌𝜌1
2

𝜌𝜌00 + 𝜌𝜌11
2

0

Envir. 𝐸𝐸
Physical bits in

Non-computation-
al Subsystem

?

Environment can 
evolve chaotically…

Decomputing correlated bits, instead of ejecting them to the thermal
environment, avoids losing correlations & increasing entropy!

Δ𝑆𝑆 = 0 bit

Compu-
tation

CNOT CNOT

0

𝜌𝜌0 + 𝜌𝜌1
2

𝜌𝜌0 + 𝜌𝜌1
2

𝜌𝜌0 + 𝜌𝜌1
2

No external 
extropy needed

Decom-
putation

0

1

0

1

This is why reversible computing (and only it!) can avoid Landauer’s limit…



Several recent empirical validations of 
Landauer’s Principle

 Bérut et al., 2012 (Nature)
 Colloidal particle in a modulated double-well potential
 Heat dissipation in bit erasure approached Landauer 𝑘𝑘𝑘𝑘 ln 2 limit

 Orlov et al., 2012 (Japanese Journal of Applied Physics)
 Adiabatic charge transfer across a resistor
 Verified that adiabatic transfers can dissipate < 𝑘𝑘𝑘𝑘 ln 2

 Jun et al., 2014 (Physical Review Letters)
 Higher-precision version of Bérut experiment
 Validated the limit, and that reversible transformations avoid it

 Yan et al., 2018 (Physical Review Letters)
 Quantum-mechanical experiment
 Validated Landauer’s Principle holds at single-atom level
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Redundant with the already very well-established, century-old basic facts of 
statistical physics, but hey, the doubters and skeptics are very stubborn people!



Conclusion
 Landauer’s principle really does follow directly as a simple and 

rigorous logical consequence of extremely fundamental insights of 
statistical physics that have been known for at least a century now…
 The thermodynamic definitions of entropy and temperature
 The reversibility of microphysics / second law of thermodynamics
 Boltzmann & Planck’s statistical understanding of physical entropy…

 Von Neumann and Shannon only reformulated/reapplied it for specific domains!
– Nothing fundamental about the Boltzmann/Planck definition was changed!

 Nothing else is needed for the argument, except simple mathematics…
 No other empirical inputs are even required to prove it!
 We don’t even need to make any equilibrium assumptions!

 However, to appreciate a number of subtleties of the proof is 
necessary if one wishes to help educate the skeptics…  In particular:
 The phenomenon of entropy intake in stochastic operations
 The necessity of accounting for correlations

 In my opinion, the major barriers for our field are still educational:
 Clarify these basic concepts  Engineering development will follow…
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