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ABSTRACT 
This LDRD 149045 final report describes work that Sandians Scott A. Mitchell, Randall 

Laviolette, Shawn Martin, Warren Davis, Cindy Philips and Danny Dunlavy performed in 2010. 
Prof. Afra Zomorodian provided insight. This was a small late-start LDRD. Several other 
ongoing efforts were leveraged, including the Networks Grand Challenge LDRD, and the 

Computational Topology CSRF project, and the some of the leveraged work is described here. 
 

We proposed a sentence mining technique that exploited both the distribution and the order of 
parts-of-speech (POS) in sentences in English language documents. The ultimate goal was to be 
able to discover “call-to-action” framing documents hidden within a corpus of mostly expository 

documents, even if the documents were all on the same topic and used the same vocabulary. 
Using POS was novel. We also took a novel approach to analyzing POS. We used the hypothesis 
that English follows a dynamical system and the POS are trajectories from one state to another. 
We analyzed the sequences of POS using support vector machines and the cycles of POS using 

computational homology. We discovered that the POS were a very weak signal and did not 
support our hypothesis well.  Our original goal appeared to be unobtainable with our original 

approach. 
 

We turned our attention to study an aspect of a more traditional approach to distinguishing 
documents. Latent Dirichlet Allocation (LDA) turns documents into bags-of-words then into 

mixture-model points. A distance function is used to cluster groups of points to discover 
relatedness between documents. We performed a geometric and algebraic analysis of the most 

popular distance functions and made some significant and surprising discoveries, described in a 
separate technical report.[9] 
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INTRODUCTION 
The goal of the work was to distinguish faming (call to action) documents from expository 
(explanatory, action-neutral) documents.  Most work in the area of text analysis depends on 
modeling the words in documents: e.g. “recent”, “car”, “anger”, “oil” and 20,000 others. This 
works well in discovering topics, but less well for distinguishing between framing vs. expository. 
Instead our idea was to focus on the parts-of-speech (POS) in English sentences: e.g. 
“comparative-adjective”, “conjunction”, “plural-noun”; 36 in all.  Additionally, in contrast to the 
bag-of-words model, we chose to focus on POS order. Note the choice of English is important 
here, because in an inflective language such as Latin the word ending (form) defines its meaning, 
and order does not change the meaning.  English is mostly syntactic and only mildly inflective. It 
is actually losing inflection over time (as are many other languages). For example, “Drive Slow" 
is now accepted in place of the more inflected “Drive Slowly"; “Slowly Drive", though 
awkward, would convey the same meaning. But “Slow Drive" would be ambiguous if not 
completely meaningless to most people. 
 
In particular, our multi-part hypothesis was that (1) the order of the POS would distinguish 
document types, that (2) the POS followed a dynamical system, and that (3) the tools of 
computational homology could discover the trajectories (cycles) of this dynamical system 
through the observed POS and (4) this would reveal something about the underlying “states” that 
differed in framing vs. expository writing. In retrospect our multiple hypotheses were overly 
ambitious.  
 
We discovered that POS are a very weak signal. Using support vector machines (SVM) 
classification, we showed that short sequences (3 or 4 long) of POS from actual sentences were 
distinguishable from random orderings of POS, even when the POS came from the same 
distribution. But the longer sequences that would be necessary to get any more nuanced meaning 
were not distinguishable. Using topology, there are too many chance repetitions of common POS 
that produce cycles, which obscured any meaningful cycles. Perhaps English sentences are 
reflective of a dynamical system, as the beginning of sentences, before and after parenthetical 
remarks, etc., could be considered as states. Discovering states from observed trajectories is 
difficult; in our case it is even more difficult because the cycles in POS appear to be very 
imperfect evidence of trajectories between states. Different trajectories might heavily re-use 
POS. 
 
Various graph models of POS were constructed. We computed the homology of these graphs 
using the computational homology package JPlex[11]. We developed measures based on the 
Jaccard index for comparing the homologies of different sentences. We experimented with real-
world datasets, attempting to distinguish Netflix movie reviews from groundwater journal 
abstracts. 
 
After we concluded that real-world data did not support our original hypothesis and approach, 
we changed tack and began to study a more standard text analysis approach.  Documents are 
considered bags-of-words, where the order of words is ignored, and the POS are ignored. Latent 
Dirichlet Allocation (LDA) builds mixture models of topics in word-space and of documents in 
topics-pace. Points of the mixture models are then clustered using a distance function. We 
studied the popular distance functions for this problem, using basic geometry and algebra. We 
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discovered some fascinating relationships between these common functions, which were 
surprising to the people who are using these functions all the time.  We summarized our findings 
in a 24 page technical report, “Geometric comparison of popular mixture-model distances”[9]. 
We wrote a proposal for Sandia’s Cyber LDRD IA to further develop this analysis for 
cybersecurity applications. 
 
Proposal 
Here we reproduce our original proposal as a description of the problem and what motivated our 
work. Readers may skip ahead to “Homological Approach”. 
 
Project title:  Distinguishing documents by part-of-speech dynamics 
 
Principal Investigator’s name:  Scott Mitchell 
Research staff: Scott Mitchell, Randall Laviolette, Danny Dunlavy. 
Budget requested: $45k 
 
Project Manager’s name:  David Rogers 
 
Proposal abstract:   
We propose a sentence mining technique that exploits both the distribution and the order of 
parts-of-speech (POS, as define by the Penn Treebank) in sentences in English language 
documents. The research is focused on discovering meaningful sentence dynamics (grammar) 
signatures. If successful, it would be possible to discover “call-to-action” framing documents 
hidden within a corpus of mostly expository documents, even if the documents were all on the 
same topic and used the same vocabulary. This distinguishes the proposed work from ongoing 
activities in topic identification, which analyzes the bag of words in documents using linear 
algebra. While the rules of grammar are specified a priori by linguists, this would be the first 
known computational approach to discovering and characterizing actual, observed English 
grammar.  
 
Distinguishing framing vs. expository documents within unknown topics is the most important 
problem of this type, but this late-start would start with an easier problem with readily available 
data.  We seek to distinguish opinion vs. exposition, in particular distinguishing Netflix 
“positive” and “negative” movie reviews from abstracts from a groundwater science journal, 
without exploiting topic and word differences. Our preliminary work shows that the cosine 
similarity of the subsequences of POS is able to distinguish between abstracts and Netflix; and 
also (1) actual sentences and (2) the same sentences reversed and (3) the same sentences with 
their POS randomly permuted. It appears that sub-sequence lengths between 2 and 5, especially 
3, is a better differentiator than the just the frequency of POS (i.e. sub-sequence length 1). 
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Figure 1. Cosine similarity for subsequence length 1,2,3,4,5, between 100 scientific abstract 
sentences, the same sentences backwards, and the same sentences randomly permuted.  

 

2 3

Figure 2. Cosine similarity for subsequence length 2 and 3, between 100 scientific abstract 
sentences and 100 “negative” movie reviews and 100 “positive” movie reviews.  
 
Description of the work proposed:   
We suspect that English follows a dynamical system with hidden (not directly observable) rules. 
Beyond cosine similarity, the fixed-points, the POS that are repeated, and the loops of POS that 
appear between the fixed-points, were analyzed using persistent homology (JPlex) over some 
filtered simplicial complexes (adding simplices for consecutive POS between fixed points). 
 
Homology appears to provide some differentiating signal. However, we have not yet discovered 
the right structures and measures in order to both differentiate and cluster the documents.   The 
proposed work is to discover these, and demonstrate them in an end-to-end computational 
system, for our restricted datasets and types. We will explore different subsequences, especially 
those between fixed points. We seek to augment persistent homology with measures that 
consider tags on the data to overcome the problem of the skewed distribution of POS. Also, 
fixed-points joined by long loops appear to be an artifact of the distribution and should be 
ignored. 
 
How the work supports the DOE national security mission:   
This work supports text analysis, which is important for non-proliferation, cyber-security and 
other data-centric security missions. 
 
This work could eventually lead to finding unknown social movements within unknown topics,  
for the above missions. Eventually we may be able to distinguish: 
1. Fluent vs. non-fluent English 
2. Machine vs. human generated 
3. Opinion vs. narrative, exposition, or enumeration 
4. Framing vs. narrative, exposition, or enumeration 
5. Framing vs. Opinion 
 
Work by Laviolette and Dunlavy on the Network Grand Challenge LDRD and another LDRD 
provides additional motivation. That project was focused on developing a way to generate 
surrogate documents. These are synthetic (machine generated) bags-of-words that fall into the 
same category as a given set of training documents. They are generated using the frequency with 
which words appear in the training set (the stateless Bernoulli model). But beyond that, are also 
generated based on the probability that a word starts a sentences, and the conditional probability 
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of what word follows another (the Markov model, where the next state depends on prior state but 
only the one-prior state). Our proposal would extend this in the sense that we would be 
considering longer POS sequences, longer state history. 
 
Homological Approach  
Here we describe the motivation and background of homology in more detail, and how we 
applied this approach to POS sentence dynamics.  
 
Maturity of Homology for Research and Applications 
Algebraic homology is an old math field, with new (<10 year old) computational tools. Its appeal 
is that it can discover global information from local structure.  
 
Sandia has a large investment in a variety of other tools for the general area of discrete structure 
discovery and analysis. Homology provides complementary and unique information beyond 
these. These other tools include graph algorithms, statistics, and tensors. Homology overlaps 
with the graph properties of connectedness and spanning trees. Homology can represent higher 
dimensional objects than graphs, simplices of arbitrary dimension, whereas graphs are limited to 
0-dimensional vertices and 1-dimensional edges. On the other hand, graph theory can do some 
things homology can not, such as model directed graphs, attributes on edges and vertices, and 
can more easily model the dynamics of graphs adding and removing vertices and edges. 
Homology can model the dynamics of adding simplices, but homological tools for removing 
them are limited to zigzag complexes and are more difficult.  Homology has ties to 
electromagnetic PDE solutions, in particular the kernel of operators related to the phenomena of 
orthogonality between electric and magnetic fields and eddy currents[4]. Homology is related to 
Morse Theory, and the Sandia-CA combustion group (Pebay, Bennett, et al.) has an ongoing 
project with Sandia-NM’s visualization department (Shepherd et al.) on using a topological tool 
called Reeb graphs together with statistics to study ignition and extinguishment in combustion 
simulations.  Homology has ties to cryptography, in that the Smith-Normal Form over finite field 
algebra can be used to solve problems in both. 

• Visualization via Morse Theory for turbulent mixing (left) [6] and manufactured 
object characterization. Prof. Pascucci with Sandians Bennett, Thompson, 
Mascarenhas, Grout, and Chen. 

 
Homology is computed in one of two ways. The first way is linear algebra over finite fields, like 
Gaussian elimination using exact arithmetic. We had hopes to demonstrate the effectiveness of 
Trilinos[5] for discrete math applications. The second way is based on discrete algorithms over 
graphs, a matching problem between structures of different dimensions, over a non-bi-partite 
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graph. Afra Zomorodian’s thesis (and conference paper[15]) showed the equivalence of these 
two approaches. Prof. Zomorodian (Dartmouth) spent a CSRI sabbatical with us April – June 
2010. 
 
There is the potential for many homology applications, however, so far it has been demonstrated 
for only a handful few. Successful examples include Prof. Robert Ghrist’s DARPA project on 
sensor networks[12], image analysis[2], and solid model reconstruction and simplification[3]; 
more examples can be found in the CAT Workshop report[1].  All these applications have 
required new approaches to modeling the problem. As such, this project and other attempts at 
applying homology can best be described as high risk, high payoff. Under prior CSRF funding, 
Scott Mitchell, Janine Bennett, David Day, and Shawn Martin hosted a CSRI workshop on 
combinatorial algebraic homology, CAT[1], which engaged the academic community with about 
five different Sandia application areas, and engaged Sandia’s parallel linear algebra over 
(floating point) reals (Trilinos[5]) with academics in serial linear algebra over finite fields 
(LinBox[7]). 
 
Definition of Homology 
What is homology? It is a hierarchy of topological equivalence classes by dimensions. 
Equivalence classes have common meanings to us in low dimensions, e.g. H0, 0-dimension is 
connected components, 1-d is loops (cycles/handles/holes), 2-d is shells (surfaces of balls, 
hollow pits). There are three main things computational homology can compute. (1) Finding 
Betti numbers means counting these features. (2) Finding generators is harder and means finding 
sets of simplices representing these features. Often the sets should have certain properties 
depending on the intended application. (3) Persistent homology[15] means computing either (1) 
or (2) dynamically as simplices are added, often varying some control parameter such as a 
distance threshold.  Homology is blind to geometry, but applications often combine homology 
with geometry. For example, for solid model reconstruction[3] for mesh generation and finite 
element analysis, we desire geometrically short cycles as in the following figure: 

 
Beyond the above intuitive definition, we provide a short math definition. Homology is a 
representation of a sequence of complexes, based on the algebra of applying the boundary 
operator across the sequence, and studying the relationship between images and null-spaces. The 
domain must first be decomposed into a simplicial complex: simplices (points, edges, triangles, 
tetrahedra, etc.) meeting only in sub-simplices.  

graphic from Prof. Dey 

6 good generators of H1 for geometric model simplification 
for structural analysis, courtesy of Prof. Tamal Dey.[3] 
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boundary operator 

+
-

graphic and equations from Prof. Vegter  
The boundary of the boundary is null, due to sign (or “orientation” or “coefficients”). Thus we 
may define a sequence of boundary operators on a sequence of algebraic spaces: in the following 
figure Ck is the space of simplices of dimension k in the complex, Zk is the kernel of the kth 
boundary operator, and Bk is the image of the prior (k-1th) boundary operator  

If Bk = Zk, then this is called an exact sequence. Homology studies how much this differs from 
being exact. That is, there are often objects in the kernel that are not the boundary of higher-
dimensional objects. These objects are exactly the interesting features we are looking for. For 
example, each of the two loops in the following figure of a torus are in the kernel Z1 since they 
have null boundary, because they are closed. However, they are not in the boundary image B1 
because neither one bounds a set of quadrilaterals. 

not-quite exact 
sequence 

kernel graphic from Prof. Zomorodian

 

 
Formally, these objects are generators (basis elements for) the quotient group Hi = 
kernel(∂i)/image(∂i+1). These quotient groups are the “homology” groups, indexed by dimension 
i. The number of these generators is the rank of the group, the Betti numbers.  
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A filtered simplicial complex is one that grows based on a parameter called a stage. The filtration 
is a description of the order in which to add simplices. Persistent homology is the homology of 
the filtered simplicial complex at all of its discrete stages. The following figure shows how the 
homology of the complex changes as simplices are added. The bar-codes are the output of the 
persistent homology algorithm using the tool JPlex[11]. They counts generators: the number of 
bars at any stage (abscissa) is the Betti number for that dimension. In addition, barcodes show 
the life span of individual generators, which can be very helpful, since in some applications the 
long-lived generators are more significant descriptors of the shape of the object being studied. 
Generators themselves are not given in this example, but any one point of a connected 
component is a 0-dimensional generator, and cycles of edges forming loops are the 1-
dimensional generators. 

 
 
Modeling Sentences in Preparation for Homology 
We had two modeling and analysis approaches for our English sentences. The support vector 
machine (SVM) approach built vectors representing the frequency of each POS n-gram, then 
tested how well the SVM classifier distinguished sentences from two categories. SVM over n-
grams is well established in computational biology for comparing gene sequences. The 
homology approach built a graph then a filtered simplicial complex and computed the similarity 
of barcodes using a Jaccard-like index.  We actually performed the homology study first, then 
when we discovered how hard it was to make progress we tried the more well established SVM 
approach as a “sanity check.” We present SVM first for clarity.  
 
Sentences to POS 
Our original data were plain text sentences from scientific journal abstracts that were obtained 
from a search for “groundwater contamination”.  We also collected sentences from amateur 
movie reviews posted to the Netflix website. A sample sentence might be something like “In this 
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paper we show that the contaminant plume will travel at a mean-squared velocity bounded by the 
porosity…” or “SO and i can’t beleive we waisted 90 mins w/ this %*&! :(”  This was converted 
to a sequence of POS using a computer program by Randall Laviolette. The conversion 
contained a few errors, especially for the Netflix dataset that frequently contained non-standard 
words, which were sometimes converted to the “foreign word” POS, and non-standard grammar. 
In principle, this just made the task of distinguishing between the two corpuses easier. Both 
contained symbols. However, the POS we used were “standard”, defined according to the Penn 
Treebank project[10]. There are 36 POS. As an example, we had [3, 7, 12, 6, 3, 14, 12, 27, 29, 
24, 12, 12, 12, 12, 6, 12, 6, 28, 3, 12, 12, 12, 6, 2, 12, 7, 1, 3, 12] where 1 = Adjective – JJ, 2 = 
Adjective comparative, 3 = Adjective superlative, etc. All the POS were treated as abstract 
symbols after this point; we did not do anything with the meaning of any of the POS or the 
similarity of “noun singular” and “noun plural”, for example. 
 
POS to n-grams, Clustering and SVM 
For the SVM approach, we converted the POS to “n-grams”, all subsequences of n POS that 
appeared in the sentence. (E.g. if S=[abcd], then the 2-grams are “ab”, “bc”, and “cd”.) Then we 
built a (sparse) vector of length 36n for each sentence indicating the number of times each POS 
n-gram appeared in that sentence. E.g. for n=1, this is just a bag-of-POS model, the Bernoulli 
model. For n=2, this treated consecutive pairs of POS as objects, and is analogous to the Markov 
model. We considered up to n=5. The sentence vectors were compared using the cosine 
similarity, which is 1 minus the dot product between two unit vectors. (Normalizing to unit 
vectors corrects for differing sentence length.) Here are some example plots showing the pair-
wise cosine similarity between sentences from different corpuses. The first corpus has three 
categories of sentences: Netflix movie reviews, those same sentences in reverse order, and those 
same sentences with their POS order randomly permuted. That is, sentences j, 100+j, and 200+j 
have identical POS, but in original, reversed, and random order for j=1..100.  

In the top row, the 1-grams plot shows correctly that there is no difference between any of the 
categories, as all the individual POS (1-grams) appear with the same frequency. The 2-gram and 
3-gram plots show some difference between the categories, and this distinction fades to 
“everything’s unique” as we go to 4- and 5-grams. This fading is not a feature of the non-
standard language in the movie reviews; the plots for scientific abstracts are similar. The bottom 
row is for a second corpus with three other categories: scientific abstracts; reviews where the 
author liked the movie, as reflected by the number of stars they gave the movie; and reviews 

Netflix reviews
reversed

permuted

1-grams 2-grams 3-grams 4-grams 5-grams

Netflix reviews
reversed

permuted

1-grams 2-grams 3-grams 4-grams 5-grams

3-grams2-grams

100 Netflix “liked-movie”

100 Netflix “hated-movie”

100 scientific abstract
3-grams2-grams

100 Netflix “liked-movie”

100 Netflix “hated-movie”

100 scientific abstract
0 = red 
dissimilar 

1 = blue   
similar 
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where the author hated the movie. Note the scientific abstracts are more like each other than the 
movie reviews, reflective of adhering to the same writing style. We (Warren Davis) also tried 
clustering the sentences using a dendrogram (tree) view that paired sentences in sequence, 
pairing the most similar pair, then the next most similar pair, etc.; see the next figure left. 
Unfortunately, the tools we had at the time, from an external source, only showed the resulting 
pairing, not the relative strengths of the pairings, so it was not possible to tell if the original 
categories (the ground truth) were reproduced. These tools, too, were designed for comparing 
gene sequences in computational biology. Warren has since undertaken the task of putting a 
more powerful version of this capability into Sandia’s Titan visualization software[14]. Shawn 
Martin built a SVM classifier on the n-grams for the second corpus. This showed that the 2- and 
3-grams were the most distinguishing, which was consistent with the cosine similarity plots. This 
was not encouraging for supporting our hypothesis, which relied on long sequences of POS 
being significant and indicative of trajectories. 

Dendrogram 
greedy pairing 

SVM 
on 100 scientific + movie 

 
POS to Homology 
Many choices were possible in building a filtered simplicial complex[15], and we (Scott 
Mitchell, Randall Laviolette) tried several variations, guided by what seemed most likely to find 
supporting evidence for the hypothesis, if it existed. We first describe a graph model, then how 
we modified it to be a complex.  
 
First, thinking of English sentences as discrete dynamical systems, it was natural to consider 
POS as vertices (0-cells) and directed edges between consecutive POS in the sentences. We 
consider a graph for each sentence. This graph will have cycles, indeed our hypothesis was that 
these cycles were the interesting structure indicating the underlying dynamical system. But we 
were faced with the question of “How can we represent directed edges?” While one may assign 
coefficients to simplices in simplicial complexes from any choice of ring, there is no known way 
of combining these assigned coefficients together with homology calculations, because the 
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boundary operator introduces its own coefficients that are necessary for calculating the kernel, 
etc. So as a first pass we simply dropped the directedness of the edges, but chose the filtration 
order reflective of direction. That is, let S be the array of POS in a sentence. At filtration stage 0 
we introduced all the vertices for the POS that appeared in the sentence. At filtration stage 1 we 
introduced the edge (1-cell) between the vertex for the first POS appearing in the sentence (S[1]) 
and the second POS appearing in the sentence (S[2]), etc.  From here we tried several variations, 
but this initial set-up remained constant.  
 
Computing persistent homology on this model would identify the number of unique POS and the 
number of edge cycles, together with the index into the sentence when loops were first formed. 
  
2-cycles 
One consequence of dropping the directedness was we had no way to represent 2-cycles, pairs of 
POS that appeared both forward and backward, as in the 2-cycle between 1 and 2 in the sentence 
[1 2 3 4 2 1]. So one variation we tried was splitting each vertex in two, say V1 and V1′ for POS 
1, with an edge between them at filtration stage 0. For consecutive POS S[i] and S[i+1], if 
S[i]>S[i+1] we introduced an edge between VS[i] and VS[i+1]. Otherwise we introduced an 
edge between VS[i]′ and VS[i+1]′. Thus 2-cycles would appear as 1-d homology generators.   
 
1-cycles 
Also, because simplicial complexes represent simplices, we had no way to represent 1-cycles of 
the form S=[11]. So a second variation was to split vertices into three, VS, VS′, and VS′′, and 
two edges VS-VS′ and VS′-VS′′ at filtration stage 0. Then if S[i]=S[i+1], we would introduce the 
third edge VS-VS′′ completing a cycle of three edges. Thus 1-cycles would appear as 1-d 
homology generators.  
 
The 2-cycle and 1-cycle variations were dropped in the following as a simplification, in order to 
focus on measuring the features described next. 
 
k-cells 
The hypothesis was that cycles were trajectories, so we wanted a better way to distinguish 
between cycles than the stage at which they appeared. One measure was the length of the cycles, 
another was the extent to which cycles interleaved. We modeled this by filling in cycles starting 
with a filtration index after the last edge was introduced, the length of the sentence, say K.  At 
stage K+2, we added a triangle (2-cell) between S[i],S[i+1],S[i+2] for every i that started a cycle. 
In general, for filtered simplicial complexes, the notion of starting a cycle is not unique. But for 
us, with each edge introduced in sequence, when a cycle is formed at stage j, by introducing edge 
VS[j],VS[j+1], we know that the sentence has structure [S[1], S[2], …. S[i], … S[j], S[j+1], …] 
where S[i]=S[j+1] for some i. We pick the largest index i<j+1 where S[i]=S[j+1], and now i is 
one of the indices at which we add a triangle.  At stage K+k, we add k-cells S[i],S[i+1],…S[i+k] 
for all such i. 
 
Measures on Barcodes  
Barcodes represent the lifespan of cycles over filtration stages. Homology has been used to 
compare images. In that context, the Jaccard index proved useful, so we considered it here as 
well. The Jaccard index is defined as the following for sets: 
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To apply this to intervals, we convert an interval to the integer stages is covers. This gives us a 
measure of similarity between two intervals, value 1 if the intervals are identical and 0 if they are 
disjoint. To turn similarity into a distance, we use 1-J.  
 
Also, our data are sets of intervals, one set for each sentence for each homology dimension. Sets 
for different dimensions are incomparable, and we produced one measure of comparison 
between 0-dimensional barcodes, and two others for 1-dimensional barcodes. We split the 1-
dimensional barcodes into two sets, one set for the stages <K when we were just introducing 
edges, and one set for afterwards when k-cells were introduced. For the pairs of sets of 
comparable barcodes for two sentences, we did an optimization, matching one interval from one 
sentence to one interval from the other sentence, and found the matching that produced the 
minimum sum of distances (1-Jaccard indices). (Before matching, we first aligned the entire set 
based on the stage K where triangles were first introduced, to minimize the effect of sentence 
length.) The matching was performed using the optimization toolbox within Matlab, and no 
computational difficulties were encountered. Cindy Philips helped with this formulation. 
 
One sentence often has more intervals than the other, leaving some intervals unmatched. We 
tried various schemes to weight these. One option is to apply the Jaccard index with A=interval, 
and B=empty set, which contributes a value of 1 (Jaccard index being 0). At the other extreme 
the unmatched barcodes could be ignored. We found that a value between these, increasing with 
the size of the interval, produced the most meaningful comparisons. In any case, these distances 
are probably not true metrics, and much analysis could be done to consider their properties and 
effects. 
 
Future Variations 
Possible variations are to anchor cycles by the POS of their start vertex, e.g. matching nouns to 
nouns, instead of by their filtration stage. Another variation is to consider something other than 
individual POS as vertices: POS pairs, or entire cycles in the sentence graph.  
 
Results  
The results were inconclusive. We were not able to come up with models or measures that 
reproduced the “ground truth” of the known different categories within the corpus. Here we 
highlight some of the discoveries/challenges.  
 
First, the cycles overlapped to a very strong degree, stronger than we imagined. Most 1-cycles 
were filled in by just 2-cells and 3-cells, indicated by the barcodes terminating at stages K+2 and 
K+3. This was despite the fact that length 7+ cycles are fairly common. This indicates the 
presence of sub-cycles, but not necessarily within the sequence defining the long cycle. That is, 
this indicates the presence of short cycles somewhere in the sentence that use the same POS as 
the long cycle. 
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The frequencies of POS are not uniform. We have not done enough analysis to claim POS follow 
a power law distribution, but it is known that the frequency of English words do follow a power 
law. In any case the POS were highly skewed, with some of them very frequent. We suspect that 
these frequent POS produced many small cycles that swamped any meaningful signal that longer 
cycles might produce. Shannon information theory suggests to weight the rare features. It may be 
helpful to distinguish cycles by index of the POS, rather than by filtration stage. One option for 
doing this would be to filter (vertices, edges, some combination) by frequency of POS, or re-
order or re-number the POS based on frequency, but this loses the sentence order. 
 
The measures of 0-barcodes were not very interesting, as these merely indicated the number of 
unique POS, and when a POS first appeared in the sentence. At best, it measured how many rare 
POS appeared in long sentences. If one were truly interested in this feature, more direct 
measurements would be easy and more useful. 
 
k-simplices have a lot of sub-simplices, i.e. (k chose j) sub-simplices of dimension j, which is 
exponential in k. Even an 8-simplex has so many subsimplices that the software we were using, 
JPlex, would not introduce them for fear of running out of memory. So we had to finesse this 
issue by only adding subsimplices (of the k-simplex) up to dimension 6, which is O(k6). In the 
future, perhaps a triangulation of the cycles as closed 2d polygons, O(k), and adding one triangle 
at each filtration stage would be sufficient. 
 
Persistent homology indicated the presence of some high dimensional homology groups, e.g., 
nontrivial H5. In other applications these have frequently indicated randomness in the data, but 
we don’t really know what they mean here, if anything. 
 
In general, for most applications of homology, it helps to know what the k-dimensional barcodes 
mean before one starts an application. There are some notable exceptions where it appears that 
the meaning of structure was discovered after the structure itself: Shawn Martin’s cyclo-octane 
work[8], some work in the 1980’s on biological species food webs and specialization[13], and 
perhaps some of the early image analysis work[2]. 
  
As mentioned earlier, the cycles of POS may not have much to do with trajectories of the 
dynamical system we were attempting to characterize. For example, one natural state of the 
dynamical system is the start of a sentence. A sentence may start and end without producing any 
cycle of POS, yet the trajectory brought one back to the original state. Further, the dynamical 
system may not exist at all. 
 
The originator of the dynamical system hypothesis, Randall Laviolette, left the project and 
Sandia in May 2010 for a new career as a program manager at DOE ASCR. 
 
Alternate problem, geometric comparison of distance functions over mixture models 
Given these challenges, we turned our attention to a more traditional text analysis approach for 
distinguishing documents: LDA to model documents as points in topic-space, and distance 
functions to cluster those points. We produced some noteworthy research on these distance 
functions. We do not reproduce that here, but refer the interested reader to the technical 
report[9].
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