5/22/2017

BExceptional sevvice in the national interest @

Fundamental Energy Limits
and Reversible Computing Revisited

Michael P. Frank
Center for Computing Research
Sandia National Laboratories

Invited talk at the Center for Nonlinear Studies,
Los Alamos National Laboratory, April 17, 2017

Approved for Unclassified Unlimited Release
SAND2017-5481 PE

. A
@ ENERBY m Sandia National Laboratorios s mlt-program laboratory managed and operated by Sandia Corporation,a whally owned subsidary of Lockheo Martin
Corporation fo e U5, Dopart " Natona! s ot 25000, )

ment of Energy’

Abstract Ll =N

The fundamental thermodynamic limits of conventional
computation are near enough to be an area of concern when
contemplating future computing technologies. Several
thermodynamic arguments imply lower limits on the energy
required for computation, when conventionally

construed. However, several of the known limits may be
circumvented by using unconventional computing

paradigms. Thermal noise limits on signal energies can
potentially be circumvented in appropriately designed chaotic
systems with sub-unity signal-to-noise ratios. And, limits on
energy dissipation due to Landauer’s Principle can be
circumvented using reversible computing. We review some
recent work in these areas, including a new general theoretical
framework for reversible computing, and a framework for
asynchronous reversible computation.
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Talk Outline L=

Trends in Computational Energy Efficiency

Fundamental Energy Limits on Computation
= Thermodynamic limits of conventional computation
= Quantum-mechanical limits on all computation

Transcending the Thermodynamic Limits
with Unconventional Computing Paradigms
= (Generalized) Reversible Computing
= Asynchronous Reversible Computing
= Computation in Chaotic Systems?

Conclusion

The Power-Performance Trend T
) g )
and the importance of energy efficiency _
Computations (per kWh)
= Any system (at any scale) scoped to ) 2008 + 2008 props
have a fixed cost-of-ownership overits !
operational lifetime must implicitly N 7
carry some associated maximum Tonon G“‘wm'm"/';}i
budget for all energy-related costs. - —fs
=  These costs include things like: i
= In mobile devices, cost of batteries and 100ilion mmﬁq;;m/j’éiﬁ Bt
inconvenience to user of charging
= kWhr electricity costs for desktop owners 19138100 o “pmmm,f Fvpr
= Cost to build and operate high-capacity 1 billion s, b
machine room/datacenter cooling systems DECPDP"”’“%;;;‘; e
= Cost to build or lease a nearby power plantif ™" B /
required to supply an exascale machine 10 milion -t
= We can’t expect the cost of energy to il TAm”"lwwws’
ever decrease by orders of magnitude. o A
= Essentially, energy is “nature’s currency.” . . i
* Thus, fundamentally, increasing ol L
affordable performance requires o
increasing computational energy s
efficiency. (Useful ops done/Joule.) B
= And this has, indeed, been the historical e e T o e e
trend, for >50 years. (MIT Technology Review, Apr. 2012)




Thermodynamic Limits on Computing @&

= Landauer Limit, a.k.a. Landauer’s Principle:
= Rigorous theorem of mathematical physics!
= Computational operations that eject entropy AS from the digital state
imply energy dissipation E g, 2 TAS to an environment at temp. T.

= Special case: Erasing a uniformly-distributed bit (AS =k In 2)
— Energy dissipation Ey 2 kT In 2

= landauer’s Principle limits the number of conventional irreversible
operations that can be done with a given total energy dissipation
= However, (as we’ll see) reversible operations circumvent the Landauer limit
= Thermal Noise Limit on Signal Energies:

= Informal conventional wisdom...

= Has never been formally stated and rigorously proven in any general way
= Roughly stated (typically) as follows:

= “Computing reliably with a probability of error p,,. = 1/R requires signal

energies (or energy barriers) of magnitude E, > kT In R”
— Informal argument based on the Boltzmann distribution

= Note: Signal energy (or barrier height) need not be dissipated

= Also: Conventional wisdom may be wrong! (See “Chaotic Logic” later)

Information Loss = Entropy Increase @i,

= All fundamental physical dynamics is (microscopically) reversible.
= Any Hamiltonian dynamical system:
= Let the time increments &t be negative = Time-evolution runs in reverse.
= Quantum mechanical time-evolution (generalized Schrédinger equation):
= Any two quantum states that are initially mutually distinguishable (orthO%_?naI) will
always remain so, under any unitary time-evolution operator, U(t) = e™* t/h,
= . Detailed physical information can never, ever be destroyed!
= Only reversibly transformed, in place (locally)!

= At most, we can only lose track (from a modeling perspective) of the (always-still-
microscopically-reversible) transformations that have occurred.
— Uncertainty increase > Effective randomization of the detailed state

= |f this were not true, the 2" Law of Thermodynamics would not hold!
= Effectively, entropy is simply that portion of the total physical information that
happens to have already been randomized/scrambled beyond any hope of
practically transforming it back into its original form.
— .. If information could be destroyed, then entropy could simply vanish
= To “irreversibly lose information” means for that information to be
(reversibly) transformed in any way that we cannot practically undo.
= |t's “lost” in the sense that its original form cannot be practically recovered.

= “Irreversible information loss” is exactly the same thing as “entropy increase.”
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Landauer’s Principle— .
A Simplified Statement:

= For each bit’s worth of local information that is irreversibly lost
from (e.g., obliviously “erased” by, or “destructively overwritten”
by) any computational device encompassed by an external thermal
environment at temperature T, no less than an amount

Egiss = kzTIn2

of free energy (“Landauer’s limit”) must eventually be dissipated as
heat added to that thermal environment.
= This is easily proven, as a theorem of applied mathematical physics.
= Approachability hypothesis:

= landauer’s bound may be approached arbitrarily closely in a suitably-
designed family of realistically-constructible physical mechanisms.
= Abstract physical procedures described in the literature support this.

7 " "
Landauer’s Principle— e
. Ly
A Correct General Formulation: L
= Consider any computational device D that is designed to transform initial logical states
sy € S = {S11, S12, -+, St} to final logical states sp € Sg = {Sg1, Sp, ..., Spm } according to
some (in general probabilistic) transition rule, 7; (j) = Pr[s,.- = SF]TSI =5y
= Now consider any given probability distribution over initial states, (D) —)Pr[sl = s“] defining a given

statistical scenario in which D is to be operated. (An “operation context.”
= The entropy H|[p;] of this initial state dlstrlbutlon is:

Hlp] = zkﬁﬂn()

= And, after D has operated, we can derive, from p;and T‘L(]) the final state distribution pg, which is

ps(j) = Prsp = sg;] = zpl(l) -1(J)-
i=1

= And the entropy H [pg]of the final state distribution is:

m . 1
Hlpgl = ;ppm n s

= Then, the minimum entropy ejected from the device D as a side-effect of its operation in context p; must be:
AHp(py) = Hlp|l — Hlpl,
since total entropy cannot decrease (by fundamental reversibility/the 2" law of thermodynamics).
= Therefore, device D, when operated in a statistical context p,, necessarily loses an amount of
information (i.e., ejects an amount of entropy) AHj, (py).
= Suppose this entropy eventually ends up in some external thermal reservoir at temperature T.
= Then, by the thermodynamic definition of temperature, we must add heat AQ = TAH, (p;) to the reservoir.
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Energy limits for conventional
technology are not far away!

= Energy of min.-width FET
gates affects channel ITRS2015 Node vs. Gate Energy (eV)
fluctuations < ~1-2 eV 10000 Ty
= |mpact on leakage f
= Real gates are often (B
wider (~ 20 X min.) 10000 =S
= Also there is fanout, f

wire capacitance, etc.

= Note: ITRS is aware of
thermal noise issue, and
so has min. gate energy

asymptoting to ~2 eV
= Node energy follows, [
asymptoting to ~1 keV e

=  Practical circuit 10 (min—o :
architectures can’t just i - Size Qates)

magically cross this gap! . ——
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larger practical limits! Year of Introduction per ITRS 2015

Implications for FLOPS & power i

Note: The limits suggested by the diagonal lines do not
even include power for interconnects, memory, or cooling!

>10GW today

Prohibitively Large Total System Power Levels! ;
>1GW in 2030
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Computing
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System Performance (FLOPS/s) take for a
zettaFLOP?
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Quantum-Mechanical Energy Limits @&

= Quantum mechanics is not known to directly limit the energy that
must be dissipated to carry out a computation,
= But, it does appear to limit the energy that must be invested in a
computation to attain a given performance
= The Margolus-Levitin bound (1996)

= The maximum rate at which a system may transition between orthogonal
states is given by v| <4E/h. (Example: 1 eV > ~1 PHz)
= Generalized in Frank 2005, “On the Interpretation of Energy as the
Rate of Quantum Computation”
= For any system, its Hamiltonian energy is exactly the rate at which it
“exerts computational effort” by several measures
= We can characterize a minimum effort or difficulty for given operations
= Thus, any given computation requires a certain minimum Hamiltonian
action (energy invested X time) to carry out.
= Note, however, as with the thermal noise limit, the energy invested
in the computation need not be dissipated...

= For maximizing total computation carried out given fixed free-energy
resources, the energy dissipated and the Landauer bound are essential

Transcending the Energy Limits =

= We can transcend the traditional thermodynamic limits of
computing using new computing paradigms:
= Reversible Computing — Absolutely required to reuse signal energies
and avoid Landauer’s limit

= Generalized Reversible Computing — Clarifies the precise requirements to
avoid Landauer’s limit. More general concept of logical reversibility

= Asynchronous Reversible Computing — A ballistic computing scheme that
avoids the clocking overheads of synchronous adiabatic approaches.

= Computing with Chaos — A possible direction to reduce signal energies
= Can also be viewed as a special case of reversible computing
= Quantum Computing — Not the focus of this talk. About finding more
efficient algorithms for some problems using coherent trajectories.

= Doesn’t address practical energy efficiency of general-purpose
computation.




Enter Reversible Computing... .

= Problem: Landauer’s Principle teaches us that losing
computational information (merging computational states)
implies unavoidable energy dissipation.

= Solution: Compute without losing information!
= Don't ever try to erase bits / merge two distinct computational states.
= |nstead, transform computational states one-to-one into new states.
= No decrease in computational entropy
= No need to eject computational entropy to the physical state

= This is what we mean by reversible computing.
= Bennett (1973) showed that reversible computations can still
compute any function...

= To get rid of temporary results that are no longer needed, you can
always reversibly decompute them

= instead of erasing/overwriting them

Unconditionally Reversible (UR) Gates g,
(These are only a special case!)

= Any total, reversible, deterministic operation is simply a
permutation (bijective transformation) of the state set.

= Some example UR operations (misleadingly called “gates”) Nt
on binary-encoded states: 1T
= NOT(a) a:=—a In-place bit-flip -CEN?T-
= cNOT(a,b) if a=1then b :=—b Controlled NOT
= ccNOT(a,b,c) if ab=1then ¢ := —c A.k.a. “Toffoli gate” T
= ¢SWAP(a,b,c) if a=1thenb <> ¢ A.k.a. “Fredkin gate”

= ccNOT and cSWAP are each universal UR gates
= The latter in the case of functions on dual-rail-encoded bit-strings
= No set of just 1- and 2-bit classical UR gates is universal

= However, cNOT plus 1-bit quantum (unitary) gates comprise a X
universal set CSWAP

Q
o
=z

Al
SV
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Generalized Reversible Computing (GRC) M
also includes Conditional Reversibility (CR)!

= Definition: A (deterministic) operation O is conditionally reversible
under precondition P € S if and only if the restriction of O to P (as
a partial operation) is an injective (one-to-one) operation.
= Given any initial probability distribution p over states in S such that
p(x) = 0forall x ¢ P, the application of the operation O does not reduce
the entropy of the computational state at all, and so incurs no minimum
dissipation under Landauer’s principle.
= And, as all those p(x) — 0, so does the minimum Landauer dissipation.
= Examples of some conditionally reversible operations:
= Green denotes the restriction of the operation to the precondition
= Red: States that would result in dissipation b/c precondition not met

(9L © -0 - Al -
®+@ | @
rSET rCLR

d - rSET rCOPY
Reversible SET Reversible CLEAR Controlled Reversible SET Reversible COPY
[a=0] a:=1 [a=1] a:=0 [ab=0] if a then b := 1 [b=0] b:=a rOR — Reversible OR
[c=0] c:=avb

Implementing Conditionally-

Reversible Operations

= Not very difficult!
= Straightfoward to do with adiabatic switching L
= E.g., this CMOS structure can be used to A%.
do/undo latched rOR operations

= Example of 2LAL logic family B@1
= Based on CMOS transmission gates NP

= Implicit dual-rail complementary @2
signals (PN pairs) in this notation Q

= Computation sequence: @1
1. Precondition: Output signal Q initially at logic 0 S

2. Driving signal D is also initially logic 0 ANPD<____—|
BNPD<:|

3. Attime 1 (@1), inputs A, B transition to new levels
= Connecting D to Q if and only if A or B is logic 1

4. Attime 2 (@2), driver D transitions from 0 to 1
= Qfollowsitto 1 if and only if A or Bis logic 1 DN__/—
= Now Q is the logical OR of inputs A,B ,_-
)
= Reversible things that we can do afterwards: O 4
= Restore A, B to 0 (latching Q), or, undo above steps gj
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Some problems with all of the existing adiabatic
schemes for reversible computing:

= |n general, numerous power/clock signals are
needed to drive adiabatic logic transitions

= Distributing these signals adds substantial
complexity overheads and parasitic power losses
Ballistic logic schemes can eliminate the clocks!
= Devices simply operate whenever data pulses arrive
= The operation energy is carried by the pulse itself
= Most of the energy is preserved in outgoing pulses
= Signal restoration can be carried out incrementally
But, synchronous ballistic logic has some issues:
= Unrealistically precise timing alignment required
= Chaotic amplification of timing uncertainties
when signals interact
Benefits of asynchronous ballistic logic:
=  Much looser timing constraints

= Linear instead of exponential increase in timing
uncertainty per logic stage

= Potentially simpler device designs

New effort to investigate implementing ABRC in
superconducting circuits (N&M LDRD idea)...

Asynchronous Ballistic Reversible Computing
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Merkle et al., IMM Report 46 and Hogg et al., arxiv:1701.08202
(reproduced with permission)
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= Videos animate schematic
geometry of a pair of locks
in a reversible shift register

= Molecular Dynamics
modeling/simulation tools
used for analysis include:
= LAMMPS, GROMACS,
AMBER Antechamber
= Simulated dissipation:

= ~4 X102 J/cycle at 100 MHz

= 74,000 X below Landauer
limit for irreversible ops!

= Speeds up into GHz range
should also be achievable

haoti ' M.
Chaotic Logic — Summary
S
= Shannon teaches us that reliable C = Blog; (1 + N)
communication is still possible with Channel capacity theorem
signal energies below the noise floor %
= Why not also reliable computation? I '}G: 4
. . P ‘u@
= Chaotic Network Model of logic: - .
. . Do——@
= Nodes are dynamic variables r oy
= Gates are Hamiltonian interaction terms 4 T ®

. Full Adder d ical network
= Node values chaotically fluctuate around . er cynamical networ

a long-term average that encodes the
result of the computation
= A simulator for this model was built...

= cs.sandia.gov = Software = Dynamic
= Page also links to a paper & a full talk

Frank & DeBenedictis ‘16, “A Novel Operational Paradigm for Thermodynamically Reversible Logic: LOgiC gates implemented by
Adiabatic Transformation of Chaotic Nonlinear Dynamical Circuits” potential energy surfaces

5/22/2017
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. T Sl
Chaotic AND Gate HE.
Mean A =-0.001531, B = 0.975105, Q = 0.001710
Projected Phase Portraits of Canonical Coordinates for AND Gate

G‘eneralized Momentu
oordinates (Offset for Cl

—A —B

Generalized Position Coordinates

Conclusion .

= The increasing economic utility of computing has been
enabled by steadily increasing energy efficiency
= However, fundamental limits on energy efficiency threaten to prevent
further general-purpose improvements in the relatively near term
= Transcending the practical and fundamental limits will
necessarily require the increasing application of reversible
computing principles...

= The most general form of which is described by Generalized Reversible
Computing theory (first paper to appear in RC’'17)

= A particularly efficient implementation of reversible computing is the
new Asynchronous Reversible Computing (ARC) approach
= |In progress: Paper, funding effort, possible patent application

= There is another approach called Chaotic Logic which also avoids
clocks, and can potentially use signal energies below thermal noise

= Further development of these research areas will be key to
future computer performance and economic development
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Landauer’s Principle in a Nutshell (1 of 4) &

= 1. Fact: Fundamental z f_E‘(O) E(_ét)
Physics is Reversible N 0
= Dynamical evolution over @ -

|

1

time transforms old sets of i

distinguishable physical :
microstates (orthogonal i @

1

1

1

1

\

L e o

Y

Y
w [ -

- —————

guantum states) one-to-
one to new distinguishable
sets of physical microstates

= Follows from unitarity of
gen. Schrodinger equation ~o__.’ Sel e’

D(Ab)

I

= |f it wasn’t true, the Second | N
Law of Thermodynamics | At ]
would not hold! to t
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Landauer’s Principle in a Nutshell (2 of 4) =
= 2. A computational state is just an e
equivalence class of distinct g /*sz y
physical microstates that we | ’@“ /@ ® N\
interpret alike for computational | { ©® L @@
purposes. § J"camx ________ s i
= F.g. any state of a circuit node in / / @\\
which its average voltage V is in :
some range, V;. <V < Vg, may '\\@ @/z ;
represent a logic “1” s 2
= But, there are many detailed physical x‘a;;r‘lgl;E)-f‘z-alg;.c;r‘ﬁéut.a-t.ignal
microstates consistent with this! state space C consisting of 3

distinct computational states
c1, €3, c3, €ach defined as a set
of equivalent physical states.

— E.g., at nonzero temperature, many
electron states near Fermi level may or
may not be occupied

aalk ]

Landauer’s Principle in a Nutshell (3 of 4) L

= 3. When we “erase information” in
a computer (merge computational
states), the underlying physical
microstates remain distinct

= Before the erasure, the entropy of the
detailed state s, conditioned on the
computational state, is given by...
" H(s|c)=H(s) —H(c)
= After the erasure, there is no more
entropy in the computational state, so
= H(s|c)=H(s)
= The physical entropy (from the user’s
perspective) has increased by H(c)!

= Losing computational information
increases physical entropy!

5/22/2017
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Landauer’s Principle in a Nutshell (4 of 4) e

= 4. Entropy/information is measured in logarithmic units.

= Two equiprobable computational states = Entropy/information
content of computational state is one factor-of-two logarithmic unit

H(c) = [log2] = [loge]loge 2 = kgIn 2

= 5.If entropy AS = H(c) ends up in a thermal environment at
temperature T, this requires adding heat AQ = TAS to the
heat bath, by the definition of thermodynamic temperature:
1 4§
T 90
= . Merging two equally-likely computational states implies that
we must dissipate this amount of energy to the heat bath:
AEg4iss = kgTIn2 & Landauer limit
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