
Kokkos Tutorial

Jeff Amelang 2, Christian R. Trott 1, H. Carter Edwards 1

1Sandia National Laboratories

2Harvey Mudd College

Supercomputing’15, November 16, 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by

Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the

U.S. Department of Energy’s National Nuclear Security Administration under contract

DE-AC04-94AL85000.

SAND2015-9620 C

Supercomputing’15, November 16, 2015 2/122

Prerequisites for Tutorial Exercises

Compilers and Libraries for your Compute Node

I CPU: GCC 4.7.2 (or newer) OR Intel 14 (or newer) OR Clang
3.5.2 (or newer)

I GPU: CUDA nvcc 6.5.14 (or newer) AND NVIDIA compute
capability 3.0 (or newer)

Install Kokkos and Exercises on your Compute Node

I Kokkos: github.com/kokkos/kokkos,
clone in ${HOME}/kokkos

I Tutorial: github.com/kokkos/kokkos-tutorials/SC15
makefiles look for ${HOME}/kokkos

Knowledge of C++: class constructors, member variables,
member functions, member operators, template arguments

Supercomputing’15, November 16, 2015 3/122

Tutorial Objectives

Understand Kokkos Programming Model Abstractions

I What, how and why of performance portability

I Productivity and hope for future-proofing

Part One:

I Simple data parallel computations

I Deciding where code is run and where data is placed

Part Two:

I Managing data access pattens for performance portability

I Thread safety and thread scalability

I Thread-teams for maximizing parallelism

Supercomputing’15, November 16, 2015 3/122

Tutorial Objectives

Understand Kokkos Programming Model Abstractions

I What, how and why of performance portability

I Productivity and hope for future-proofing

Part One:

I Simple data parallel computations

I Deciding where code is run and where data is placed

Part Two:

I Managing data access pattens for performance portability

I Thread safety and thread scalability

I Thread-teams for maximizing parallelism

Supercomputing’15, November 16, 2015 3/122

Tutorial Objectives

Understand Kokkos Programming Model Abstractions

I What, how and why of performance portability

I Productivity and hope for future-proofing

Part One:

I Simple data parallel computations

I Deciding where code is run and where data is placed

Part Two:

I Managing data access pattens for performance portability

I Thread safety and thread scalability

I Thread-teams for maximizing parallelism

Supercomputing’15, November 16, 2015 4/122

Tutorial Takeaways

I High performance computers are increasingly heterogenous
MPI-only is no longer sufficient.

I For portability: OpenMP, OpenACC, ... or Kokkos.

I Only Kokkos obtains performant memory access patterns via
architecture-aware arrays and work mapping.

i.e., not just portable, performance portable.

I With Kokkos, simple things stay simple (parallel-for, etc.).
i.e., it’s no more difficult than OpenMP.

I Advanced performance-optimizing patterns are simpler
with Kokkos than with native versions.

i.e., you’re not missing out on advanced features.

Supercomputing’15, November 16, 2015 5/122

Kokkos and the HPC
Landscape

Learning objectives:

I How Kokkos fits in the context of modern HPC.

I Kokkos scope, goals, and philosophy.

I Difference between Kokkos and #pragma methods.

Supercomputing’15, November 16, 2015 6/122

Many-core revolution (0)

Compute nodes will be heterogeneous in cores and memory:

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

Many-core revolution: 20-year “just recompile” free ride is over.

How much do I have to learn and change to use these nodes?

Supercomputing’15, November 16, 2015 6/122

Many-core revolution (0)

Compute nodes will be heterogeneous in cores and memory:

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

Many-core revolution: 20-year “just recompile” free ride is over.

How much do I have to learn and change to use these nodes?

Supercomputing’15, November 16, 2015 7/122

Many-core revolution (1)

Key Considerations for GPUs:

I GPUs support thousands of simultaneously-executing threads.

I You need O(10,000) threads to use a GPU effectively.

I Cores are “simple” - no transistors are dedicated to branch
prediction, out of order execution, etc. Instead, more cores.

I Current GPUs can’t performantly access CPU memory, you
have to move data

I GPU cores cannot run MPI’s heavy processes.

Supercomputing’15, November 16, 2015 8/122

Supporting multiple architectures (0)

Operating assumptions:

I Compute nodes have ˜50 complex cores, ˜5000 simple cores,
and heterogenous memory.

I Separate inter-node and intra-node programming models e.g.,
message passing + threading)

Goal: run on multiple architectures.

Solutions:

I

I Use a language or a library that runs on multiple architectures
(e.g., OpenMP, OpenACC, OpenCL, Kokkos)

I

Supercomputing’15, November 16, 2015 8/122

Supporting multiple architectures (0)

Operating assumptions:

I Compute nodes have ˜50 complex cores, ˜5000 simple cores,
and heterogenous memory.

I Separate inter-node and intra-node programming models e.g.,
message passing + threading)

Goal: run on multiple architectures.

Solutions:

I Maintain separate versions for each target architecture
(Xeon, Xeon Phi, GPU, GPU with NVLink, etc.)

I Use a language or a library that runs on multiple architectures
(e.g., OpenMP, OpenACC, OpenCL, Kokkos)

I

Supercomputing’15, November 16, 2015 8/122

Supporting multiple architectures (0)

Operating assumptions:

I Compute nodes have ˜50 complex cores, ˜5000 simple cores,
and heterogenous memory.

I Separate inter-node and intra-node programming models e.g.,
message passing + threading)

Goal: run on multiple architectures.

Solutions:

I Maintain separate versions for each target architecture
(Xeon, Xeon Phi, GPU, GPU with NVLink, etc.)

I Use a language or a library that runs on multiple architectures
(e.g., OpenMP, OpenACC, OpenCL, Kokkos)

I Note: not all alternatives support heterogenous memory

Supercomputing’15, November 16, 2015 8/122

Supporting multiple architectures (0)

Operating assumptions:

I Compute nodes have ˜50 complex cores, ˜5000 simple cores,
and heterogenous memory.

I Separate inter-node and intra-node programming models e.g.,
message passing + threading)

Goal: run on multiple architectures.

Solutions:

I Maintain separate versions for each target architecture
(Xeon, Xeon Phi, GPU, GPU with NVLink, etc.)

I Use a language or a library that runs on multiple architectures
(e.g., OpenMP, OpenACC, OpenCL, Kokkos)

I Note: not all alternatives support heterogenous memory

Supercomputing’15, November 16, 2015 9/122

Supporting multiple architectures (1)

Important Point

There’s a difference between portability and performance
portability.

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won’t scale to 100,000 threads on GPU)

Goal: write one implementation which:

I compiles and runs on multiple architectures,

I obtains performant memory access patterns across
architectures,

I can leverage architecture-specific features where possible.

Kokkos: performance portability across manycore architectures.

Supercomputing’15, November 16, 2015 9/122

Supporting multiple architectures (1)

Important Point

There’s a difference between portability and performance
portability.

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won’t scale to 100,000 threads on GPU)

Goal: write one implementation which:

I compiles and runs on multiple architectures,

I obtains performant memory access patterns across
architectures,

I can leverage architecture-specific features where possible.

Kokkos: performance portability across manycore architectures.

Supercomputing’15, November 16, 2015 9/122

Supporting multiple architectures (1)

Important Point

There’s a difference between portability and performance
portability.

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won’t scale to 100,000 threads on GPU)

Goal: write one implementation which:

I compiles and runs on multiple architectures,

I obtains performant memory access patterns across
architectures,

I can leverage architecture-specific features where possible.

Kokkos: performance portability across manycore architectures.

Supercomputing’15, November 16, 2015 10/122

Threaded (intra-node) data
parallelism

Learning objectives:

I Terminology of pattern, policy, and body.

I The data layout problem.

Supercomputing’15, November 16, 2015 11/122

Opportunities for data parallelism

Loop bodies are prime candidates for data parallelism.

Test: Same answer if the loop iterates backwards? random order?

Examples:

I Thermodynamic quantities at quadrature points in FEA:

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

Supercomputing’15, November 16, 2015 11/122

Opportunities for data parallelism

Loop bodies are prime candidates for data parallelism.

Test: Same answer if the loop iterates backwards? random order?

Examples:

I Thermodynamic quantities at quadrature points in FEA:

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

Supercomputing’15, November 16, 2015 12/122

Concepts: Patterns, Policies, and Bodies

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

Terminology:

I Pattern: structure of the computations
for, reduction, scan, task-graph, ...

I Execution Policy: how computations are executed
static scheduling, dynamic scheduling, thread teams, ...

I Computational Body: code which performs each unit of
work; e.g., the loop body

⇒ The pattern and policy drive the computational body.

Supercomputing’15, November 16, 2015 12/122

Concepts: Patterns, Policies, and Bodies

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

Terminology:

I Pattern: structure of the computations
for, reduction, scan, task-graph, ...

I Execution Policy: how computations are executed
static scheduling, dynamic scheduling, thread teams, ...

I Computational Body: code which performs each unit of
work; e.g., the loop body

⇒ The pattern and policy drive the computational body.

Pattern Policy

B
o
d
y

Supercomputing’15, November 16, 2015 13/122

Threading “Parallel for”

What if we want to thread the FEA algorithm?

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

(Change the execution policy from “serial” to “parallel.”)

OpenMP is simple for parallelizing loops on multi-core CPUs,
but what if we then want to do this on other architectures?

Intel MIC and NVIDIA GPU and AMD Fusion and ...

Supercomputing’15, November 16, 2015 13/122

Threading “Parallel for”

What if we want to thread the FEA algorithm?

#pragma omp parallel for

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

(Change the execution policy from “serial” to “parallel.”)

OpenMP is simple for parallelizing loops on multi-core CPUs,
but what if we then want to do this on other architectures?

Intel MIC and NVIDIA GPU and AMD Fusion and ...

Supercomputing’15, November 16, 2015 13/122

Threading “Parallel for”

What if we want to thread the FEA algorithm?

#pragma omp parallel for

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

(Change the execution policy from “serial” to “parallel.”)

OpenMP is simple for parallelizing loops on multi-core CPUs,
but what if we then want to do this on other architectures?

Intel MIC and NVIDIA GPU and AMD Fusion and ...

Supercomputing’15, November 16, 2015 14/122

“Parallel for” on a GPU via pragmas

Option 1: OpenMP 4.0

#pragma omp target data map (...)

#pragma omp teams num_teams (...) num_threads (...) private (...)

#pragma omp distribute

for (element = 0; element < numElements; ++ element) {

total = 0

#pragma omp parallel for

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);

elementValues[element] = total;

}

Option 2: OpenACC

#pragma acc parallel copy (...) num_gangs (...) vector_length (...)

#pragma acc loop gang vector

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);

elementValues[element] = total;

}

Supercomputing’15, November 16, 2015 14/122

“Parallel for” on a GPU via pragmas

Option 1: OpenMP 4.0

#pragma omp target data map (...)

#pragma omp teams num_teams (...) num_threads (...) private (...)

#pragma omp distribute

for (element = 0; element < numElements; ++ element) {

total = 0

#pragma omp parallel for

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);

elementValues[element] = total;

}

Option 2: OpenACC

#pragma acc parallel copy (...) num_gangs (...) vector_length (...)

#pragma acc loop gang vector

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);

elementValues[element] = total;

}

Supercomputing’15, November 16, 2015 15/122

Portable, but not performance portable

A standard thread parallel programming model
may give you portable parallel execution
if it is supported on the target architecture.

But what about performance?

Performance depends upon the computation’s
memory access pattern.

Supercomputing’15, November 16, 2015 15/122

Portable, but not performance portable

A standard thread parallel programming model
may give you portable parallel execution
if it is supported on the target architecture.

But what about performance?

Performance depends upon the computation’s
memory access pattern.

Supercomputing’15, November 16, 2015 16/122

Problem: memory access pattern

#pragma something , opencl , etc.

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

for (i = 0; i < vectorSize; ++i) {

total +=

left[element * numQPs * vectorSize +

qp * vectorSize + i] *

right[element * numQPs * vectorSize +

qp * vectorSize + i];

}

}

elementValues[element] = total;

}

Memory access pattern problem: CPU data layout reduces GPU
performance by more than 10X.

Important Point

For performance, the memory access pattern must depend on the
architecture.

Supercomputing’15, November 16, 2015 16/122

Problem: memory access pattern

#pragma something , opencl , etc.

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

for (i = 0; i < vectorSize; ++i) {

total +=

left[element * numQPs * vectorSize +

qp * vectorSize + i] *

right[element * numQPs * vectorSize +

qp * vectorSize + i];

}

}

elementValues[element] = total;

}

Memory access pattern problem: CPU data layout reduces GPU
performance by more than 10X.

Important Point

For performance, the memory access pattern must depend on the
architecture.

Supercomputing’15, November 16, 2015 16/122

Problem: memory access pattern

#pragma something , opencl , etc.

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

for (i = 0; i < vectorSize; ++i) {

total +=

left[element * numQPs * vectorSize +

qp * vectorSize + i] *

right[element * numQPs * vectorSize +

qp * vectorSize + i];

}

}

elementValues[element] = total;

}

Memory access pattern problem: CPU data layout reduces GPU
performance by more than 10X.

Important Point

For performance, the memory access pattern must depend on the
architecture.

Supercomputing’15, November 16, 2015 17/122

Kokkos overview

How does Kokkos address performance portability?

Kokkos is a productive, portable, performant, shared-memory
programming model.

I is a C++ library, not a new language or language extension.

I supports clear, concise, thread-scalable parallel patterns.

I lets you write algorithms once and run on many architectures
e.g. multi-core CPU, Nvidia GPGPU, Xeon Phi, ...

I minimizes the amount of architecture-specific
implementation details users must know.

I solves the data layout problem by using multi-dimensional
arrays with architecture-dependent layouts

Supercomputing’15, November 16, 2015 18/122

Data parallel patterns

Learning objectives:

I How computational bodies are passed to the Kokkos runtime.

I How work is mapped to cores.

I The difference between parallel for and
parallel reduce.

I Start parallelizing a simple example.

Supercomputing’15, November 16, 2015 19/122

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to cores

I each iteration of a computational body is a unit of work.

I an iteration index identifies a particular unit of work.

I an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, Kokkos maps iteration indices to cores and then
runs the computational body on those cores.

Supercomputing’15, November 16, 2015 19/122

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to cores

I each iteration of a computational body is a unit of work.

I an iteration index identifies a particular unit of work.

I an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, Kokkos maps iteration indices to cores and then
runs the computational body on those cores.

Supercomputing’15, November 16, 2015 19/122

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to cores

I each iteration of a computational body is a unit of work.

I an iteration index identifies a particular unit of work.

I an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, Kokkos maps iteration indices to cores and then
runs the computational body on those cores.

Supercomputing’15, November 16, 2015 20/122

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

...

void operator ()(a work assignment) const {

/* ... computational body ... */

...

};

Supercomputing’15, November 16, 2015 20/122

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

...

void operator ()(a work assignment) const {

/* ... computational body ... */

...

};

Supercomputing’15, November 16, 2015 20/122

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

...

void operator ()(a work assignment) const {

/* ... computational body ... */

...

};

Supercomputing’15, November 16, 2015 21/122

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const size_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

Supercomputing’15, November 16, 2015 21/122

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const size_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

Supercomputing’15, November 16, 2015 21/122

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const size_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

Supercomputing’15, November 16, 2015 21/122

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const size_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

Supercomputing’15, November 16, 2015 22/122

Using Kokkos for data parallel patterns (4)

How is data passed to computational bodies?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce(... data ...);

}

struct AtomForceFunctor {

...

void operator ()(const size_t atomIndex) const {

atomForces[atomIndex] = calculateForce(... data ...);

}

...

}

How does the body access the data?

Important concept

A parallel functor body must have access to all the data it needs
through the functor’s data members.

Supercomputing’15, November 16, 2015 22/122

Using Kokkos for data parallel patterns (4)

How is data passed to computational bodies?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce(... data ...);

}

struct AtomForceFunctor {

...

void operator ()(const size_t atomIndex) const {

atomForces[atomIndex] = calculateForce(... data ...);

}

...

}

How does the body access the data?

Important concept

A parallel functor body must have access to all the data it needs
through the functor’s data members.

Supercomputing’15, November 16, 2015 23/122

Using Kokkos for data parallel patterns (5)

Putting it all together: the complete functor:

struct AtomForceFunctor {

ForceType _atomForces;

AtomDataType _atomData;

void operator ()(const size_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);

}

}

Q/ How would we reproduce serial execution with this functor?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

atomForces[atomIndex] = calculateForce(data);

}

AtomForceFunctor functor(atomForces , data);

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

functor(atomIndex);

}

Supercomputing’15, November 16, 2015 23/122

Using Kokkos for data parallel patterns (5)

Putting it all together: the complete functor:

struct AtomForceFunctor {

ForceType _atomForces;

AtomDataType _atomData;

void operator ()(const size_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);

}

}

Q/ How would we reproduce serial execution with this functor?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

atomForces[atomIndex] = calculateForce(data);

}

AtomForceFunctor functor(atomForces , data);

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

functor(atomIndex);

}

S
er

ia
l

Supercomputing’15, November 16, 2015 23/122

Using Kokkos for data parallel patterns (5)

Putting it all together: the complete functor:

struct AtomForceFunctor {

ForceType _atomForces;

AtomDataType _atomData;

void operator ()(const size_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);

}

}

Q/ How would we reproduce serial execution with this functor?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

atomForces[atomIndex] = calculateForce(data);

}

AtomForceFunctor functor(atomForces , data);

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

functor(atomIndex);

}

S
er

ia
l

F
u

n
ct

o
r

Supercomputing’15, November 16, 2015 24/122

Using Kokkos for data parallel patterns (6)

The complete picture (using functors):

1. Defining the functor (operator+data):

struct AtomForceFunctor {

ForceType _atomForces;

AtomDataType _atomData;

AtomForceFunctor(atomForces , data) :

_atomForces(atomForces) _atomData(data) {}

void operator ()(const size_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);

}

}

2. Executing in parallel with Kokkos pattern:
AtomForceFunctor functor(atomForces , data);

Kokkos :: parallel_for(numberOfAtoms , functor);

Supercomputing’15, November 16, 2015 25/122

Using Kokkos for data parallel patterns (7)

Functors are verbose ⇒ C++11 Lambda are concise

atomForces already exists

data already exists

Kokkos :: parallel_for(numberOfAtoms ,

[=] (const size_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

}

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability (e.g., to GPU) a lambda must capture by value
[=]. Don’t capture containers (e.g., std::vector) by value because
this copies the container’s entire contents.

Supercomputing’15, November 16, 2015 25/122

Using Kokkos for data parallel patterns (7)

Functors are verbose ⇒ C++11 Lambda are concise

atomForces already exists

data already exists

Kokkos :: parallel_for(numberOfAtoms ,

[=] (const size_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

}

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability (e.g., to GPU) a lambda must capture by value
[=]. Don’t capture containers (e.g., std::vector) by value because
this copies the container’s entire contents.

Supercomputing’15, November 16, 2015 25/122

Using Kokkos for data parallel patterns (7)

Functors are verbose ⇒ C++11 Lambda are concise

atomForces already exists

data already exists

Kokkos :: parallel_for(numberOfAtoms ,

[=] (const size_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

}

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability (e.g., to GPU) a lambda must capture by value
[=]. Don’t capture containers (e.g., std::vector) by value because
this copies the container’s entire contents.

Supercomputing’15, November 16, 2015 26/122

parallel for examples

How does this compare to OpenMP?

for (size_t i = 0; i < N; ++i) {

/* loop body */

}

#pragma omp parallel for

for (size_t i = 0; i < N; ++i) {

/* loop body */

}

parallel_for(N, [=] (const size_t i) {

/* loop body */

});

Important concept

Simple Kokkos usage is no more conceptually difficult than
OpenMP, the annotations just go in different places.

S
er

ia
l

O
p

en
M

P
K

o
k

ko
s

Supercomputing’15, November 16, 2015 27/122

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

wikipedia

Supercomputing’15, November 16, 2015 27/122

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

wikipedia

double totalIntegral = 0;

for (size_t i = 0; i < numberOfIntervals; ++i) {

const double x =

lower + (i/numberOfIntervals) * (upper - lower);
const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}

totalIntegral *= dx;

Supercomputing’15, November 16, 2015 27/122

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

wikipedia

double totalIntegral = 0;

for (size_t i = 0; i < numberOfIntervals; ++i) {

const double x =

lower + (i/numberOfIntervals) * (upper - lower);
const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}

totalIntegral *= dx;

How would we parallelize it?

Supercomputing’15, November 16, 2015 27/122

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

wikipedia

double totalIntegral = 0;

for (size_t i = 0; i < numberOfIntervals; ++i) {

const double x =

lower + (i/numberOfIntervals) * (upper - lower);
const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}

totalIntegral *= dx;

How would we parallelize it?

Pattern?
Policy?

B
o
d
y?

Supercomputing’15, November 16, 2015 28/122

Scalar integration (1)

An (incorrect) attempt:

double totalIntegral = 0;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const size_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower);

totalIntegral += function(x);},

);

totalIntegral *= dx;

First problem: compiler error; cannot increment totalIntegral
(lambdas capture by value and are treated as const!)

Supercomputing’15, November 16, 2015 29/122

Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totalIntegral = 0;

double * totalIntegralPointer = &totalIntegral;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const size_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower);

*totalIntegralPointer += function(x);},

);

totalIntegral *= dx;

Second problem: race condition

step thread 0 thread 1

0 load

1 increment load

2 write increment

3 write

Supercomputing’15, November 16, 2015 29/122

Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totalIntegral = 0;

double * totalIntegralPointer = &totalIntegral;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const size_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower);

*totalIntegralPointer += function(x);},

);

totalIntegral *= dx;

Second problem: race condition

step thread 0 thread 1

0 load

1 increment load

2 write increment

3 write

Supercomputing’15, November 16, 2015 30/122

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (size_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

Supercomputing’15, November 16, 2015 30/122

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (size_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

Supercomputing’15, November 16, 2015 30/122

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (size_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

Supercomputing’15, November 16, 2015 30/122

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (size_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

Supercomputing’15, November 16, 2015 31/122

Scalar integration (4)

Example: Scalar integration

double totalIntegral = 0;

#pragma omp parallel for reduction(+: totalIntegral)

for (size_t i = 0; i < numberOfIntervals; ++i) {

totalIntegral += function (...);

}

double totalIntegral = 0;

parallel_reduce(numberOfIntervals ,

[=] (const size_t i, double & valueToUpdate) {

valueToUpdate += function (...);

},

totalIntegral);

I The operator takes two arguments: a work index and a value
to update.

I The value to update is an thread-private value that is made
and used by Kokkos; it is not the final reduced value.

O
p

en
M

P
K

o
k

ko
s

Supercomputing’15, November 16, 2015 32/122

Scalar integration (5)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = α + β∗N
P

I α = dispatch overhead

I β = time for a unit of work

I N = number of units of work

I P = available concurrency

Speedup = P ÷
(

1 + α∗P
β∗N

)
I Should have α ∗ P � β ∗ N
I All runtimes strive to minimize launch overhead α

I Find more parallelism to increase N

I Merge (fuse) parallel operations to increase β

Supercomputing’15, November 16, 2015 32/122

Scalar integration (5)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = α + β∗N
P

I α = dispatch overhead

I β = time for a unit of work

I N = number of units of work

I P = available concurrency

Speedup = P ÷
(

1 + α∗P
β∗N

)
I Should have α ∗ P � β ∗ N
I All runtimes strive to minimize launch overhead α

I Find more parallelism to increase N

I Merge (fuse) parallel operations to increase β

Supercomputing’15, November 16, 2015 32/122

Scalar integration (5)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = α + β∗N
P

I α = dispatch overhead

I β = time for a unit of work

I N = number of units of work

I P = available concurrency

Speedup = P ÷
(

1 + α∗P
β∗N

)
I Should have α ∗ P � β ∗ N
I All runtimes strive to minimize launch overhead α

I Find more parallelism to increase N

I Merge (fuse) parallel operations to increase β

Supercomputing’15, November 16, 2015 33/122

Scalar integration (6)

Results: illustrates simple speedup model = P ÷
(

1 + α∗P
β∗N

)

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1x106 1x107 1x108

sp
ee

du
p

ov
er

 s
er

ia
l [

-]

number of intervals [-]

Kokkos speedup over serial: Scalar Integration

Kokkos Cuda K40
Kokkos OpenMP KNC
Kokkos OpenMP SNB
Native OpenMP SNB

Unity

N
o

te
:

lo
g

sc
a

le

Supercomputing’15, November 16, 2015 34/122

Recurring Exercise: Inner Product

Exercise: Inner product < y ,A ∗ x >

Details:

I y is Nx1, A is NxM, x is Mx1

I We’ll use this exercise throughout the tutorial

Supercomputing’15, November 16, 2015 35/122

Exercise #1: include, initialize, finalize Kokkos

The first step in using Kokkos is to include, initialize, and finalize:

#include <Kokkos_Core.hpp >

int main(int argc , char** argv) {

/* ... do any necessary setup (e.g., initialize MPI) ... */

Kokkos :: initialize(argc , argv);

/* ... do computations ... */

Kokkos :: finalize ();

return 0;

}

(Optional) Command-line arguments:

--kokkos-threads=INT
total number of threads

(or threads within NUMA region)

--kokkos-numa=INT number of NUMA regions

--kokkos-device=INT device (GPU) ID to use

Supercomputing’15, November 16, 2015 36/122

Exercise #1: logistics

Compiling for CPU

cd ~/kokkos -tutorial/SC15/Exercises /01/

gcc using OpenMP (default) and Serial back -ends

make -j 4 [KOKKOS_DEVICES=OpenMP ,Serial]

Intel using OpenMP (default) and Serial back -ends

make -j 4 CXX=icpc [KOKKOS_DEVICES=OpenMP ,Serial]

Intel using OpenMP for Xeon Phi Knights Corner cross -compile

For execution natively on the KNC. NOT for offload.

make -j CXX=icpc [KOKKOS_DEVICES=OpenMP ,Serial] KOKKOS_ARCH=KNC

Running on CPU with OpenMP back-end

Set OpenMP affinity

export GOMP_CPU_AFFINITY =0- NumberOfCoresOnASingleSocket

Print example command line options:

./ exercise.host -h

Run with defaults on CPU

./ exercise.host

Supercomputing’15, November 16, 2015 37/122

Exercise #1: Inner Product, Flat Parallelism on the CPU

Exercise: Inner product < y ,A ∗ x >

Details:

I Location: ~/kokkos-tutorials/SC15/Exercises/01/

I See
~/kokkos-tutorials/SC15/Exercises/HOW TO COMPILE AND RUN

I Look for comments labeled with “EXERCISE”

I Parallelize loops with parallel for or parallel reduce

I Use lambdas instead of functors for computational bodies.

I For now, this will only use the CPU.

Supercomputing’15, November 16, 2015 38/122

Exercise #1 results

 0

 20

 40

 60

 80

 100

 120

 140

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

B
an

dw
id

th
 (

G
B

/s
)

number of rows

<y,Ax> Exercise01, fixed problem size

KNC
HSW

Supercomputing’15, November 16, 2015 39/122

General reductions (0)

Review: Simple parallel reduce using a lambda:

ReductionType reducedValue; // initial value irrelevant

Kokkos :: parallel_reduce(numberOfIterations ,

[=] (const size_t index ,

ReductionType & valueToUpdate) {

valueToUpdate += // ... contribution for index

},

reducedValue);

Limitation of using defaults: the reduced value is (re-)initialized to
zero and is reduced with operator+=.

For non-trival reductions you need to use a general reduction
functor.

Supercomputing’15, November 16, 2015 39/122

General reductions (0)

Review: Simple parallel reduce using a lambda:

ReductionType reducedValue; // initial value irrelevant

Kokkos :: parallel_reduce(numberOfIterations ,

[=] (const size_t index ,

ReductionType & valueToUpdate) {

valueToUpdate += // ... contribution for index

},

reducedValue);

Limitation of using defaults: the reduced value is (re-)initialized to
zero and is reduced with operator+=.

For non-trival reductions you need to use a general reduction
functor.

Supercomputing’15, November 16, 2015 39/122

General reductions (0)

Review: Simple parallel reduce using a lambda:

ReductionType reducedValue; // initial value irrelevant

Kokkos :: parallel_reduce(numberOfIterations ,

[=] (const size_t index ,

ReductionType & valueToUpdate) {

valueToUpdate += // ... contribution for index

},

reducedValue);

Limitation of using defaults: the reduced value is (re-)initialized to
zero and is reduced with operator+=.

For non-trival reductions you need to use a general reduction
functor.

Supercomputing’15, November 16, 2015 40/122

General reductions (1)

How do you do arbitrary reductions?

Example: finding index of closest point

Point searchLocation = ...;

size_t indexOfClosest = 0;

for (size_t i = 1; i < numberOfPoints; ++i) {

if (magnitude(searchLocation - points[i]) <

magnitude(searchLocation - points[indexOfClosest])) {

indexOfClosest = i;

}

}

I This isn’t possible with openmp’s reduction clause

I Manual threading versions must avoid false sharing

I Parallel programming models should support robust,
arbitrary, performant reductions tuned to the architecture.

Supercomputing’15, November 16, 2015 40/122

General reductions (1)

How do you do arbitrary reductions?

Example: finding index of closest point

Point searchLocation = ...;

size_t indexOfClosest = 0;

for (size_t i = 1; i < numberOfPoints; ++i) {

if (magnitude(searchLocation - points[i]) <

magnitude(searchLocation - points[indexOfClosest])) {

indexOfClosest = i;

}

}

I This isn’t possible with openmp’s reduction clause

I Manual threading versions must avoid false sharing

I Parallel programming models should support robust,
arbitrary, performant reductions tuned to the architecture.

Supercomputing’15, November 16, 2015 41/122

General reductions (2)

General reductions:

What information must we provide to do a reduction?

I The type of the value to reduce (“value type”)

I How to combine (“join”) two value types

I How to initialize a value type

struct ParallelFunctor {

typedef double value_type;

void operator ()(const size_t index ,

value_type & valueToUpdate) const {...}

void join(volatile value_type & destination ,

const volatile value_type & source) const {...}

void init(value_type & initialValue) const {...}

}

Supercomputing’15, November 16, 2015 42/122

Advanced features we haven’t covered

I Exclusive and inclusive prefix scan with the parallel scan

pattern.

I Using tag dispatch interface to allow non-trivial functors to
have multiple “operator()” functions.

I Directed acyclic graph (DAG) of tasks pattern (experimental).

I Concurrently executing parallel kernels on CPU and GPU
(experimental).

I Hierarchical parallelism with team policies, covered later.

Supercomputing’15, November 16, 2015 43/122

Section Summary

I Simple usage is similar to OpenMP, advanced features are
also straightforward

I Three common data-parallel patterns are parallel for,
parallel reduce, and parallel scan.

I A parallel computation is characterized by its pattern, policy,
space, and body.

I User provides computational bodies as functors or lambdas
which handle a single work item.

Supercomputing’15, November 16, 2015 44/122

Views

Learning objectives:

I Motivation behind the View abstraction.

I Key View concepts and template parameters.

I The View life cycle.

Supercomputing’15, November 16, 2015 45/122

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y

parallel_for(N, [=] (const size_t i) {

y[i] = a * x[i] + y[i];

});

struct Functor {

double *_x , *_y, a;

void operator ()(const size_t i) {

_y[i] = _a * _x[i] + _y[i];

}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to accelerator (GPU).

⇒ Views

L
a

m
b

d
a

F
u

n
ct

o
r

Supercomputing’15, November 16, 2015 45/122

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y

parallel_for(N, [=] (const size_t i) {

y[i] = a * x[i] + y[i];

});

struct Functor {

double *_x , *_y, a;

void operator ()(const size_t i) {

_y[i] = _a * _x[i] + _y[i];

}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to accelerator (GPU).

⇒ Views

L
a

m
b

d
a

F
u

n
ct

o
r

Supercomputing’15, November 16, 2015 45/122

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y

parallel_for(N, [=] (const size_t i) {

y[i] = a * x[i] + y[i];

});

struct Functor {

double *_x , *_y, a;

void operator ()(const size_t i) {

_y[i] = _a * _x[i] + _y[i];

}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to accelerator (GPU).

⇒ Views

L
a

m
b

d
a

F
u

n
ct

o
r

Supercomputing’15, November 16, 2015 46/122

Views (0)

View abstraction

I A lightweight C++ class with a pointer to array data and a
little meta-data,

I that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View <double ...> x(...), y(...);

... populate x, y...

parallel_for(N, [=] (const size_t i) {

// Views x and y are captured by value (copy)

y(i) = a * x(i) + y(i);

});

Important point

Views are like pointers so copy them.

Supercomputing’15, November 16, 2015 46/122

Views (0)

View abstraction

I A lightweight C++ class with a pointer to array data and a
little meta-data,

I that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View <double ...> x(...), y(...);

... populate x, y...

parallel_for(N, [=] (const size_t i) {

// Views x and y are captured by value (copy)

y(i) = a * x(i) + y(i);

});

Important point

Views are like pointers so copy them.

Supercomputing’15, November 16, 2015 47/122

Views (1)

View overview:

I Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

I Number of dimensions (rank) is fixed at compile-time.

I Arrays are rectangular, not ragged.

I Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

Example:

View <double ***> data("label", N0 , N1, N2); 3 run, 0 compile

View <double **[N2]> data("label", N0, N1); 2 run, 1 compile

View <double *[N1][N2]> data("label", N0); 1 run, 2 compile

View <double[N0][N1][N2]> data("label"); 0 run, 3 compile

Note: runtime-sized dimensions must come first.

Supercomputing’15, November 16, 2015 47/122

Views (1)

View overview:

I Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

I Number of dimensions (rank) is fixed at compile-time.

I Arrays are rectangular, not ragged.

I Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

Example:

View <double ***> data("label", N0 , N1, N2); 3 run, 0 compile

View <double **[N2]> data("label", N0, N1); 2 run, 1 compile

View <double *[N1][N2]> data("label", N0); 1 run, 2 compile

View <double[N0][N1][N2]> data("label"); 0 run, 3 compile

Note: runtime-sized dimensions must come first.

Supercomputing’15, November 16, 2015 48/122

Views (2)

View life cycle:

I Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

I Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

I Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View <double*> data) { data (0) = 3; }

View <double*> a("a", N0), b("b", N0);

a(0) = 1;

b(0) = 2;

a = b;

View <double*> c(b);

assignValueInView(c);

print a(0)

What gets printed?
3.0

Supercomputing’15, November 16, 2015 48/122

Views (2)

View life cycle:

I Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

I Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

I Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View <double*> data) { data (0) = 3; }

View <double*> a("a", N0), b("b", N0);

a(0) = 1;

b(0) = 2;

a = b;

View <double*> c(b);

assignValueInView(c);

print a(0)

What gets printed?

3.0

Supercomputing’15, November 16, 2015 48/122

Views (2)

View life cycle:

I Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

I Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

I Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View <double*> data) { data (0) = 3; }

View <double*> a("a", N0), b("b", N0);

a(0) = 1;

b(0) = 2;

a = b;

View <double*> c(b);

assignValueInView(c);

print a(0)

What gets printed?
3.0

Supercomputing’15, November 16, 2015 49/122

Exercise #2: Inner Product, Flat Parallelism on the CPU, with Views

Exercise: Inner product < y ,A ∗ x >

Details:

I Location: ~/kokkos-tutorials/SC15/Exercises/02/

I Change data storage from arrays to Views.

I Use lambdas instead of functors for computational bodies.

I For now, this will only use the CPU.

Supercomputing’15, November 16, 2015 50/122

Advanced features we haven’t covered

I Memory space in which view’s data resides covered next.

I deep copy view’s data; covered later.
Note: Kokkos never hides a deep copy of data.

I Layout of multidimensional array; covered later.

I Memory traits; covered later.

I Subview: Generating a view that is a “slice” of other
multidimensional array view; will not be covered today.

Supercomputing’15, November 16, 2015 51/122

Execution and Memory spaces

Execution and Memory Spaces

Learning objectives:

I Heterogeneous nodes and the space abstractions.

I How to control where parallel bodies are run, execution
space.

I How to control where view data resides, memory space.

I How to avoid illegal memory accesses and manage memory
movement.

I The need for Kokkos::initialize and finalize.

I Where to use Kokkos annotation macros for portability.

Supercomputing’15, November 16, 2015 52/122

Execution spaces (0)

Thought experiment: Consider this code:

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for(numberOfSomethings ,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

I Where will section 1 be run? CPU? GPU?

I Where will section 2 be run? CPU? GPU?

I How do I control where code is executed?

⇒ Execution spaces

se
ct
io
n
1

se
ct
io
n
2

Supercomputing’15, November 16, 2015 52/122

Execution spaces (0)

Thought experiment: Consider this code:

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for(numberOfSomethings ,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

I Where will section 1 be run? CPU? GPU?

I Where will section 2 be run? CPU? GPU?

I How do I control where code is executed?

⇒ Execution spaces

se
ct
io
n
1

se
ct
io
n
2

Supercomputing’15, November 16, 2015 52/122

Execution spaces (0)

Thought experiment: Consider this code:

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for(numberOfSomethings ,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

I Where will section 1 be run? CPU? GPU?

I Where will section 2 be run? CPU? GPU?

I How do I control where code is executed?

⇒ Execution spaces

se
ct
io
n
1

se
ct
io
n
2

Supercomputing’15, November 16, 2015 53/122

Execution spaces (1)

Execution Space
a homogeneous set of cores and an execution mechanism

(i.e., “place to run code”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

Execution spaces: Serial, Threads, OpenMP, Cuda, ...

Supercomputing’15, November 16, 2015 54/122

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for(numberOfSomethings ,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

I Where will Host code be run? CPU? GPU?
⇒ Always in the host process

I Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

I How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

Supercomputing’15, November 16, 2015 54/122

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for(numberOfSomethings ,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

I Where will Host code be run? CPU? GPU?
⇒ Always in the host process

I Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

I How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

Supercomputing’15, November 16, 2015 54/122

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for(numberOfSomethings ,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

I Where will Host code be run? CPU? GPU?
⇒ Always in the host process

I Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

I How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

Supercomputing’15, November 16, 2015 54/122

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for(numberOfSomethings ,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

I Where will Host code be run? CPU? GPU?
⇒ Always in the host process

I Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

I How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

Supercomputing’15, November 16, 2015 55/122

Execution spaces (3)

Changing the parallel execution space:

parallel_for(

RangePolicy < Execut ionSpace >(0, numberOfIntervals),

[=] (const size_t i) {

/* ... body ... */

});

parallel_for(

numberOfIntervals , // == RangePolicy <>(0, numberOfIntervals)

[=] (const size_t i) {

/* ... body ... */

});

Requirements for enabling execution spaces:
I Kokkos must be compiled with the execution spaces enabled.

I Execution spaces must be initialized (and finalized).

I Functions must be marked with a macro for non-CPU spaces.

I Lambdas must be marked with a macro for non-CPU spaces.

D
ef

a
u

lt
C

u
st

o
m

Supercomputing’15, November 16, 2015 55/122

Execution spaces (3)

Changing the parallel execution space:

parallel_for(

RangePolicy < Execut ionSpace >(0, numberOfIntervals),

[=] (const size_t i) {

/* ... body ... */

});

parallel_for(

numberOfIntervals , // == RangePolicy <>(0, numberOfIntervals)

[=] (const size_t i) {

/* ... body ... */

});

Requirements for enabling execution spaces:
I Kokkos must be compiled with the execution spaces enabled.

I Execution spaces must be initialized (and finalized).

I Functions must be marked with a macro for non-CPU spaces.

I Lambdas must be marked with a macro for non-CPU spaces.

D
ef

a
u

lt
C

u
st

o
m

Supercomputing’15, November 16, 2015 56/122

Execution spaces (5)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS INLINE FUNCTION macro
s t r u c t P a r a l l e l F u n c t o r {

KOKKOS INLINE FUNCTION
d o u b l e h e l p e r F u n c t i o n (c o n s t s i z e t s) c o n s t { . . .}
KOKKOS INLINE FUNCTION
v o i d o p e r a t o r () (c o n s t s i z e t i n d e x) c o n s t {

h e l p e r F u n c t i o n (i n d e x) ;
}

}
// Where kokkos d e f i n e s :
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e /∗ #i f CPU−o n l y ∗/
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e d e v i c e h o s t /∗ #i f CPU+Cuda ∗/

Lambda annotation with KOKKOS LAMBDA macro (CUDA requires v 7.5)

Kokkos : : p a r a l l e l f o r (n u m b e r O f I t e r a t i o n s ,
KOKKOS LAMBDA (c o n s t s i z e t i n d e x) { . . . }) ;

// Where kokkos d e f i n e s :
#d e f i n e KOKKOS LAMBDA [=] /∗ #i f CPU−o n l y ∗/
#d e f i n e KOKKOS LAMBDA [=] d e v i c e /∗ #i f CPU+Cuda ∗/

Supercomputing’15, November 16, 2015 56/122

Execution spaces (5)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS INLINE FUNCTION macro
s t r u c t P a r a l l e l F u n c t o r {

KOKKOS INLINE FUNCTION
d o u b l e h e l p e r F u n c t i o n (c o n s t s i z e t s) c o n s t { . . .}
KOKKOS INLINE FUNCTION
v o i d o p e r a t o r () (c o n s t s i z e t i n d e x) c o n s t {

h e l p e r F u n c t i o n (i n d e x) ;
}

}
// Where kokkos d e f i n e s :
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e /∗ #i f CPU−o n l y ∗/
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e d e v i c e h o s t /∗ #i f CPU+Cuda ∗/

Lambda annotation with KOKKOS LAMBDA macro (CUDA requires v 7.5)

Kokkos : : p a r a l l e l f o r (n u m b e r O f I t e r a t i o n s ,
KOKKOS LAMBDA (c o n s t s i z e t i n d e x) { . . . }) ;

// Where kokkos d e f i n e s :
#d e f i n e KOKKOS LAMBDA [=] /∗ #i f CPU−o n l y ∗/
#d e f i n e KOKKOS LAMBDA [=] d e v i c e /∗ #i f CPU+Cuda ∗/

Supercomputing’15, November 16, 2015 57/122

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (size_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy <ExecutionSpace >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

Supercomputing’15, November 16, 2015 57/122

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (size_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy <ExecutionSpace >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

Supercomputing’15, November 16, 2015 57/122

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (size_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy <ExecutionSpace >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

Supercomputing’15, November 16, 2015 57/122

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (size_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy <ExecutionSpace >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

Supercomputing’15, November 16, 2015 58/122

Memory spaces (0)

Memory space:
explicitly-manageable memory resource

(i.e., “place to put data”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

Supercomputing’15, November 16, 2015 59/122

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

Supercomputing’15, November 16, 2015 59/122

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

Supercomputing’15, November 16, 2015 59/122

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

Supercomputing’15, November 16, 2015 59/122

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

Supercomputing’15, November 16, 2015 59/122

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

Supercomputing’15, November 16, 2015 60/122

Memory spaces (2)

Example: HostSpace

View <double**, HostSpace> hostView (...);

Example: CudaSpace

View <double**, CudaSpace> view (...);

Supercomputing’15, November 16, 2015 60/122

Memory spaces (2)

Example: HostSpace

View <double**, HostSpace> hostView (...);

Example: CudaSpace

View <double**, CudaSpace> view (...);

Supercomputing’15, November 16, 2015 61/122

Execution and Memory spaces (0)

Anatomy of a kernel launch:

1. User declares views, allocating.

2. User instantiates a functor with views.

3. User launches parallel ***:
I Functor is copied to the device.
I Kernel is run.
I Copy of functor on the device is released.

View <int*, Cuda > dev;

parallel_for(N,

[=] (int i) {

dev(i) = ...;

});

Note: no deep copies of array data are performed;
views are like pointers.

Supercomputing’15, November 16, 2015 62/122

Execution and Memory spaces (1)

Example: one view

View <int*, Cuda > dev;

parallel_for(N,

[=] (int i) {

dev(i) = ...;

});

Supercomputing’15, November 16, 2015 63/122

Execution and Memory spaces (2)

Example: two views

View <int*, Cuda > dev;

View <int*, Host > host;

parallel_for(N,

[=] (int i) {

dev(i) = ...;

host(i) = ...;

});

Supercomputing’15, November 16, 2015 63/122

Execution and Memory spaces (2)

Example: two views

View <int*, Cuda > dev;

View <int*, Host > host;

parallel_for(N,

[=] (int i) {

dev(i) = ...;

host(i) = ...;

});

Supercomputing’15, November 16, 2015 64/122

Execution and Memory spaces (3)

Example (redux): summing an array with the GPU

(failed) Attempt 1:

View <double*, CudaSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

Supercomputing’15, November 16, 2015 64/122

Execution and Memory spaces (3)

Example (redux): summing an array with the GPU

(failed) Attempt 1:

View <double*, CudaSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

fault

Supercomputing’15, November 16, 2015 65/122

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2:

View <double*, HostSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

What’s the solution?
I CudaUVMSpace

I CudaHostPinnedSpace

I Mirroring

Supercomputing’15, November 16, 2015 65/122

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2:

View <double*, HostSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

What’s the solution?
I CudaUVMSpace

I CudaHostPinnedSpace

I Mirroring

illegal access

Supercomputing’15, November 16, 2015 65/122

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2:

View <double*, HostSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

What’s the solution?
I CudaUVMSpace

I CudaHostPinnedSpace

I Mirroring

illegal access

Supercomputing’15, November 16, 2015 66/122

Execution and Memory spaces (5)

CudaUVMSpace

View <double*,

CudaUVMSpace> array;

array = ... from file ...

double sum = 0;

parallel_reduce(N,

[=] (int i,

double & d) {

d += array(i);

},

sum);

Cuda runtime automatically handles data movement,
at performance hit.

Supercomputing’15, November 16, 2015 67/122

Execution and Memory spaces (6)

CudaHostPinnedSpace

View <double*,

CudaHost . . . > array;

array = ... from file ...

double sum = 0;

parallel_reduce(N,

[=] (int i,

double & d) {

d += array(i);

},

sum);

Cuda runtime allows cuda-code access to CPU memory,
at a performance hit.

Supercomputing’15, November 16, 2015 68/122

Views, Spaces, and Mirrors

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different
memory spaces.

Mirroring schematic

typedef Kokkos ::View <double**, Space> ViewType;

ViewType view (...);

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

Supercomputing’15, November 16, 2015 68/122

Views, Spaces, and Mirrors

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different
memory spaces.

Mirroring schematic

typedef Kokkos ::View <double**, Space> ViewType;

ViewType view (...);

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

Supercomputing’15, November 16, 2015 69/122

Mirroring pattern

1. Create a view’s array in some memory space.
typedef Kokkos ::View <double*, Space> ViewType;

ViewType view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

Supercomputing’15, November 16, 2015 69/122

Mirroring pattern

1. Create a view’s array in some memory space.
typedef Kokkos ::View <double*, Space> ViewType;

ViewType view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

Supercomputing’15, November 16, 2015 69/122

Mirroring pattern

1. Create a view’s array in some memory space.
typedef Kokkos ::View <double*, Space> ViewType;

ViewType view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

Supercomputing’15, November 16, 2015 69/122

Mirroring pattern

1. Create a view’s array in some memory space.
typedef Kokkos ::View <double*, Space> ViewType;

ViewType view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

Supercomputing’15, November 16, 2015 69/122

Mirroring pattern

1. Create a view’s array in some memory space.
typedef Kokkos ::View <double*, Space> ViewType;

ViewType view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

Supercomputing’15, November 16, 2015 69/122

Mirroring pattern

1. Create a view’s array in some memory space.
typedef Kokkos ::View <double*, Space> ViewType;

ViewType view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i e w (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

Supercomputing’15, November 16, 2015 70/122

View and Spaces Section Summary

I Data is stored in Views that are “pointers” to
multi-dimensional arrays residing in memory spaces.

I Views abstract away platform-dependent allocation,
(automatic) deallocation, and access.

I Heterogenous nodes have one or more memory spaces.

I Mirroring is used for performant access to views in host and
device memory.

I Heterogenous nodes have one or more execution spaces.

I You control where parallel code is run by a template
parameter on the execution policy, or by compile-time
selection of the default execution space.

Supercomputing’15, November 16, 2015 71/122

Managing memory access patterns
for performance portability

Learning objectives:

I How the View’s Layout parameter controls data layout.

I How memory access patterns result from Kokkos mapping
parallel work indices and layout of multidimensional array data

I Why memory access patterns and layouts have such a
performance impact (caching and coalescing).

I See a concrete example of the performance of various memory
configurations.

Supercomputing’15, November 16, 2015 72/122

Example: inner product (0)

Kokkos :: parallel_reduce(

RangePolicy <ExecutionSpace >(0, N),

KOKKOS_LAMBDA (const size_t row , double & valueToUpdate) {

double thisRowsSum = 0;

for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row , entry) * x(entry);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

How should A be laid out in memory?

Supercomputing’15, November 16, 2015 72/122

Example: inner product (0)

Kokkos :: parallel_reduce(

RangePolicy <ExecutionSpace >(0, N),

KOKKOS_LAMBDA (const size_t row , double & valueToUpdate) {

double thisRowsSum = 0;

for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row , entry) * x(entry);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

How should A be laid out in memory?

Supercomputing’15, November 16, 2015 73/122

Example: inner product (1)

Layout is the mapping of multi-index to memory:

LayoutLeft

in 2D, “column-major”

LayoutRight

in 2D, “row-major”

Supercomputing’15, November 16, 2015 74/122

Layout

Important concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View <double ***, Layout , Space > name (...);

I Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

I If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

I Layouts are extensible: ˜50 lines

I Advanced layouts: LayoutStride, LayoutTiled, ...

Supercomputing’15, November 16, 2015 74/122

Layout

Important concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View <double ***, Layout , Space > name (...);

I Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

I If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

I Layouts are extensible: ˜50 lines

I Advanced layouts: LayoutStride, LayoutTiled, ...

Supercomputing’15, November 16, 2015 75/122

Exercise #3: Inner Product, Flat Parallelism

Exercise: Inner product < y ,A ∗ x >

Details:

I Location: ~/kokkos-tutorials/SC15/Exercises/03/

I Use lambdas instead of functors for computational bodies.

I Replace ‘‘N’’ in parallel dispatch with RangePolicy<Space>

I Add Space to all Views and Layout to A

I Experiment with the combinations of Space, Layout to view
performance

Supercomputing’15, November 16, 2015 76/122

Exercise #3: Inner Product, Flat Parallelism

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

B
an

dw
id

th
 (

G
B

/s
)

number of rows

<y,Ax> Exercise03, fixed problem size

K40 Right
K40 Left

KNC Right
KNC Left

HSW Right
HSW Left

Why?

Supercomputing’15, November 16, 2015 77/122

Caching and coalescing (0)

Thread independence:

operator ()(const size_t index , double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?

I CPU threads are independent.
i.e., threads may execute at any rate.

I GPU threads are synchronized in groups (of 32).
i.e., threads in groups must execute instructions together.

In particular, all threads in a group (warp) must finished their loads
before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

Supercomputing’15, November 16, 2015 77/122

Caching and coalescing (0)

Thread independence:

operator ()(const size_t index , double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?

I CPU threads are independent.
i.e., threads may execute at any rate.

I GPU threads are synchronized in groups (of 32).
i.e., threads in groups must execute instructions together.

In particular, all threads in a group (warp) must finished their loads
before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

Supercomputing’15, November 16, 2015 77/122

Caching and coalescing (0)

Thread independence:

operator ()(const size_t index , double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?

I CPU threads are independent.
i.e., threads may execute at any rate.

I GPU threads are synchronized in groups (of 32).
i.e., threads in groups must execute instructions together.

In particular, all threads in a group (warp) must finished their loads
before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

Supercomputing’15, November 16, 2015 77/122

Caching and coalescing (0)

Thread independence:

operator ()(const size_t index , double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?

I CPU threads are independent.
i.e., threads may execute at any rate.

I GPU threads are synchronized in groups (of 32).
i.e., threads in groups must execute instructions together.

In particular, all threads in a group (warp) must finished their loads
before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

Supercomputing’15, November 16, 2015 78/122

Caching and coalescing (1)

CPUs: few (independent) cores with separate caches:

GPUs: many (synchronized) cores with a shared cache:

Supercomputing’15, November 16, 2015 78/122

Caching and coalescing (1)

CPUs: few (independent) cores with separate caches:

GPUs: many (synchronized) cores with a shared cache:

Supercomputing’15, November 16, 2015 79/122

Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t’s current access is at position i,
thread t’s next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1’s current access should be at position i+1.

Warning

Uncoalesced access in CudaSpace greatly reduces performance
(more than 10X)

Note: uncoalesced read-only, random access in CudaSpace is okay
through Kokkos const RandomAccess views (more later).

Supercomputing’15, November 16, 2015 79/122

Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t’s current access is at position i,
thread t’s next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1’s current access should be at position i+1.

Warning

Uncoalesced access in CudaSpace greatly reduces performance
(more than 10X)

Note: uncoalesced read-only, random access in CudaSpace is okay
through Kokkos const RandomAccess views (more later).

Supercomputing’15, November 16, 2015 79/122

Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t’s current access is at position i,
thread t’s next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1’s current access should be at position i+1.

Warning

Uncoalesced access in CudaSpace greatly reduces performance
(more than 10X)

Note: uncoalesced read-only, random access in CudaSpace is okay
through Kokkos const RandomAccess views (more later).

Supercomputing’15, November 16, 2015 80/122

Mapping indices to cores (0)

Consider the array summation example:

View <double*, Space> data("data", size);

... populate data ...

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous:
0, 1, 2, ..., N/P

Strided:
0, N/P, 2*N/P, ...

CPU GPU
Why?

Supercomputing’15, November 16, 2015 80/122

Mapping indices to cores (0)

Consider the array summation example:

View <double*, Space> data("data", size);

... populate data ...

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous:
0, 1, 2, ..., N/P

Strided:
0, N/P, 2*N/P, ...

CPU GPU
Why?

Supercomputing’15, November 16, 2015 80/122

Mapping indices to cores (0)

Consider the array summation example:

View <double*, Space> data("data", size);

... populate data ...

double sum = 0;

Kokkos :: parallel_reduce(

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous:
0, 1, 2, ..., N/P

Strided:
0, N/P, 2*N/P, ...

CPU GPU
Why?

Supercomputing’15, November 16, 2015 81/122

Mapping indices to cores (1)

Iterating for the execution space:

operator ()(const size_t index , double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;

}

As users we don’t control how indices are mapped to threads, so
how do we achieve good memory access?

Important point

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.

Important point

Kokkos index mapping and default layouts provide efficient access
if iteration indices correspond to the first index of array.

Supercomputing’15, November 16, 2015 81/122

Mapping indices to cores (1)

Iterating for the execution space:

operator ()(const size_t index , double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;

}

As users we don’t control how indices are mapped to threads, so
how do we achieve good memory access?

Important point

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.

Important point

Kokkos index mapping and default layouts provide efficient access
if iteration indices correspond to the first index of array.

Supercomputing’15, November 16, 2015 81/122

Mapping indices to cores (1)

Iterating for the execution space:

operator ()(const size_t index , double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;

}

As users we don’t control how indices are mapped to threads, so
how do we achieve good memory access?

Important point

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.

Important point

Kokkos index mapping and default layouts provide efficient access
if iteration indices correspond to the first index of array.

Supercomputing’15, November 16, 2015 82/122

Example: inner product (2)

Important point

Performance memory access is achieved by Kokkos mapping
parallel work indices and multidimensional array layout optimally
for the architecture.

Analysis: row-major (LayoutRight)

I HostSpace: cached (good)

I CudaSpace: uncoalesced (bad)

Supercomputing’15, November 16, 2015 82/122

Example: inner product (2)

Important point

Performance memory access is achieved by Kokkos mapping
parallel work indices and multidimensional array layout optimally
for the architecture.

Analysis: row-major (LayoutRight)

I HostSpace: cached (good)

I CudaSpace: uncoalesced (bad)

Supercomputing’15, November 16, 2015 82/122

Example: inner product (2)

Important point

Performance memory access is achieved by Kokkos mapping
parallel work indices and multidimensional array layout optimally
for the architecture.

Analysis: row-major (LayoutRight)

I HostSpace: cached (good)

I CudaSpace: uncoalesced (bad)

Supercomputing’15, November 16, 2015 83/122

Example: inner product (3)

Important point

Performance memory access is achieved by Kokkos mapping
parallel work indices and multidimensional array layout optimally
for the architecture.

Analysis: column-major (LayoutLeft)

I HostSpace: uncached (bad)

I CudaSpace: coalesced (good)

Supercomputing’15, November 16, 2015 83/122

Example: inner product (3)

Important point

Performance memory access is achieved by Kokkos mapping
parallel work indices and multidimensional array layout optimally
for the architecture.

Analysis: column-major (LayoutLeft)

I HostSpace: uncached (bad)

I CudaSpace: coalesced (good)

Supercomputing’15, November 16, 2015 84/122

Example: inner product (4)

Analysis: Kokkos architecture-dependent

View <double**, Execut ionSpace > A(N, M);

parallel_for(RangePolicy < Execut ionSpace >(0, N),

... thisRowsSum += A(j, i) * x(i);

(a) OpenMP (b) Cuda

I HostSpace: cached (good)

I CudaSpace: coalesced (good)

Supercomputing’15, November 16, 2015 85/122

Example: inner product (5)

Layout performance, revisited

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

B
an

dw
id

th
 (

G
B

/s
)

number of rows

<y,Ax> Exercise03, fixed problem size

K40 Right
K40 Left

KNC Right
KNC Left

HSW Right
HSW Left

coalesced

cached

cached

uncached
uncoalesced

Supercomputing’15, November 16, 2015 86/122

Memory Access Pattern Summary

I Every View has a Layout set at compile-time through a
template parameter.

I LayoutRight and LayoutLeft are most common.

I Views in HostSpace default to LayoutRight and Views in
CudaSpace default to LayoutLeft.

I Layouts are extensible and flexible.

I For performance, memory access patterns must result in
caching on a CPU and coalescing on a GPU.

I Kokkos maps parallel work indices and multidimensional array
layout for performance portable memory access patterns.

I There is nothing in OpenMP, OpenACC, or OpenCL to manage
layouts.
⇒ You’ll need multiple versions of code or pay the
performance penalty.

Supercomputing’15, November 16, 2015 87/122

Thread safety and
atomic operations
Learning objectives:

I Understand that coordination techniques for low-count CPU
threading are not scalable.

I Understand how atomics can parallelize the scatter-add
pattern.

I Gain performance intuition for atomics on the CPU and
GPU, for different data types and contention rates.

Supercomputing’15, November 16, 2015 88/122

Examples: Histogram

Histogram kernel:

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const int value = ...;

const int bucketIndex = computeBucketIndex(value);

++ _histogram(bucketIndex);

});

Problem: Multiple threads may try to write to the same location.

Solution strategies:

I Locks

I Thread-private copies

I Atomics

http://www.farmaceuticas.com.br/tag/graficos/

Supercomputing’15, November 16, 2015 88/122

Examples: Histogram

Histogram kernel:

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const int value = ...;

const int bucketIndex = computeBucketIndex(value);

++ _histogram(bucketIndex);

});

Problem: Multiple threads may try to write to the same location.

Solution strategies:

I Locks

I Thread-private copies

I Atomics

http://www.farmaceuticas.com.br/tag/graficos/

Supercomputing’15, November 16, 2015 88/122

Examples: Histogram

Histogram kernel:

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const int value = ...;

const int bucketIndex = computeBucketIndex(value);

++ _histogram(bucketIndex);

});

Problem: Multiple threads may try to write to the same location.

Solution strategies:

I Locks

I Thread-private copies

I Atomics

http://www.farmaceuticas.com.br/tag/graficos/

Supercomputing’15, November 16, 2015 89/122

Thread safety (0)

Thread safety solution: Locks

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const int value = ...;

const int bucketIndex = computeBucketIndex(value);

// LOCK the lock that protects bucket bucketIndex

++ _histogram(bucketIndex);

// UNLOCK the lock that protects bucket bucketIndex

});

Problem: contention is too high at O(10,000) threads.

Supercomputing’15, November 16, 2015 89/122

Thread safety (0)

Thread safety solution: Locks

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const int value = ...;

const int bucketIndex = computeBucketIndex(value);

// LOCK the lock that protects bucket bucketIndex

++ _histogram(bucketIndex);

// UNLOCK the lock that protects bucket bucketIndex

});

Problem: contention is too high at O(10,000) threads.

Supercomputing’15, November 16, 2015 90/122

Thread safety (1)

Thread safety solution: Thread-private copies

#pragma omp parallel shared(histogram)

{

HistogramType thisThreadsHistogram(histogram.size ())

#pragma omp for nowait

for each input {

...

const int value = ...;

const int bucketIndex = computeBucketIndex(value);

++ thisThreadsHistogram(bucketIndex);

}

#pragma omp critical

for each bucket {

histogram[bucketIndex] += thisThreadsHistogram[bucketIndex];

}

}

Problems: insufficient memory for thisThreadsHistogram
ratio of parallel/serial work too low.

Supercomputing’15, November 16, 2015 90/122

Thread safety (1)

Thread safety solution: Thread-private copies

#pragma omp parallel shared(histogram)

{

HistogramType thisThreadsHistogram(histogram.size ())

#pragma omp for nowait

for each input {

...

const int value = ...;

const int bucketIndex = computeBucketIndex(value);

++ thisThreadsHistogram(bucketIndex);

}

#pragma omp critical

for each bucket {

histogram[bucketIndex] += thisThreadsHistogram[bucketIndex];

}

}

Problems: insufficient memory for thisThreadsHistogram
ratio of parallel/serial work too low.

Supercomputing’15, November 16, 2015 91/122

Thread safety (2)

Thread safety solution: Atomics

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const int value = ...;

const int bucketIndex = computeBucketIndex(value);

Kokkos :: atomic_add (& _histogram(bucketIndex), 1);

});

I Atomics are the only scalable solution to thread safety.

I Locks or data replication are strongly discouraged.

Supercomputing’15, November 16, 2015 91/122

Thread safety (2)

Thread safety solution: Atomics

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const int value = ...;

const int bucketIndex = computeBucketIndex(value);

Kokkos :: atomic_add (& _histogram(bucketIndex), 1);

});

I Atomics are the only scalable solution to thread safety.

I Locks or data replication are strongly discouraged.

Supercomputing’15, November 16, 2015 91/122

Thread safety (2)

Thread safety solution: Atomics

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const int value = ...;

const int bucketIndex = computeBucketIndex(value);

Kokkos :: atomic_add (& _histogram(bucketIndex), 1);

});

I Atomics are the only scalable solution to thread safety.

I Locks or data replication are strongly discouraged.

Supercomputing’15, November 16, 2015 92/122

Performance of atomics (0)

How expensive are atomics?

Thought experiment: scalar integration

operator ()(const unsigned int intervalIndex ,

double & valueToUpdate) const {

double contribution = function (...);

valueToUpdate += contribution;

}

Idea: what if we instead do this with parallel for and atomics?

operator ()(const unsigned int intervalIndex) const {

const double contribution = function (...);

Kokkos : : atomic add (&globalSum , contribution);

}

How much of a performance penalty is incurred?

Supercomputing’15, November 16, 2015 92/122

Performance of atomics (0)

How expensive are atomics?

Thought experiment: scalar integration

operator ()(const unsigned int intervalIndex ,

double & valueToUpdate) const {

double contribution = function (...);

valueToUpdate += contribution;

}

Idea: what if we instead do this with parallel for and atomics?

operator ()(const unsigned int intervalIndex) const {

const double contribution = function (...);

Kokkos : : atomic add (&globalSum , contribution);

}

How much of a performance penalty is incurred?

Supercomputing’15, November 16, 2015 93/122

Performance of atomics (1)

Two costs: (independent) work and coordination.
parallel_reduce(numberOfIntervals ,

KOKKOS_LAMBDA (const unsigned int intervalIndex ,

double & valueToUpdate) {

valueToUpdate += function (...);

}, totalIntegral);

Experimental setup

operator ()(const unsigned int index) const {

Kokkos :: atomic_add (& globalSums[index % atomicStride], 1);

}

I This is the most extreme case: all coordination and no work.

I Contention is captured by the atomicStride.
atomicStride → 1 ⇒ Scalar integration
atomicStride → large ⇒ Independent

Supercomputing’15, November 16, 2015 93/122

Performance of atomics (1)

Two costs: (independent) work and coordination.
parallel_reduce(numberOfIntervals ,

KOKKOS_LAMBDA (const unsigned int intervalIndex ,

double & valueToUpdate) {

valueToUpdate += function (...);

}, totalIntegral);

Experimental setup

operator ()(const unsigned int index) const {

Kokkos :: atomic_add (& globalSums[index % atomicStride], 1);

}

I This is the most extreme case: all coordination and no work.

I Contention is captured by the atomicStride.
atomicStride → 1 ⇒ Scalar integration
atomicStride → large ⇒ Independent

Supercomputing’15, November 16, 2015 94/122

Performance of atomics (2)

Atomics performance: 1 million adds, no work per kernel

0 1 2 3 4 5 6

log10(contention) [-]

5

4

3

2

1

0

lo
g
1
0
(s

p
e
e
d
u
p
 o

v
e
r

in
d
e
p
e
n
d
e
n
t)

 [
-]

Slowdown from atomics: Summary for 1 million adds, mod, 0 pows

cuda double
cuda size_t

cuda float
cuda unsigned
omp double
omp size_t

omp float
omp unsigned
phi double
phi size_t

phi float
phi unsigned

N
ot

e:
lo

g
sc

a
le

Supercomputing’15, November 16, 2015 94/122

Performance of atomics (2)

Atomics performance: 1 million adds, no work per kernel

0 1 2 3 4 5 6

log10(contention) [-]

5

4

3

2

1

0

lo
g
1
0
(s

p
e
e
d
u
p
 o

v
e
r

in
d
e
p
e
n
d
e
n
t)

 [
-]

Slowdown from atomics: Summary for 1 million adds, mod, 0 pows

cuda double
cuda size_t

cuda float
cuda unsigned
omp double
omp size_t

omp float
omp unsigned
phi double
phi size_t

phi float
phi unsigned

N
ot

e:
lo

g
sc

a
le

No penalty for low contention

High penalty for
high contention

Supercomputing’15, November 16, 2015 95/122

Performance of atomics (3)

Atomics performance: 1 million adds, some work per kernel

0 1 2 3 4 5 6

log10(contention) [-]

5

4

3

2

1

0

lo
g
1
0
(s

p
e
e
d
u
p
 o

v
e
r

in
d
e
p
e
n
d
e
n
t)

 [
-]

Slowdown from atomics: Summary for 1 million adds, mod, 2 pows

cuda double
cuda size_t

cuda float
cuda unsigned
omp double
omp size_t

omp float
omp unsigned
phi double
phi size_t

phi float
phi unsigned

N
ot

e:
lo

g
sc

a
le

No penalty for any contention

High penalty for
high contention

Supercomputing’15, November 16, 2015 96/122

Performance of atomics (4)

Atomics performance: 1 million adds, lots of work per kernel

0 1 2 3 4 5 6

log10(contention) [-]

5

4

3

2

1

0

lo
g
1
0
(s

p
e
e
d
u
p
 o

v
e
r

in
d
e
p
e
n
d
e
n
t)

 [
-]

Slowdown from atomics: Summary for 1 million adds, mod, 5 pows

cuda double
cuda size_t

cuda float
cuda unsigned
omp double
omp size_t

omp float
omp unsigned
phi double
phi size_t

phi float
phi unsigned

N
ot

e:
lo

g
sc

a
le

No penalty for any contention

High penalty for
high contention

Supercomputing’15, November 16, 2015 97/122

Advanced features

Atomics on arbitrary types:

I Atomic operations work if the corresponding operator exists
, i.e., atomic add works on any data type with “+”.

I Atomic exchange works on any data type.
// Assign *dest to val , return former value of *dest

template <typename T>

T atomic_exchange(T * dest , T val);

// If *dest == comp then assign *dest to val

// Return true if succeeds.

template <typename T>

bool atomic_compare_exchange_strong(T * dest , T comp , T val);

Supercomputing’15, November 16, 2015 98/122

Memory traits

View memory traits:

I Beyond a Layout and Space, Views can have memory traits.

I Memory traits either provide convenience or allow for certain
hardware-specific optimizations to be performed.

Example: If all accesses to a View will be atomic, use the Atomic

memory trait:
View <double**, Layout , Space ,

MemoryTraits<Atomic> > forces (...);

Many memory traits exist or are experimental, including Read,
Write, ReadWrite, ReadOnce (non-temporal), Contiguous, and
RandomAccess.

Supercomputing’15, November 16, 2015 98/122

Memory traits

View memory traits:

I Beyond a Layout and Space, Views can have memory traits.

I Memory traits either provide convenience or allow for certain
hardware-specific optimizations to be performed.

Example: If all accesses to a View will be atomic, use the Atomic

memory trait:
View <double**, Layout , Space ,

MemoryTraits<Atomic> > forces (...);

Many memory traits exist or are experimental, including Read,
Write, ReadWrite, ReadOnce (non-temporal), Contiguous, and
RandomAccess.

Supercomputing’15, November 16, 2015 99/122

RandomAccess memory trait

Example: RandomAccess memory trait:

On GPUs, there is a special pathway for fast read-only, random
access, originally designed for textures.

How to access texture memory via CUDA:

How to access texture memory via Kokkos:
View < const double ***, Layout , Space ,

MemoryTraits<RandomAccess> > name (...);

Supercomputing’15, November 16, 2015 99/122

RandomAccess memory trait

Example: RandomAccess memory trait:

On GPUs, there is a special pathway for fast read-only, random
access, originally designed for textures.

How to access texture memory via CUDA:

How to access texture memory via Kokkos:
View < const double ***, Layout , Space ,

MemoryTraits<RandomAccess> > name (...);

Supercomputing’15, November 16, 2015 99/122

RandomAccess memory trait

Example: RandomAccess memory trait:

On GPUs, there is a special pathway for fast read-only, random
access, originally designed for textures.

How to access texture memory via CUDA:

How to access texture memory via Kokkos:
View < const double ***, Layout , Space ,

MemoryTraits<RandomAccess> > name (...);

Supercomputing’15, November 16, 2015 100/122

Section Summary

I Atomics are the only thread-scalable solution to thread safety.
I Locks or data replication are strongly discouraged

I Atomic performance depends on ratio of independent work
and atomic operations.

I With more work, there is a lower performance penalty, because
of increased opportunity to interleave work and atomic.

I The Atomic memory trait can be used to make all accesses
to a view atomic.

I The cost of atomics can be negligible:
I CPU ideal: contiguous access, integer types
I GPU ideal: scattered access, 32-bit types

I Many programs with the scatter-add pattern can be
thread-scalably parallelized using atomics without much
modification.

Supercomputing’15, November 16, 2015 101/122

Hierarchical parallelism
Finding and exploiting more parallelism in your computations.

Learning objectives:

I Similarities and differences between outer and inner levels of
parallelism

I Thread teams (league of teams of threads)

I Performance improvement with well-coordinated teams

Supercomputing’15, November 16, 2015 102/122

Example: inner product (0)

(Flat parallel) Kernel:

Kokkos :: parallel_reduce(N,

KOKKOS_LAMBDA (const int row , double & valueToUpdate) {

double thisRowsSum = 0;

for (int col = 0; col < M; ++col) {

thisRowsSum += A(row ,col) * x(col);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don’t have
enough rows to saturate the GPU?

Solutions?
I Atomics

I Thread teams

Supercomputing’15, November 16, 2015 102/122

Example: inner product (0)

(Flat parallel) Kernel:

Kokkos :: parallel_reduce(N,

KOKKOS_LAMBDA (const int row , double & valueToUpdate) {

double thisRowsSum = 0;

for (int col = 0; col < M; ++col) {

thisRowsSum += A(row ,col) * x(col);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don’t have
enough rows to saturate the GPU?

Solutions?
I Atomics

I Thread teams

Supercomputing’15, November 16, 2015 102/122

Example: inner product (0)

(Flat parallel) Kernel:

Kokkos :: parallel_reduce(N,

KOKKOS_LAMBDA (const int row , double & valueToUpdate) {

double thisRowsSum = 0;

for (int col = 0; col < M; ++col) {

thisRowsSum += A(row ,col) * x(col);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don’t have
enough rows to saturate the GPU?

Solutions?

I Atomics

I Thread teams

Supercomputing’15, November 16, 2015 102/122

Example: inner product (0)

(Flat parallel) Kernel:

Kokkos :: parallel_reduce(N,

KOKKOS_LAMBDA (const int row , double & valueToUpdate) {

double thisRowsSum = 0;

for (int col = 0; col < M; ++col) {

thisRowsSum += A(row ,col) * x(col);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don’t have
enough rows to saturate the GPU?

Solutions?
I Atomics

I Thread teams

Supercomputing’15, November 16, 2015 103/122

Example: inner product (1)

Atomics kernel:

Kokkos :: parallel_for(N,

KOKKOS_LAMBDA (const size_t index) {

const int row = extractRow(index);

const int col = extractCol(index);

atomic_add (& result , A(row ,col) * x(col));

});

Problem: Poor performance

Supercomputing’15, November 16, 2015 103/122

Example: inner product (1)

Atomics kernel:

Kokkos :: parallel_for(N,

KOKKOS_LAMBDA (const size_t index) {

const int row = extractRow(index);

const int col = extractCol(index);

atomic_add (& result , A(row ,col) * x(col));

});

Problem: Poor performance

Supercomputing’15, November 16, 2015 104/122

Example: inner product (2)

Doing each individual row with atomics is like doing scalar
integration with atomics.

Instead, you could envision doing a large number of
parallel reduce kernels.

for each row

Functor functor(row , ...);

parallel_reduce(M, functor);

}

This is an example of hierarchical work.

Important concept: Hierarchical parallelism

Algorithms that exhibit hierarchical structure can exploit
hierarchical parallelism with thread teams.

Supercomputing’15, November 16, 2015 104/122

Example: inner product (2)

Doing each individual row with atomics is like doing scalar
integration with atomics.

Instead, you could envision doing a large number of
parallel reduce kernels.

for each row

Functor functor(row , ...);

parallel_reduce(M, functor);

}

This is an example of hierarchical work.

Important concept: Hierarchical parallelism

Algorithms that exhibit hierarchical structure can exploit
hierarchical parallelism with thread teams.

Supercomputing’15, November 16, 2015 105/122

Example: inner product (3)

Important concept: Thread team

A collection of threads which are guaranteed to be executing
concurrently and can synchronize.

High-level strategy:

1. Do one parallel launch of N teams of M threads.

2. Each thread performs one entry in the row.

3. The threads within teams perform a reduction.

4. The thread teams perform a reduction.

Supercomputing’15, November 16, 2015 105/122

Example: inner product (3)

Important concept: Thread team

A collection of threads which are guaranteed to be executing
concurrently and can synchronize.

High-level strategy:

1. Do one parallel launch of N teams of M threads.

2. Each thread performs one entry in the row.

3. The threads within teams perform a reduction.

4. The thread teams perform a reduction.

Supercomputing’15, November 16, 2015 106/122

Example: inner product (4)

The final hierarchical parallel kernel:

parallel_reduce(

team_policy(N, Kokkos ::AUTO),

KOKKOS_LAMBDA (member_type & teamMember , double & update) {

int row = teamMember.league_rank ();

double thisRowsSum = 0;

parallel_reduce(TeamThreadRange(teamMember , M),

[=] (int col , double & innerUpdate) {

innerUpdate += A(row , col) * x(col);

}, thisRowsSum);

if (teamMember.team_rank () == 0) {

update += y(row) * thisRowsSum;

}

}, result);

The performance and flexibility of teams is naturally and
concisely expressed under the Kokkos model.

Let’s walk through how we got to this final answer.

Supercomputing’15, November 16, 2015 107/122

TeamPolicy (0)

Important point

Using teams is changing the execution policy.

“Flat parallelism” uses RangePolicy:

We specify a total amount of work.

// total work = N

parallel_for(

RangePolicy <ExecutionSpace >(0,N), functor);

“Hierarchical parallelism” uses TeamPolicy:

We specify a team size and a number of teams.

// total work = numberOfTeams * teamSize

parallel_for(

TeamPolicy <ExecutionSpace >(numberOfTeams , teamSize), functor);

Supercomputing’15, November 16, 2015 107/122

TeamPolicy (0)

Important point

Using teams is changing the execution policy.

“Flat parallelism” uses RangePolicy:

We specify a total amount of work.

// total work = N

parallel_for(

RangePolicy <ExecutionSpace >(0,N), functor);

“Hierarchical parallelism” uses TeamPolicy:

We specify a team size and a number of teams.

// total work = numberOfTeams * teamSize

parallel_for(

TeamPolicy <ExecutionSpace >(numberOfTeams , teamSize), functor);

Supercomputing’15, November 16, 2015 108/122

TeamPolicy (1)

Important point

When using teams, functor operators receive a team member.

typedef typename TeamPolicy <ExecSpace >:: member_type member_type;

void operator ()(const member_type & teamMember) {

// Which team am I on?
const unsigned int leagueRank = teamMember.league_rank ();

// Which thread am I on this team?
const unsigned int teamRank = teamMember.team_rank ();

}

Warning

There may be more (or fewer) team members than pieces of your
algorithm’s work per team

Supercomputing’15, November 16, 2015 108/122

TeamPolicy (1)

Important point

When using teams, functor operators receive a team member.

typedef typename TeamPolicy <ExecSpace >:: member_type member_type;

void operator ()(const member_type & teamMember) {

// Which team am I on?
const unsigned int leagueRank = teamMember.league_rank ();

// Which thread am I on this team?
const unsigned int teamRank = teamMember.team_rank ();

}

Warning

There may be more (or fewer) team members than pieces of your
algorithm’s work per team

Supercomputing’15, November 16, 2015 109/122

TeamThreadRange (0)

First attempt at inner product exercise:

operator () (const member_type & teamMember) {

const unsigned int row = teamMember.league_rank ();

const unsigned int col = teamMember.team_rank ();

atomic_add (& result ,y(row) * A(row ,col) * x(entry));

}

I When team size 6= number of columns, how are units of work
mapped to team’s member threads? Is the mapping
architecture-dependent?

I atomic add performs badly under high contention, how can
team’s member threads performantly cooperate for a nested
reduction?

Supercomputing’15, November 16, 2015 109/122

TeamThreadRange (0)

First attempt at inner product exercise:

operator () (const member_type & teamMember) {

const unsigned int row = teamMember.league_rank ();

const unsigned int col = teamMember.team_rank ();

atomic_add (& result ,y(row) * A(row ,col) * x(entry));

}

I When team size 6= number of columns, how are units of work
mapped to team’s member threads? Is the mapping
architecture-dependent?

I atomic add performs badly under high contention, how can
team’s member threads performantly cooperate for a nested
reduction?

Supercomputing’15, November 16, 2015 110/122

TeamThreadRange (1)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

‘‘do a reduction ’’(‘‘over M columns ’’,

[=] (const int col) {

thisRowsSum += A(row ,col) * x(col);

});

if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;

}

}

If this were a parallel execution,
we’d use Kokkos::parallel reduce.

Key idea: this is a parallel execution.

⇒ Nested parallel patterns

Supercomputing’15, November 16, 2015 110/122

TeamThreadRange (1)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

‘‘do a reduction ’’(‘‘over M columns ’’,

[=] (const int col) {

thisRowsSum += A(row ,col) * x(col);

});

if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;

}

}

If this were a parallel execution,
we’d use Kokkos::parallel reduce.

Key idea: this is a parallel execution.

⇒ Nested parallel patterns

Supercomputing’15, November 16, 2015 110/122

TeamThreadRange (1)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

‘‘do a reduction ’’(‘‘over M columns ’’,

[=] (const int col) {

thisRowsSum += A(row ,col) * x(col);

});

if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;

}

}

If this were a parallel execution,
we’d use Kokkos::parallel reduce.

Key idea: this is a parallel execution.

⇒ Nested parallel patterns

Supercomputing’15, November 16, 2015 110/122

TeamThreadRange (1)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

‘‘do a reduction ’’(‘‘over M columns ’’,

[=] (const int col) {

thisRowsSum += A(row ,col) * x(col);

});

if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;

}

}

If this were a parallel execution,
we’d use Kokkos::parallel reduce.

Key idea: this is a parallel execution.

⇒ Nested parallel patterns

Supercomputing’15, November 16, 2015 111/122

TeamThreadRange (2)

TeamThreadRange:

operator () (const member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

parallel_reduce(TeamThreadRange(teamMember , M),

[=] (const int col , double & rowUpdate) {

rowUpdate += A(row , col) * x(col);

}, thisRowsSum);

if (teamMember.team_rank () == 0) {

update += y(row) * thisRowsSum;

}

}

I The mapping of work indices to threads is
architecture-dependent.

I The amount of work given to the TeamThreadRange need not
be a multiple of the team size.

I Intra-team reduction handled for you.

Supercomputing’15, November 16, 2015 111/122

TeamThreadRange (2)

TeamThreadRange:

operator () (const member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

parallel_reduce(TeamThreadRange(teamMember , M),

[=] (const int col , double & rowUpdate) {

rowUpdate += A(row , col) * x(col);

}, thisRowsSum);

if (teamMember.team_rank () == 0) {

update += y(row) * thisRowsSum;

}

}

I The mapping of work indices to threads is
architecture-dependent.

I The amount of work given to the TeamThreadRange need not
be a multiple of the team size.

I Intra-team reduction handled for you.

Supercomputing’15, November 16, 2015 112/122

Nested parallelism

Anatomy of nested parallelism:

parallel_outer(

TeamPolicy <ExecutionSpace >(numberOfTeams , teamSize),

KOKKOS_LAMBDA (const member_type & teamMember [, . . .]) {

/* beginning of outer body */

parallel_inner(

TeamThreadRange(teamMember , thisTeamsRangeSize),

[=] (const unsigned int indexWithinBatch [, . . .]) {

/* inner body */

} [, . . .]);
/* end of outer body */

} [, . . .]);

I parallel outer and parallel inner may be any
combination of for, reduce, or scan.

I The inner lambda may capture by reference, but
capture-by-value is recommended.

I The policy of the inner lambda is always a TeamThreadRange.

I TeamThreadRange cannot be nested.

Supercomputing’15, November 16, 2015 113/122

What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(

TeamPolicy <ExecutionSpace >(numberOfTeams , Kokkos ::AUTO),

/* functor */);

NVIDIA GPU:

I Special hardware available for coordination within a team.

I Within a team 32 threads (warp) execute “lock step.”

I Maximum team size: 1024; Recommended team size: 256

Intel Xeon Phi:

I Recommended team size: # hyperthreads per core

I Hyperthreads share entire cache hierarchy
a well-coordinated team avoids cache-thrashing

Supercomputing’15, November 16, 2015 113/122

What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(

TeamPolicy <ExecutionSpace >(numberOfTeams , Kokkos ::AUTO),

/* functor */);

NVIDIA GPU:

I Special hardware available for coordination within a team.

I Within a team 32 threads (warp) execute “lock step.”

I Maximum team size: 1024; Recommended team size: 256

Intel Xeon Phi:

I Recommended team size: # hyperthreads per core

I Hyperthreads share entire cache hierarchy
a well-coordinated team avoids cache-thrashing

Supercomputing’15, November 16, 2015 113/122

What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(

TeamPolicy <ExecutionSpace >(numberOfTeams , Kokkos ::AUTO),

/* functor */);

NVIDIA GPU:

I Special hardware available for coordination within a team.

I Within a team 32 threads (warp) execute “lock step.”

I Maximum team size: 1024; Recommended team size: 256

Intel Xeon Phi:

I Recommended team size: # hyperthreads per core

I Hyperthreads share entire cache hierarchy
a well-coordinated team avoids cache-thrashing

Supercomputing’15, November 16, 2015 114/122

Exercise #4: Inner Product, Hierarchical Parallelism

Exercise: Inner product < y ,A ∗ x >

Details:

I Location: ~/kokkos-tutorials/SC15/Exercises/03/

I Use lambdas instead of functors for computational bodies.

I Replace RangePolicy<Space> with TeamPolicy<Space>

I Experiment with the combinations of Layout, Space, N to view
performance

I Hint: what should the layout of A be?

Supercomputing’15, November 16, 2015 115/122

Exercise #4: Inner Product, Hierarchical Parallelism

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

B
an

dw
id

th
 (

G
B

/s
)

number of rows

<y,Ax> Exercise04, fixed problem size

K40 Right
K40 Left

KNC Right
KNC Left

HSW Right
HSW Left

Supercomputing’15, November 16, 2015 116/122

Shared memory

Learning objectives:

I Understand how shared memory can reduce global memory
accesses

I Recognize when to use shared memory

I Understand how to use shared memory and why barriers are
necessary

Supercomputing’15, November 16, 2015 117/122

Shared memory (0)

Each team has access to a “scratch pad”.

Supercomputing’15, November 16, 2015 118/122

Shared memory (1)

Shared memory (scratch pad) details:

I Accessing data is shared memory is (usually) much faster
than global memory.

I GPUs have separate, dedicated, small, low-latency shared
memories (NOT subject to coalescing requirements).

I CPUs dont have special hardware, but programming with
shared memory results in cache-aware memory access patterns.

I Roughly, it’s like a user-managed L1 cache.

Important concept

When members of a team read the same data multiple times, it’s
better to load the data into shared memory and read from there.

Supercomputing’15, November 16, 2015 118/122

Shared memory (1)

Shared memory (scratch pad) details:

I Accessing data is shared memory is (usually) much faster
than global memory.

I GPUs have separate, dedicated, small, low-latency shared
memories (NOT subject to coalescing requirements).

I CPUs dont have special hardware, but programming with
shared memory results in cache-aware memory access patterns.

I Roughly, it’s like a user-managed L1 cache.

Important concept

When members of a team read the same data multiple times, it’s
better to load the data into shared memory and read from there.

Supercomputing’15, November 16, 2015 119/122

Shared memory example: finite difference

Main idea: Load global data into shared memory and reuse

operator ()(member_type teamMember) const {

// Declare team -shared tile of memory

View < double ***

, execution_space :: scratch_memory_space

> tile(teamMember.team_shared (), ...);

// copy subgrid data into tile

teamMember.team_barrier ();

// Compute stencil using tile

}

Supercomputing’15, November 16, 2015 120/122

Advanced features we haven’t covered

I There is a third level in the hierarchy below
TeamThreadRange: ThreadVectorRange

I Just like for TeamThreadRange, you can perform
parallel for, parallel reduce, or parallel scan.

I Important for full performance of Xeon Phi and GPUs

I Restricting execution to a single member:
PerTeam: one thread per team
PerThread: one vector lane per thread

I Multiple shared views can be made in shared memory.

Supercomputing’15, November 16, 2015 121/122

Section Summary

I Hierarchical work can be parallelized via hierarchical
parallelism.

I Hierarchical parallelism is leveraged using thread teams
launched with a TeamPolicy.

I Team “worksets” are processed by a team in nested
parallel for (or reduce or scan) calls with a
TeamThreadRange policy.

I Teams can be used to reduce contention for global resources
even in “flat” algorithms.

I Teams have access to “scratch pad” shared memory.

Supercomputing’15, November 16, 2015 122/122

Tutorial Takeaways

I High performance computers are increasingly heterogenous
MPI-only is no longer sufficient.

I For portability: OpenMP, OpenACC, ... or Kokkos.

I Only Kokkos obtains performant memory access patterns via
architecture-aware arrays and work mapping.

i.e., not just portable, performance portable.

I With Kokkos, simple things stay simple (parallel-for, etc.).
i.e., it’s no more difficult than OpenMP.

I Advanced performance-optimizing patterns are simpler
with Kokkos than with native versions.

i.e., you’re not missing out on advanced features.

