
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Kokkos:
Enabling Performance Portability
of C++ Applications and Libraries
across Manycore Architectures

ORNL / January 29, 2015

SAND2015-0409 O (Unlimited Release)

Increasingly Complex Manycore Architectures
¿ Performance Portable and Future Proof Codes?

1

PIM DDR

L2*

NVRAM

PIM

L1
*

Te
x

Scr

L1
*

Te
x

Scr

L1
*

Te
x

Scr

NIC L3

Memory Spaces
 - Bulk non-volatile (Flash?)
 - Standard DDR (DDR4)
 - Fast memory (HBM/HMC)
 - (Segmented) scratch-pad on die

Execution Spaces
 - Throughput cores (GPU)
 - Latency optimized cores (CPU)
 - Processing in memory

Special Hardware
 - Non caching loads
 - Read only cache
 - Atomics

Programming
models
 - GPU: CUDA-ish
 - CPU: OpenMP
 - PIM: ??

Vision for Heterogeneous Parallelism
 “MPI + X” Programming Model, separate concerns
 Inter-node: MPI and domain specific libraries layered on MPI
 Intra-node: Kokkos and domain specific libraries layered on Kokkos

 Intra-node parallelism concerns: heterogeneity & diversity
 Execution spaces (CPU, GPU, PIM, ...) have diverse performance requirements
 Memory spaces have diverse capabilities and performance characteristics
 Vendors have diverse programming models for optimal utilization of their hardware

 Standardized performance portable programming model?
 Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17
 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ...
 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ...

 Necessary condition: address execution & memory space diversity
 SNL Computing Research Center’s Kokkos (C++ library) solution
 Engagement with ISO C++ Standard committee to influence C++17

2

Application and Domain Specific Library Layer

3

Kokkos: A Layered Collection of C++ Libraries
 Applications and Domain Libraries written in Standard C++
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...
 Require C++1998 standard (supported everywhere except IBM’s old xlC)
 Prefer C++2011 for its concise lambda syntax
 Vendors are catching up to C++2011 language compliance

 Kokkos implemented with C++ template meta-programming
 In spirit of TBB, Thrust & CUSP, C++AMP, ...

Back-ends: Cuda, OpenMP, pthreads, vendor libraries ...

Sparse Linear Algebra (Trilinos)
Kokkos Containers
Kokkos Core

4

Performance Portability Challenge:
Best (good) performance requires computations to
implement architecture-specific memory access patterns
 CPUs (and Xeon Phi)
 Core-data affinity: consistent NUMA access (first touch)
 Array alignment for cache-lines and vector units
 Hyperthreads’ cooperative use of L1 cache

 GPUs
 Thread-data affinity: coalesced access with cache-line alignment
 Temporal locality and special hardware (texture cache)

 Array of Structures (AoS) vs. Structure of Arrays (SoA) dilemma
This has been the wrong concern

The right question: Abstractions for Performance Portability?

5

Kokkos Performance Portability Answer
Integrated mapping of thread parallel computations and

multidimensional array data onto manycore spaces
 Kokkos maps users’ parallel computations to threads
 Standard parallel programming model pattern; e.g., parallel-for
 Users implement C++ functions or lambdas for their parallel loop bodies
 Kokkos calls user’s code from architecture’s “hardware” threads

 Kokkos’ multidimensional array data structure has a twist
 Layout mapping: multi-index (i,j,k,...) ↔ memory location
 Kokkos chooses layout for architecture-specific memory access pattern
 Layout changes are invisible to user code
IF user code honors Kokkos’ simple array API: a(i,j,k,...)

 Polymorphic multidimensional array layout

 ... and utilizes special hardware invisibly to users’ code
 GPU texture cache to speed up read-only random access patterns
 Atomic operations for thread safety

6

Projects leveraging Kokkos for MPI+X
Albany : a Trilinos-based finite element application code
 Ice Sheet Modeling Computational Mechanics Quantum Device Design

Atmosphere Dynamics

Target Application for CAAR
Proposal [Salinger et al.]

Kokkos integration in progress

7

Projects leveraging Kokkos for MPI+X
and points-of-contact for MPI+X transition effort
 Trilinos / Tpetra : foundational data structures and kernels for sparse linear

algebra; Mark Hoemmen, Christian Trott
 Trilinos / Stokhos : accelerating embedded UQ ; Eric Phipps
 LAMMPS : molecular dynamics; Christian Trott
 ASCR Multiphysics MHD; Roger Pawlowski and Eric Cyr
 FASTMath SciDAC / Graph Algorithms : Siva Rajamanickam
 Zoltan / Graph Coloring : fast threaded graph coloring to identify independent

sets of work for task parallelism; Erik Boman, Siva Rajamanickam
 EMPRESS and miniPIC : particle-in-cell ; Matt Bettencourt
 miniAero : CFD finite element mini-application ; Ken Franco
 miniContact : contact detection for solid mechanics ; Glen Hansen
 SHIFT @ ORNL; Steve Hamilton
 Kokkos SNL/LDRD
 Directed acyclic graph of internally data parallel (coarse-grain) tasks
 sparse matrix factorization and graph algorithm mini-applications

8

Abstractions and
Application Programmer Interface

9

Spaces, Policies, and Patterns
 Execution Space : where functions execute
 Encapsulates hardware resources; e.g., cores, GPU, vector units, ...

 Memory Space : where data resides
AND what execution space can access that data
 Also differentiated by access performance; e.g., latency & bandwidth

 Execution Policy : how (and where) a user function is executed
 E.g., data parallel range : concurrently call function(i) for i = [0..N)
 User’s function is a C++ functor or C++11 lambda

 Pattern: parallel_for, parallel_reduce, parallel_scan, task, ...

 Compose: pattern + execution policy + user function; e.g.,
parallel_for(Policy<Space>, Function);

 Execute Function in Space according to parallel_for pattern and Policy

 Extensible spaces, policies, and patterns (by expert developers)

10

Examples of Execution and Memory Spaces

Compute Node

Multicore
Socket DDR

Attached Accelerator

GPU
GDDR

GPU::capacity
(via pinned)

primary

primary

GPU::perform
(via UVM)

Compute Node

Multicore
Socket DDR

primary
shared

deep_copy

Attached Accelerator

GPU
GDDR primary

perform shared

11

Multidimensional Array View API (simple)
 View< double**[3][8] , Space > a(“a”,N,M);
 Allocate array data in memory Space with dimensions [N][M][3][8]
 Each * indicates a runtime supplied dimension
 Proposing C++ standard adjustment to enable View<double[][][3][8],Space>

 Kokkos chooses array layout appropriate for “Space”

 a(i,j,k,l) : User’s access to array data
 Optional array bounds checking of indices in debug compile
 “Space” accessibility enforced; e.g., GPU code cannot access CPU memory

 View Semantics: View<double**[3][8],Space> b = a ;
 A shallow copy: ‘a’ and ‘b’ are pointers to the same allocated array data
 Reference counting how many Views to the same data
 When reference count == 0 , automatically deallocates data

12

View API: Deep Copy and Host Mirror
 deep_copy(destination_view , source_view);
 Copy array data of ‘source_view’ to array data of ‘destination_view’
 Kokkos policy: never hide an expensive deep copy operation
 Only deep copy when explicitly instructed by the user

 Avoid expensive permutation of data due to different layouts
 Mirror the dimensions and layout in Host’s memory space

typedef class View<...,Space> MyViewType ;
MyViewType a(“a”,...);
MyViewType::HostMirror a_h = create_mirror(a);
deep_copy(a , a_h); deep_copy(a_h , a);

 Avoid unnecessary deep-copy
MyViewType::HostMirror a_h = create_mirror_view(a);

 If Space (might be an execution space) uses Host memory space
then ‘a_h’ is simply a view of ‘a’ and deep_copy is a no-op

13

View API (advanced)
 View<ArrayType,Layout,Space,Attributes>
 ArrayType: scalar type, # runtime dimensions, compile-time dimensions
 Layout: user can override Kokkos’ choice for layout
 Attributes: user’s access intentions

 Why manually specify Layout ?
 Force compatibility with legacy code while incrementally porting
 Optimize performance with exotic layout

 View<double**,Tile<8,8>,Space> m(“matrix”,N,N);
 Tiling layout hidden from user code m(i,j)

 A “plug in” extension point

 Access intent attributes
 Turn off reference counting to wrap an legacy code’s array
 Indicate const and random access to utilize GPU texture cache

 View< const double **, Cuda, RandomAccess> b = a ;
 A “plug in” extension point

14

Subview : View of a sub-array
B = subview(A , ...range_and_index_argument_list...)

 Challenging capability due to polymorphic array Layout
 Views are strongly typed: View<ArrayType,Layout,Space,Traits>
 Compatibility constraints on B’s type, A’s type, and argument list
 runtime and compile-time dimensions
 number and type (range or index) of calling arguments
 array layout
 ‘const-ness’ and other memory access traits

 C++11 ‘auto’ capability simplifies use
auto B = subview(A , ...range_and_index_argument_list...);

 Let implementation choose a compatible View type
 Caution: View’s data may become non-contiguous

15

Parallel Execution API (simple with C++11)
 AXPY example using C++11 lambda

parallel_for(N , KOKKOS_LAMBDA(int i)
 { y(i) = alpha * x(i) + y(i); }
);
 User functor via C++11 lambda expression
 Default execution space and range policy i = [0..N)
 Kokkos chooses which threads call function with each value of ‘i’

 DOT example using C++11 lambda
parallel_reduce(N , KOKKOS_LAMBDA(int i , double & value)
 { value += x(i) * y(i); }
 , result);
 Kokkos manages thread-local temporaries
 Kokkos manages scalable inter-thread reduction

16

Parallel Execution API
parallel_pattern(Policy<Space> , Function)

 User Function: C++11 Lambda or C++ Functor
 Use a functor with non-trivial function bodies

struct UserAXPY {
 double alpha ; View<double*,Space> x , y ; // “calling arguments”
 KOKKOS_INLINE_FUNCTION
 void operator()(int i) const { y(i) = alpha * x(i) + y(i); } // function
};

 Multi-function User Functor capability
 When more than one function shares the same “calling arguments”
 Migration to Kokkos: incrementally add parallel functions to existing classes

 Execution Policy : flexibility & extensibility
 RangePolicy : i = [0..N)
 TeamPolicy : two-level parallelism with team collectives and shared memory
 Portable access to Cuda thread grid, block, and shared memory

 TaskPolicy : experimental using SNL’s Qthreads runtime

17

Atomic operations
atomic_exchange, atomic_compare_exchange_strong,
atomic_fetch_add, atomic_fetch_or, atomic_fetch_and

 Thread-scalability of non-trivial algorithms and data structures
 Essential for lock-free implementations
 Concurrent summations to shared variables
 E.g., finite element computations summing to shared nodes

 Updating shared dynamic data structure
 E.g., append to a shared array or insert into a shared map

 Portably map to compiler/hardware specific capabilities
 GNU and CUDA extensions when available
 Current: any 32bit or 64bit type, may use CAS-loop implementation
 Future: any data type via “sharded lock” pattern

 ISO/C++ 2011 and 2014 standards not adequate for HPC
 Proposal in for 2017 standard to address this gap

18

Performance Evaluation

Evaluate Performance Impact of Array Layout

19

 Molecular dynamics computational kernel in miniMD
 Simple Lennard Jones force model:
 Atom neighbor list to avoid N2 computations

 Test Problem
 864k atoms, ~77 neighbors
 2D neighbor array
 Different layouts CPU vs GPU
 Random read ‘pos’ through

GPU texture cache
 Large performance loss

with wrong array layout

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);
for(jj = 0; jj < num_neighbors(i); jj++) {
 j = neighbors(i,jj);
 r_ij = pos_i – pos(j); //random read 3 floats
 if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13)
}
f(i) = f_i;

0

50

100

150

200

Xeon Xeon Phi K20x

G
Fl

op
/s

correct layout
(with texture)

correct layout
(without texture)

wrong layout
(with texture)

Evaluate Performance Overhead of Abstraction
Kokkos competitive with native programming models

 MiniFE: finite element linear system iterative solver mini-app

 Compare to versions specialized for programming models

 Running on hardware testbeds

20

0
4
8

12
16
20
24

K20X IvyBridge SandyBridge XeonPhi B0 XeonPhi C0 IBM Power7+

MiniFE CG-Solve time for 200 iterations on 200^3 mesh

NVIDIA ELL NVIDIA CuSparse Kokkos OpenMP
MPI-Only OpenCL TBB Cilk+(1 Socket)

Ti
m

e
(s

ec
on

ds
)

21

Kokkos’ Unordered Map (a.k.a. Hash Map)
 Thread scalable fill

 Lock-free implementation with minimal use of atomics
 API deviates from C++11 unordered map

 No on-the-fly allocation / reallocation
 Index-based instead of iterator-based

 Insert (fill) within a parallel reduce functor
 Within the functor: {status, index} = map.insert(key,value);

 Status = success | existing | failed due to insufficient capacity
 Parallel reduce the failed-count to resize the map

 Algorithmic use:
UnorderedMap<Key,Value,Space> map ;
do {
 map.rehash(capacity);
 capacity += (nfailed = parallel_reduce(N , functor));
} while(nfailed); // should iterate at most twice

22

Unordered Map Performance Evaluation
 Parallel-for insert to 88% full with 16x redundant inserts

 NW= number attempts to insert = Capacity * 88% * 16
 Near – contiguous work indices [iw,iw+16) insert same keys
 Far – strided work indices insert same keys

 Single Accelerator Performance Tests
 NVidia Kepler K40X, 12Gbytes
 Intel Xeon Phi (Knights Corner) COES2, 61 cores, 1.2 GHz, 16Gbytes
 Limit use to 60 cores, 4 hyperthreads/core

0

5

10

15

20

1E+04 1E+05 1E+06 1E+07

na
no

se
c

/
at

te
m

pt
ed

in

se
rt

map capacity

Phi-240, far

Phi-240, near

K40X, far

K40X, near

 K40X dramatically better
performance
 Xeon Phi implementation

optimized using explicit
non-caching prefetch
 Theory: due to cache

coherency protocols and
atomics’ performance

23

MiniFENL Proxy Application
 Solve nonlinear finite element problem via Newton iteration

 Focus on construction and fill of sparse linear system
 Thread safe, thread scalable, and performant algorithms
 Evaluate thread-parallel capabilities and programming models

 Construct sparse linear system graph and coefficient arrays
 Map finite element mesh connectivity to degree of freedom graph
 Thread-scalable algorithm for graph construction

 Compute nonlinear residual and Jacobian
 Thread-parallel finite element residual and Jacobian
 Atomic-add to fill element coefficients into linear system

 Atomic-add for thread safety, performance?

 Solve linear system for Newton iteration

Thread-Scalable Fill of Sparse Linear System

24

 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏�

 Fill sparse matrix via Scatter-Atomic-Add or Gather-Sum ?
 Scatter-Atomic-Add

+ Simpler
+ Less memory
– Slower HW atomic

 Gather-Sum
+ Bit-wise reproducibility

 Performance win?
 Scatter-atomic-add
 ~equal Xeon PHI
 40% faster Kepler GPU

 Pattern chosen
 Feedback to HW vendors:

performant atomics

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

1E+03 1E+04 1E+05 1E+06 1E+07M
at

rix
 F

ill
: m

ic
ro

se
c/

no
de

Number of finite element nodes

Phi-60 GatherSum
Phi-60 ScatterAtomic
Phi-240 GatherSum
Phi-240 ScatterAtomic
K40X GatherSum
K40X ScatterAtomic

Thread-Scalable Sparse Matrix Construction
 MiniFENL: Construct sparse matrix graph from FEM connectivity
 Thread scalable algorithm for constructing a data structure

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs
2. Parallel-scan : sparse matrix rows’ column counts into row offsets
3. Parallel-for : query unordered map to fill sparse matrix column-index array
4. Parallel-for : sort rows’ column-index subarray

25

0

0.5

1

1.5

2

1E+03 1E+04 1E+05 1E+06 1E+07

M
ic

ro
se

c/
no

de

Number of finite element nodes

Phi-60

Phi-240

K40X

 Pattern and tools generally applicable to construction and
dynamic modification of data structures

26

Porting in Progress: Trilinos Suite
 Trilinos : SNL’s suite of equation solver libraries (and others)
 Previously MPI-only parallel
 Incremental refactoring to MPI+Kokkos parallel

 Tpetra : Trilinos’ core parallel sparse linear algebra library
 Vectors, multi-vectors, sparse matrices, parallel data distribution maps
 Fundamental operations: axpy, dot, matrix-vector multiply, ...
 Templated on “scalar” type: float, double, automatic differentiation (AD),

embedded uncertainty quantification (UQ), ...

 Port Tpetra to MPI+Kokkos, other libraries follow
 On schedule to complete in Spring 2015
 Use of NVIDIA’s unified virtual memory (UVM) expedited porting effort

 Embedded UQ already Kokkos-enabled through SNL/LDRD
 Greater computational intensity leads to significant speed-ups compared to

non-embedded UQ sampling algorithms

27

Porting in Progress: LAMMPS
 LAMMPS : molecular dynamics application
 Fully MPI-only parallel with some (prototype) thread-parallel user packages
 Architecture specific with redundantly implemented physics

 Incrementally refactoring to MPI+Kokkos parallel
 Goal: collapse redundantly implemented physics into “core” code base

 MPI+Kokkos performing as well or better than thread-parallel user packages

28

Takeaways : MPI + Kokkos for hybrid parallel
 Performance portability across diverse manycore architectures
 Compose : pattern + policy + function + polymorphic array layout
 to obtain architecture-appropriate memory access patterns
 AoS versus SoA dilemma is a non-issue, with the right abstractions
 Extensibility of patterns, policies, spaces, and array layout abstractions

=> future proofing versus architectural evolution?

 Negligible performance overhead versus native implementation

 R&D now addressing more challenging algorithms
 Dynamic data structures
 Task-dag and hybrid task-data parallelism
 Graph analytics algorithms

 Transition of legacy codes in progress

 Kokkos to be available via GitHub in FY15/Q3

	Kokkos:�Enabling Performance Portability of C++ Applications and Libraries�across Manycore Architectures
	Increasingly Complex Manycore Architectures�¿ Performance Portable and Future Proof Codes?
	Vision for Heterogeneous Parallelism
	Kokkos: A Layered Collection of C++ Libraries
	Performance Portability Challenge:�Best (good) performance requires computations to implement architecture-specific memory access patterns
	Kokkos Performance Portability Answer
	Projects leveraging Kokkos for MPI+X
	Projects leveraging Kokkos for MPI+X�and points-of-contact for MPI+X transition effort
	Abstractions and �Application Programmer Interface
	Spaces, Policies, and Patterns
	Examples of Execution and Memory Spaces
	Multidimensional Array View API (simple)
	View API: Deep Copy and Host Mirror
	View API (advanced)
	Subview : View of a sub-array
	Parallel Execution API (simple with C++11)
	Parallel Execution API
	Atomic operations
	Performance Evaluation
	Evaluate Performance Impact of Array Layout
	Evaluate Performance Overhead of Abstraction�Kokkos competitive with native programming models
	Kokkos’ Unordered Map (a.k.a. Hash Map)
	Unordered Map Performance Evaluation
	MiniFENL Proxy Application
	Thread-Scalable Fill of Sparse Linear System
	Thread-Scalable Sparse Matrix Construction
	Porting in Progress: Trilinos Suite
	Porting in Progress: LAMMPS
	Takeaways : MPI + Kokkos for hybrid parallel

