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Increasingly Complex Manycore Architectures 
¿ Performance Portable and Future Proof Codes? 
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Memory Spaces 
  - Bulk non-volatile (Flash?) 
  - Standard DDR (DDR4) 
  - Fast memory (HBM/HMC) 
  - (Segmented) scratch-pad on die 
 
Execution Spaces 
  - Throughput cores (GPU) 
  - Latency optimized cores (CPU) 
  - Processing in memory  
 

Special Hardware 
  - Non caching loads 
  - Read only cache 
  - Atomics 

Programming 
models 
  - GPU: CUDA-ish 
  - CPU: OpenMP 
  - PIM: ?? 



Vision for Heterogeneous Parallelism 
 “MPI + X” Programming Model, separate concerns 
 Inter-node: MPI      and domain specific libraries layered on MPI 
 Intra-node: Kokkos and domain specific libraries layered on Kokkos 

 Intra-node parallelism concerns: heterogeneity & diversity 
 Execution spaces (CPU, GPU, PIM, ...) have diverse performance requirements 
 Memory spaces have diverse capabilities and performance characteristics 
 Vendors have diverse programming models for optimal utilization of their hardware 

 Standardized performance portable programming model? 
 Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17 
 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ... 
 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ... 

 Necessary condition: address execution & memory space diversity 
 SNL Computing Research Center’s Kokkos (C++ library) solution 
 Engagement with ISO C++ Standard committee to influence C++17 
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Application and Domain Specific Library Layer 
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Kokkos: A Layered Collection of C++ Libraries 
 Applications and Domain Libraries written in Standard C++ 
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ... 
 Require C++1998 standard (supported everywhere except IBM’s old xlC) 
 Prefer C++2011 for its concise lambda syntax 
 Vendors are catching up to C++2011 language compliance 

 
 
 
 
 
 

 Kokkos implemented with C++ template meta-programming 
 In spirit of TBB, Thrust & CUSP, C++AMP, ... 

Back-ends: Cuda, OpenMP, pthreads, vendor libraries ... 

Sparse Linear Algebra (Trilinos) 
Kokkos Containers 
Kokkos Core 
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Performance Portability Challenge: 
Best (good) performance requires computations to 
implement architecture-specific memory access patterns 
 CPUs (and Xeon Phi) 
 Core-data affinity: consistent NUMA access (first touch) 
 Array alignment for cache-lines and vector units 
 Hyperthreads’ cooperative use of L1 cache 

 GPUs 
 Thread-data affinity: coalesced access with cache-line alignment 
 Temporal locality and special hardware (texture cache) 

 Array of Structures (AoS) vs. Structure of Arrays (SoA) dilemma 
This has been the wrong concern 

The right question: Abstractions for Performance Portability? 
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Kokkos Performance Portability Answer 
Integrated mapping of thread parallel computations and 

multidimensional array data onto manycore spaces 
 Kokkos maps users’ parallel computations to threads 
 Standard parallel programming model pattern; e.g., parallel-for 
 Users implement C++ functions or lambdas for their parallel loop bodies 
 Kokkos calls user’s code from architecture’s “hardware” threads 

 Kokkos’ multidimensional array data structure has a twist 
 Layout mapping: multi-index (i,j,k,...) ↔ memory location 
 Kokkos chooses layout for architecture-specific memory access pattern 
 Layout changes are invisible to user code 
IF user code honors Kokkos’ simple array API: a(i,j,k,...) 

 Polymorphic multidimensional array layout 

 ... and utilizes special hardware invisibly to users’ code  
 GPU texture cache to speed up read-only random access patterns 
 Atomic operations for thread safety 
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Projects leveraging Kokkos for MPI+X 
Albany : a Trilinos-based finite element application code 
 Ice Sheet Modeling Computational Mechanics Quantum Device Design 

Atmosphere Dynamics 

Target Application for CAAR 
Proposal [Salinger et al.] 

Kokkos integration in progress 
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Projects leveraging Kokkos for MPI+X 
and points-of-contact for MPI+X transition effort 
 Trilinos / Tpetra : foundational data structures and kernels for sparse linear 

algebra; Mark Hoemmen, Christian Trott 
 Trilinos / Stokhos : accelerating embedded UQ ; Eric Phipps 
 LAMMPS : molecular dynamics; Christian Trott 
 ASCR Multiphysics MHD; Roger Pawlowski and Eric Cyr 
 FASTMath SciDAC / Graph Algorithms : Siva Rajamanickam 
 Zoltan / Graph Coloring : fast threaded graph coloring to identify independent 

sets of work for task parallelism; Erik Boman, Siva Rajamanickam 
 EMPRESS and miniPIC : particle-in-cell ; Matt Bettencourt 
 miniAero : CFD finite element mini-application ; Ken Franco 
 miniContact : contact detection for solid mechanics ; Glen Hansen 
 SHIFT @ ORNL; Steve Hamilton 
 Kokkos SNL/LDRD 
 Directed acyclic graph of internally data parallel (coarse-grain) tasks 
 sparse matrix factorization and graph algorithm mini-applications 
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Abstractions and  
Application Programmer Interface 
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Spaces, Policies, and Patterns 
 Execution Space : where functions execute 
 Encapsulates hardware resources; e.g., cores, GPU, vector units, ... 

 Memory Space : where data resides 
AND what execution space can access that data 
 Also differentiated by access performance; e.g., latency & bandwidth 

 Execution Policy : how (and where) a user function is executed 
 E.g., data parallel range : concurrently call function(i) for i = [0..N) 
 User’s function is a C++ functor or C++11 lambda 

 Pattern: parallel_for, parallel_reduce, parallel_scan, task, ... 

 Compose: pattern + execution policy + user function; e.g., 
parallel_for( Policy<Space>, Function); 

 Execute Function in Space according to parallel_for pattern and Policy 

 Extensible spaces, policies, and patterns (by expert developers) 
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Examples of Execution and Memory Spaces 

Compute Node 

Multicore 
Socket DDR 

Attached Accelerator 

GPU 
GDDR 

GPU::capacity 
(via pinned) 

primary 

primary 

GPU::perform 
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Compute Node 

Multicore 
Socket DDR 

primary 
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GPU 
GDDR primary 

perform shared 
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Multidimensional Array View API (simple) 
 View< double**[3][8] , Space > a(“a”,N,M); 
 Allocate array data in memory Space with dimensions [N][M][3][8] 
 Each * indicates a runtime supplied dimension 
 Proposing C++ standard adjustment to enable  View<double[ ][ ][3][8],Space> 

 Kokkos chooses array layout appropriate for “Space” 

 a(i,j,k,l) : User’s access to array data 
 Optional array bounds checking of indices in debug compile 
 “Space” accessibility enforced; e.g., GPU code cannot access CPU memory 

 View Semantics: View<double**[3][8],Space> b = a ; 
 A shallow copy: ‘a’ and ‘b’ are pointers to the same allocated array data 
 Reference counting how many Views to the same data 
 When reference count == 0 , automatically deallocates data 
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View API: Deep Copy and Host Mirror 
 deep_copy( destination_view , source_view ); 
 Copy array data of ‘source_view’ to array data of ‘destination_view’ 
 Kokkos policy: never hide an expensive deep copy operation 
 Only deep copy when explicitly instructed by the user 

 Avoid expensive permutation of data due to different layouts 
 Mirror the dimensions and layout in Host’s memory space 

typedef class View<...,Space> MyViewType ; 
MyViewType a(“a”,...);  
MyViewType::HostMirror a_h = create_mirror( a ); 
deep_copy( a , a_h ); deep_copy( a_h , a );  

 Avoid unnecessary deep-copy 
MyViewType::HostMirror a_h = create_mirror_view( a ); 

 If Space (might be an execution space) uses Host memory space 
then ‘a_h’ is simply a view of ‘a’ and deep_copy is a no-op 
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View API (advanced) 
 View<ArrayType,Layout,Space,Attributes> 
 ArrayType: scalar type, # runtime dimensions, compile-time dimensions 
 Layout: user can override Kokkos’ choice for layout 
 Attributes: user’s access intentions 

 Why manually specify Layout ? 
 Force compatibility with legacy code while incrementally porting 
 Optimize performance with exotic layout 

 View<double**,Tile<8,8>,Space> m(“matrix”,N,N); 
 Tiling layout hidden from user code  m(i,j) 

 A “plug in” extension point 

 Access intent attributes 
 Turn off reference counting to wrap an legacy code’s array 
 Indicate const and random access to utilize GPU texture cache 

 View< const double **, Cuda, RandomAccess> b = a ; 
 A “plug in” extension point 

 



14 

Subview : View of a sub-array 
B = subview( A , ...range_and_index_argument_list... ) 

 Challenging capability due to polymorphic array Layout 
 Views are strongly typed: View<ArrayType,Layout,Space,Traits> 
 Compatibility constraints on B’s type, A’s type, and argument list 
 runtime and compile-time dimensions 
 number and type (range or index) of calling arguments 
 array layout 
 ‘const-ness’ and other memory access traits 

 C++11 ‘auto’ capability simplifies use 
auto B = subview( A , ...range_and_index_argument_list... ); 

 Let implementation choose a compatible View type 
 Caution: View’s data may become non-contiguous 
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Parallel Execution API (simple with C++11) 
 AXPY example using C++11 lambda 

parallel_for( N , KOKKOS_LAMBDA( int i ) 
                        { y(i) = alpha * x(i) + y(i); } 
                      );   
 User functor via C++11 lambda expression  
 Default execution space and range policy i = [0..N) 
 Kokkos chooses which threads call function with each value of ‘i’ 

 DOT example using C++11 lambda 
parallel_reduce( N , KOKKOS_LAMBDA( int i , double & value ) 
                                { value += x(i) * y(i); } 
                              , result );   
 Kokkos manages thread-local temporaries 
 Kokkos manages scalable inter-thread reduction 
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Parallel Execution API 
parallel_pattern( Policy<Space> , Function ) 

 User Function: C++11 Lambda or C++ Functor 
 Use a functor with non-trivial function bodies 

struct UserAXPY { 
  double alpha ; View<double*,Space> x , y ; // “calling arguments” 
  KOKKOS_INLINE_FUNCTION 
  void operator()( int i ) const { y(i) = alpha * x(i) + y(i); } // function 
}; 

 Multi-function User Functor capability 
 When more than one function shares the same “calling arguments” 
 Migration to Kokkos: incrementally add parallel functions to existing classes 

 Execution Policy : flexibility & extensibility 
 RangePolicy : i = [0..N) 
 TeamPolicy : two-level parallelism with team collectives and shared memory 
 Portable access to Cuda thread grid, block, and shared memory 

 TaskPolicy : experimental using SNL’s Qthreads runtime 
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Atomic operations 
atomic_exchange, atomic_compare_exchange_strong, 
atomic_fetch_add, atomic_fetch_or, atomic_fetch_and 

 Thread-scalability of non-trivial algorithms and data structures 
 Essential for lock-free implementations 
 Concurrent summations to shared variables 
 E.g., finite element computations summing to shared nodes 

  Updating shared dynamic data structure 
 E.g., append to a shared array or insert into a shared map 

 Portably map to compiler/hardware specific capabilities 
 GNU and CUDA extensions when available 
 Current: any 32bit or 64bit type, may use CAS-loop implementation 
 Future: any data type via “sharded lock” pattern 

 ISO/C++ 2011 and 2014 standards not adequate for HPC 
 Proposal in for 2017 standard to address this gap 
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Performance Evaluation 



Evaluate Performance Impact of Array Layout 
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 Molecular dynamics computational kernel in miniMD 
 Simple Lennard Jones force model: 
 Atom neighbor list to avoid N2 computations 
 

 

 

 Test Problem 
 864k atoms, ~77 neighbors 
 2D neighbor array 
 Different layouts CPU vs GPU 
 Random read ‘pos’ through 

GPU texture cache  
 Large performance loss 

with wrong array layout 

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);  
for( jj = 0; jj < num_neighbors(i); jj++) { 
  j = neighbors(i,jj);  
  r_ij = pos_i – pos(j); //random read 3 floats 
  if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13) 
} 
f(i) = f_i; 
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Evaluate Performance Overhead of Abstraction 
Kokkos competitive with native programming models 

 MiniFE: finite element linear system iterative solver mini-app 

 Compare to versions specialized for programming models 

 Running on hardware testbeds 
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Kokkos’ Unordered Map (a.k.a. Hash Map) 
 Thread scalable fill 

 Lock-free implementation with minimal use of atomics 
 API deviates from C++11 unordered map 

 No on-the-fly allocation / reallocation 
 Index-based instead of iterator-based 

 Insert (fill) within a parallel reduce functor 
 Within the functor: {status, index} = map.insert(key,value); 

 Status = success | existing | failed due to insufficient capacity 
 Parallel reduce the failed-count to resize the map 

 Algorithmic use:  
UnorderedMap<Key,Value,Space> map ; 
do { 
    map.rehash( capacity ); 
    capacity += ( nfailed = parallel_reduce( N , functor ) );  
} while( nfailed ); // should iterate at most twice 
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Unordered Map Performance Evaluation 
 Parallel-for insert to 88% full with 16x redundant inserts 

 NW= number attempts to insert = Capacity * 88% * 16 
 Near – contiguous work indices [iw,iw+16) insert same keys 
 Far – strided work indices insert same keys 

 Single Accelerator Performance Tests 
 NVidia Kepler K40X, 12Gbytes 
 Intel Xeon Phi (Knights Corner) COES2, 61 cores, 1.2 GHz, 16Gbytes 
 Limit use to 60 cores, 4 hyperthreads/core 
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MiniFENL Proxy Application 
 Solve nonlinear finite element problem via Newton iteration 

 Focus on construction and fill of sparse linear system 
 Thread safe, thread scalable, and performant algorithms  
 Evaluate thread-parallel capabilities and programming models 

 Construct sparse linear system graph and coefficient arrays 
 Map finite element mesh connectivity to degree of freedom graph 
 Thread-scalable algorithm for graph construction 

 Compute nonlinear residual and Jacobian 
 Thread-parallel finite element residual and Jacobian 
 Atomic-add to fill element coefficients into linear system 

 Atomic-add for thread safety, performance? 

 Solve linear system for Newton iteration 
 



Thread-Scalable Fill of Sparse Linear System 

24 

 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏� 

 Fill sparse matrix via Scatter-Atomic-Add or Gather-Sum ? 
 Scatter-Atomic-Add 

+ Simpler 
+ Less memory 
– Slower HW atomic 

 Gather-Sum 
+ Bit-wise reproducibility 

 Performance win? 
 Scatter-atomic-add 
 ~equal Xeon PHI 
 40% faster Kepler GPU 

 Pattern chosen 
 Feedback to HW vendors: 

performant atomics 
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Thread-Scalable Sparse Matrix Construction 
 MiniFENL: Construct sparse matrix graph from FEM connectivity 
 Thread scalable algorithm for constructing a data structure 

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs 
2. Parallel-scan : sparse matrix rows’ column counts into row offsets 
3. Parallel-for : query unordered map to fill sparse matrix column-index array 
4. Parallel-for : sort rows’ column-index subarray 
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 Pattern and tools generally applicable to construction and 
dynamic modification of data structures  
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Porting in Progress: Trilinos Suite 
 Trilinos : SNL’s suite of equation solver libraries (and others) 
 Previously MPI-only parallel 
 Incremental refactoring to MPI+Kokkos parallel 

 Tpetra : Trilinos’ core parallel sparse linear algebra library 
 Vectors, multi-vectors, sparse matrices, parallel data distribution maps 
 Fundamental operations: axpy, dot, matrix-vector multiply, ... 
 Templated on “scalar” type: float, double, automatic differentiation (AD), 

embedded uncertainty quantification (UQ), ... 

 Port Tpetra to MPI+Kokkos, other libraries follow 
 On schedule to complete in Spring 2015 
 Use of NVIDIA’s unified virtual memory (UVM) expedited porting effort 

 Embedded UQ already Kokkos-enabled through SNL/LDRD 
 Greater computational intensity leads to significant speed-ups compared to 

non-embedded UQ sampling algorithms 
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Porting in Progress: LAMMPS 
 LAMMPS : molecular dynamics application 
 Fully MPI-only parallel with some (prototype) thread-parallel user packages 
 Architecture specific with redundantly implemented physics 

 Incrementally refactoring to MPI+Kokkos parallel 
 Goal: collapse redundantly implemented physics into “core” code base 

 MPI+Kokkos performing as well or better than thread-parallel user packages 
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Takeaways : MPI + Kokkos for hybrid parallel 
 Performance portability across diverse manycore architectures 
 Compose : pattern + policy + function + polymorphic array layout 
 to obtain architecture-appropriate memory access patterns 
 AoS versus SoA dilemma is a non-issue, with the right abstractions 
 Extensibility of patterns, policies, spaces, and array layout abstractions 

=> future proofing versus architectural evolution? 

 Negligible performance overhead versus native implementation 

 R&D now addressing more challenging algorithms 
 Dynamic data structures 
 Task-dag and hybrid task-data parallelism 
 Graph analytics algorithms 

 Transition of legacy codes in progress 

 Kokkos to be available via GitHub in FY15/Q3 
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