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Increasingly Complex Manycore Architectures 
¿ Performance Portable and Future Proof Codes? 

1 

PIM DDR 

L2* 

NVRAM 

PIM 

L1
* 

Te
x 

Scr 

L1
* 

Te
x 

Scr 

L1
* 

Te
x 

Scr 

NIC L3 

Memory Spaces 
  - Bulk non-volatile (Flash?) 
  - Standard DDR (DDR4) 
  - Fast memory (HBM/HMC) 
  - (Segmented) scratch-pad on die 
 
Execution Spaces 
  - Throughput cores (GPU) 
  - Latency optimized cores (CPU) 
  - Processing in memory  
 

Special Hardware 
  - Non caching loads 
  - Read only cache 
  - Atomics 

Programming 
models 
  - GPU: CUDA-ish 
  - CPU: OpenMP 
  - PIM: ?? 



Vision for Heterogeneous Parallelism 
 “MPI + X” Programming Model, separate concerns 
 Inter-node: MPI      and domain specific libraries layered on MPI 
 Intra-node: Kokkos and domain specific libraries layered on Kokkos 

 Intra-node parallelism concerns: heterogeneity & diversity 
 Execution spaces (CPU, GPU, PIM, ...) have diverse performance requirements 
 Memory spaces have diverse capabilities and performance characteristics 
 Vendors have diverse programming models for optimal utilization of their hardware 

 Standardized performance portable programming model? 
 Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17 
 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ... 
 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ... 

 Necessary condition: address execution & memory space diversity 
 SNL Computing Research Center’s Kokkos (C++ library) solution 
 Engagement with ISO C++ Standard committee to influence C++17 
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Application and Domain Specific Library Layer 
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Kokkos: A Layered Collection of C++ Libraries 
 Applications and Domain Libraries written in Standard C++ 
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ... 
 Require C++1998 standard (supported everywhere except IBM’s old xlC) 
 Prefer C++2011 for its concise lambda syntax 
 Vendors are catching up to C++2011 language compliance 

 
 
 
 
 
 

 Kokkos implemented with C++ template meta-programming 
 In spirit of TBB, Thrust & CUSP, C++AMP, ... 

Back-ends: Cuda, OpenMP, pthreads, vendor libraries ... 

Sparse Linear Algebra (Trilinos) 
Kokkos Containers 
Kokkos Core 
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Performance Portability Challenge: 
Best (good) performance requires computations to 
implement architecture-specific memory access patterns 
 CPUs (and Xeon Phi) 
 Core-data affinity: consistent NUMA access (first touch) 
 Array alignment for cache-lines and vector units 
 Hyperthreads’ cooperative use of L1 cache 

 GPUs 
 Thread-data affinity: coalesced access with cache-line alignment 
 Temporal locality and special hardware (texture cache) 

 Array of Structures (AoS) vs. Structure of Arrays (SoA) dilemma 
This has been the wrong concern 

The right question: Abstractions for Performance Portability? 
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Kokkos Performance Portability Answer 
Integrated mapping of thread parallel computations and 

multidimensional array data onto manycore spaces 
 Kokkos maps users’ parallel computations to threads 
 Standard parallel programming model pattern; e.g., parallel-for 
 Users implement C++ functions or lambdas for their parallel loop bodies 
 Kokkos calls user’s code from architecture’s “hardware” threads 

 Kokkos’ multidimensional array data structure has a twist 
 Layout mapping: multi-index (i,j,k,...) ↔ memory location 
 Kokkos chooses layout for architecture-specific memory access pattern 
 Layout changes are invisible to user code 
IF user code honors Kokkos’ simple array API: a(i,j,k,...) 

 Polymorphic multidimensional array layout 

 ... and utilizes special hardware invisibly to users’ code  
 GPU texture cache to speed up read-only random access patterns 
 Atomic operations for thread safety 
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Projects leveraging Kokkos for MPI+X 
Albany : a Trilinos-based finite element application code 
 Ice Sheet Modeling Computational Mechanics Quantum Device Design 

Atmosphere Dynamics 

Target Application for CAAR 
Proposal [Salinger et al.] 

Kokkos integration in progress 
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Projects leveraging Kokkos for MPI+X 
and points-of-contact for MPI+X transition effort 
 Trilinos / Tpetra : foundational data structures and kernels for sparse linear 

algebra; Mark Hoemmen, Christian Trott 
 Trilinos / Stokhos : accelerating embedded UQ ; Eric Phipps 
 LAMMPS : molecular dynamics; Christian Trott 
 ASCR Multiphysics MHD; Roger Pawlowski and Eric Cyr 
 FASTMath SciDAC / Graph Algorithms : Siva Rajamanickam 
 Zoltan / Graph Coloring : fast threaded graph coloring to identify independent 

sets of work for task parallelism; Erik Boman, Siva Rajamanickam 
 EMPRESS and miniPIC : particle-in-cell ; Matt Bettencourt 
 miniAero : CFD finite element mini-application ; Ken Franco 
 miniContact : contact detection for solid mechanics ; Glen Hansen 
 SHIFT @ ORNL; Steve Hamilton 
 Kokkos SNL/LDRD 
 Directed acyclic graph of internally data parallel (coarse-grain) tasks 
 sparse matrix factorization and graph algorithm mini-applications 
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Abstractions and  
Application Programmer Interface 
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Spaces, Policies, and Patterns 
 Execution Space : where functions execute 
 Encapsulates hardware resources; e.g., cores, GPU, vector units, ... 

 Memory Space : where data resides 
AND what execution space can access that data 
 Also differentiated by access performance; e.g., latency & bandwidth 

 Execution Policy : how (and where) a user function is executed 
 E.g., data parallel range : concurrently call function(i) for i = [0..N) 
 User’s function is a C++ functor or C++11 lambda 

 Pattern: parallel_for, parallel_reduce, parallel_scan, task, ... 

 Compose: pattern + execution policy + user function; e.g., 
parallel_for( Policy<Space>, Function); 

 Execute Function in Space according to parallel_for pattern and Policy 

 Extensible spaces, policies, and patterns (by expert developers) 
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Examples of Execution and Memory Spaces 

Compute Node 

Multicore 
Socket DDR 

Attached Accelerator 

GPU 
GDDR 

GPU::capacity 
(via pinned) 

primary 

primary 

GPU::perform 
(via UVM) 

Compute Node 

Multicore 
Socket DDR 

primary 
shared 

deep_copy 

Attached Accelerator 

GPU 
GDDR primary 

perform shared 
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Multidimensional Array View API (simple) 
 View< double**[3][8] , Space > a(“a”,N,M); 
 Allocate array data in memory Space with dimensions [N][M][3][8] 
 Each * indicates a runtime supplied dimension 
 Proposing C++ standard adjustment to enable  View<double[ ][ ][3][8],Space> 

 Kokkos chooses array layout appropriate for “Space” 

 a(i,j,k,l) : User’s access to array data 
 Optional array bounds checking of indices in debug compile 
 “Space” accessibility enforced; e.g., GPU code cannot access CPU memory 

 View Semantics: View<double**[3][8],Space> b = a ; 
 A shallow copy: ‘a’ and ‘b’ are pointers to the same allocated array data 
 Reference counting how many Views to the same data 
 When reference count == 0 , automatically deallocates data 
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View API: Deep Copy and Host Mirror 
 deep_copy( destination_view , source_view ); 
 Copy array data of ‘source_view’ to array data of ‘destination_view’ 
 Kokkos policy: never hide an expensive deep copy operation 
 Only deep copy when explicitly instructed by the user 

 Avoid expensive permutation of data due to different layouts 
 Mirror the dimensions and layout in Host’s memory space 

typedef class View<...,Space> MyViewType ; 
MyViewType a(“a”,...);  
MyViewType::HostMirror a_h = create_mirror( a ); 
deep_copy( a , a_h ); deep_copy( a_h , a );  

 Avoid unnecessary deep-copy 
MyViewType::HostMirror a_h = create_mirror_view( a ); 

 If Space (might be an execution space) uses Host memory space 
then ‘a_h’ is simply a view of ‘a’ and deep_copy is a no-op 
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View API (advanced) 
 View<ArrayType,Layout,Space,Attributes> 
 ArrayType: scalar type, # runtime dimensions, compile-time dimensions 
 Layout: user can override Kokkos’ choice for layout 
 Attributes: user’s access intentions 

 Why manually specify Layout ? 
 Force compatibility with legacy code while incrementally porting 
 Optimize performance with exotic layout 

 View<double**,Tile<8,8>,Space> m(“matrix”,N,N); 
 Tiling layout hidden from user code  m(i,j) 

 A “plug in” extension point 

 Access intent attributes 
 Turn off reference counting to wrap an legacy code’s array 
 Indicate const and random access to utilize GPU texture cache 

 View< const double **, Cuda, RandomAccess> b = a ; 
 A “plug in” extension point 
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Subview : View of a sub-array 
B = subview( A , ...range_and_index_argument_list... ) 

 Challenging capability due to polymorphic array Layout 
 Views are strongly typed: View<ArrayType,Layout,Space,Traits> 
 Compatibility constraints on B’s type, A’s type, and argument list 
 runtime and compile-time dimensions 
 number and type (range or index) of calling arguments 
 array layout 
 ‘const-ness’ and other memory access traits 

 C++11 ‘auto’ capability simplifies use 
auto B = subview( A , ...range_and_index_argument_list... ); 

 Let implementation choose a compatible View type 
 Caution: View’s data may become non-contiguous 
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Parallel Execution API (simple with C++11) 
 AXPY example using C++11 lambda 

parallel_for( N , KOKKOS_LAMBDA( int i ) 
                        { y(i) = alpha * x(i) + y(i); } 
                      );   
 User functor via C++11 lambda expression  
 Default execution space and range policy i = [0..N) 
 Kokkos chooses which threads call function with each value of ‘i’ 

 DOT example using C++11 lambda 
parallel_reduce( N , KOKKOS_LAMBDA( int i , double & value ) 
                                { value += x(i) * y(i); } 
                              , result );   
 Kokkos manages thread-local temporaries 
 Kokkos manages scalable inter-thread reduction 
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Parallel Execution API 
parallel_pattern( Policy<Space> , Function ) 

 User Function: C++11 Lambda or C++ Functor 
 Use a functor with non-trivial function bodies 

struct UserAXPY { 
  double alpha ; View<double*,Space> x , y ; // “calling arguments” 
  KOKKOS_INLINE_FUNCTION 
  void operator()( int i ) const { y(i) = alpha * x(i) + y(i); } // function 
}; 

 Multi-function User Functor capability 
 When more than one function shares the same “calling arguments” 
 Migration to Kokkos: incrementally add parallel functions to existing classes 

 Execution Policy : flexibility & extensibility 
 RangePolicy : i = [0..N) 
 TeamPolicy : two-level parallelism with team collectives and shared memory 
 Portable access to Cuda thread grid, block, and shared memory 

 TaskPolicy : experimental using SNL’s Qthreads runtime 
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Atomic operations 
atomic_exchange, atomic_compare_exchange_strong, 
atomic_fetch_add, atomic_fetch_or, atomic_fetch_and 

 Thread-scalability of non-trivial algorithms and data structures 
 Essential for lock-free implementations 
 Concurrent summations to shared variables 
 E.g., finite element computations summing to shared nodes 

  Updating shared dynamic data structure 
 E.g., append to a shared array or insert into a shared map 

 Portably map to compiler/hardware specific capabilities 
 GNU and CUDA extensions when available 
 Current: any 32bit or 64bit type, may use CAS-loop implementation 
 Future: any data type via “sharded lock” pattern 

 ISO/C++ 2011 and 2014 standards not adequate for HPC 
 Proposal in for 2017 standard to address this gap 
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Performance Evaluation 



Evaluate Performance Impact of Array Layout 
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 Molecular dynamics computational kernel in miniMD 
 Simple Lennard Jones force model: 
 Atom neighbor list to avoid N2 computations 
 

 

 

 Test Problem 
 864k atoms, ~77 neighbors 
 2D neighbor array 
 Different layouts CPU vs GPU 
 Random read ‘pos’ through 

GPU texture cache  
 Large performance loss 

with wrong array layout 

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);  
for( jj = 0; jj < num_neighbors(i); jj++) { 
  j = neighbors(i,jj);  
  r_ij = pos_i – pos(j); //random read 3 floats 
  if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13) 
} 
f(i) = f_i; 
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Evaluate Performance Overhead of Abstraction 
Kokkos competitive with native programming models 

 MiniFE: finite element linear system iterative solver mini-app 

 Compare to versions specialized for programming models 

 Running on hardware testbeds 
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Kokkos’ Unordered Map (a.k.a. Hash Map) 
 Thread scalable fill 

 Lock-free implementation with minimal use of atomics 
 API deviates from C++11 unordered map 

 No on-the-fly allocation / reallocation 
 Index-based instead of iterator-based 

 Insert (fill) within a parallel reduce functor 
 Within the functor: {status, index} = map.insert(key,value); 

 Status = success | existing | failed due to insufficient capacity 
 Parallel reduce the failed-count to resize the map 

 Algorithmic use:  
UnorderedMap<Key,Value,Space> map ; 
do { 
    map.rehash( capacity ); 
    capacity += ( nfailed = parallel_reduce( N , functor ) );  
} while( nfailed ); // should iterate at most twice 
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Unordered Map Performance Evaluation 
 Parallel-for insert to 88% full with 16x redundant inserts 

 NW= number attempts to insert = Capacity * 88% * 16 
 Near – contiguous work indices [iw,iw+16) insert same keys 
 Far – strided work indices insert same keys 

 Single Accelerator Performance Tests 
 NVidia Kepler K40X, 12Gbytes 
 Intel Xeon Phi (Knights Corner) COES2, 61 cores, 1.2 GHz, 16Gbytes 
 Limit use to 60 cores, 4 hyperthreads/core 
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MiniFENL Proxy Application 
 Solve nonlinear finite element problem via Newton iteration 

 Focus on construction and fill of sparse linear system 
 Thread safe, thread scalable, and performant algorithms  
 Evaluate thread-parallel capabilities and programming models 

 Construct sparse linear system graph and coefficient arrays 
 Map finite element mesh connectivity to degree of freedom graph 
 Thread-scalable algorithm for graph construction 

 Compute nonlinear residual and Jacobian 
 Thread-parallel finite element residual and Jacobian 
 Atomic-add to fill element coefficients into linear system 

 Atomic-add for thread safety, performance? 

 Solve linear system for Newton iteration 
 



Thread-Scalable Fill of Sparse Linear System 

24 

 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏� 

 Fill sparse matrix via Scatter-Atomic-Add or Gather-Sum ? 
 Scatter-Atomic-Add 

+ Simpler 
+ Less memory 
– Slower HW atomic 

 Gather-Sum 
+ Bit-wise reproducibility 

 Performance win? 
 Scatter-atomic-add 
 ~equal Xeon PHI 
 40% faster Kepler GPU 

 Pattern chosen 
 Feedback to HW vendors: 

performant atomics 
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Thread-Scalable Sparse Matrix Construction 
 MiniFENL: Construct sparse matrix graph from FEM connectivity 
 Thread scalable algorithm for constructing a data structure 

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs 
2. Parallel-scan : sparse matrix rows’ column counts into row offsets 
3. Parallel-for : query unordered map to fill sparse matrix column-index array 
4. Parallel-for : sort rows’ column-index subarray 
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 Pattern and tools generally applicable to construction and 
dynamic modification of data structures  
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Porting in Progress: Trilinos Suite 
 Trilinos : SNL’s suite of equation solver libraries (and others) 
 Previously MPI-only parallel 
 Incremental refactoring to MPI+Kokkos parallel 

 Tpetra : Trilinos’ core parallel sparse linear algebra library 
 Vectors, multi-vectors, sparse matrices, parallel data distribution maps 
 Fundamental operations: axpy, dot, matrix-vector multiply, ... 
 Templated on “scalar” type: float, double, automatic differentiation (AD), 

embedded uncertainty quantification (UQ), ... 

 Port Tpetra to MPI+Kokkos, other libraries follow 
 On schedule to complete in Spring 2015 
 Use of NVIDIA’s unified virtual memory (UVM) expedited porting effort 

 Embedded UQ already Kokkos-enabled through SNL/LDRD 
 Greater computational intensity leads to significant speed-ups compared to 

non-embedded UQ sampling algorithms 
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Porting in Progress: LAMMPS 
 LAMMPS : molecular dynamics application 
 Fully MPI-only parallel with some (prototype) thread-parallel user packages 
 Architecture specific with redundantly implemented physics 

 Incrementally refactoring to MPI+Kokkos parallel 
 Goal: collapse redundantly implemented physics into “core” code base 

 MPI+Kokkos performing as well or better than thread-parallel user packages 
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Takeaways : MPI + Kokkos for hybrid parallel 
 Performance portability across diverse manycore architectures 
 Compose : pattern + policy + function + polymorphic array layout 
 to obtain architecture-appropriate memory access patterns 
 AoS versus SoA dilemma is a non-issue, with the right abstractions 
 Extensibility of patterns, policies, spaces, and array layout abstractions 

=> future proofing versus architectural evolution? 

 Negligible performance overhead versus native implementation 

 R&D now addressing more challenging algorithms 
 Dynamic data structures 
 Task-dag and hybrid task-data parallelism 
 Graph analytics algorithms 

 Transition of legacy codes in progress 

 Kokkos to be available via GitHub in FY15/Q3 
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