Sandia
National
Laboratories

Exceptional
service

in the

national

interest

Kokkos:

Enabling Performance Portability
of C++ Applications and Libraries
across Manycore Architectures

ORNL / January 29, 2015

SAND2015-0409 O (Unlimited Release)

LAty
Fuly U.5. DEPARTMENT OF i '_" ‘\Qa‘
-] o
O, ENERGY VIS4
SandiaN nal Labor es is a multi-progra Ib tory managed and operated by Sandia Corj pora
Corpor f the US D epartment of Energy’s National Nuclear Security Administration under col

wholly owned subsidiary of Lockheed Mart
DE AC04-94AL85000. SAND NO. 2011- xxxxp

Sandia

Increasingly Complex Manycore Architectures 1V .
¢ Performance Portable and Future Proof Codes?

Special Hardware
- Non caching loads
- Read only cache
- Atomics

Programming
models

- GPU: CUDA-ish
- CPU: OpenMP
- PIM: ??

Memory Spaces
- Bulk non-volatile (Flash?)
- Standard DDR (DDR4)
- Fast memory (HBM/HMC)
- (Segmented) scratch-pad on die

Execution Spaces
- Throughput cores (GPU)
- Latency optimized cores (CPU)
- Processing in memory

L3

Vision for Heterogeneous Parallelism) e,

= “MPI + X” Programming Model, separate concerns
" Inter-node: MPI and domain specific libraries layered on MPI
= Intra-node: Kokkos and domain specific libraries layered on Kokkos
" Intra-node parallelism concerns: heterogeneity & diversity
= Execution spaces (CPU, GPU, PIM, ...) have diverse performance requirements
= Memory spaces have diverse capabilities and performance characteristics
= Vendors have diverse programming models for optimal utilization of their hardware
= Standardized performance portable programming model?
= Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17
= Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ...
= Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ...
= Necessary condition: address execution & memory space diversity
= SNL Computing Research Center’s Kokkos (C++ library) solution
= Engagement with ISO C++ Standard committee to influence C++17

Sandia

Kokkos: A Layered Collection of C++ Libraries () .

= Applications and Domain Libraries written in Standard C++
= Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...
= Require C++1998 standard (supported everywhere except IBM’s old xIC)
= Prefer C++2011 for its concise lambda syntax
Vendors are catching up to C++2011 language compliance

Application and Domain Specific Library Layer

Sparse Linear Algebra (Trilinos)

Kokkos Containers

Kokkos Core

Back-ends: Cuda, OpenMP, pthreads, vendor libraries ...

= Kokkos implemented with C++ template meta-programming
= |n spirit of TBB, Thrust & CUSP, C++AMP, ...

Performance Portability Challenge: i) deom
Best (good) performance requires computations to
implement architecture-specific memory access patterns

= CPUs (and Xeon Phi)

= Core-data affinity: consistent NUMA access (first touch)
= Array alignment for cache-lines and vector units

= Hyperthreads’ cooperative use of L1 cache

= GPUs

= Thread-data affinity: coalesced access with cache-line alignment
= Temporal locality and special hardware (texture cache)

= Array of Structures (AoS) vs. Structure of Arrays (SoA) dilemma
» This has been the wrong concern

The right question: Abstractions for Performance Portability?

Kokkos Performance Portability Answer) i

Laboratories

Integrated mapping of thread parallel computations and
multidimensional array data onto manycore spaces

= Kokkos maps users’ parallel computations to threads
= Standard parallel programming model pattern; e.g., parallel-for
= Users implement C++ functions or lambdas for their parallel loop bodies
= Kokkos calls user’s code from architecture’s “hardware” threads

= Kokkos’ multidimensional array data structure has a twist
* Layout mapping: multi-index (i,j,k,...) <> memory location
= Kokkos chooses layout for architecture-specific memory access pattern
= Layout changes are invisible to user code
» IF user code honors Kokkos’ simple array API: a(i,j,k,...)
= Polymorphic multidimensional array layout

= ...and utilizes special hardware invisibly to users’ code
= GPU texture cache to speed up read-only random access patterns
= Atomic operations for thread safety

Sandia

Projects leveraging Kokkos for MPI+X)

Albany : a Trilinos-based finite element application code

Ice Sheet Modeling Quantum Device Design Computational Mechanics

disp_ Mag
0.000146 E
"85
3 4
lul mfyr 3
1000 faé

'NL h

0.1
L%}

i |] ~=NVIDIA GPU (K20)

rh. | F 2 g 001 _

2E E E ==Intel Phi
‘ “=Intel Sandy Bridge
/ 0.001 ==Initial code (1 core)

Target Application for CAAR
10 100 1000 10000

Proposal [Salinger et al.]

Projects leveraging Kokkos for MPI+X)
and points-of-contact for MPI+X transition effort

» Trilinos / Tpetra : foundational data structures and kernels for sparse linear
algebra; Mark Hoemmen, Christian Trott

= Trilinos / Stokhos : accelerating embedded UQ_; Eric Phipps
= LAMMPS : molecular dynamics; Christian Trott

= ASCR Multiphysics MHD; Roger Pawlowski and Eric Cyr

= FASTMath SciDAC / Graph Algorithms : Siva Rajamanickam

= Zoltan / Graph Coloring : fast threaded graph coloring to identify independent
sets of work for task parallelism; Erik Boman, Siva Rajamanickam

= EMPRESS and miniPIC : particle-in-cell ; Matt Bettencourt

= miniAero : CFD finite element mini-application ; Ken Franco

= miniContact : contact detection for solid mechanics ; Glen Hansen

= SHIFT @ ORNL; Steve Hamilton

= Kokkos SNL/LDRD
= Directed acyclic graph of internally data parallel (coarse-grain) tasks
= gparse matrix factorization and graph algorithm mini-applications

Sandia
m National
Laboratories

Abstractions and
Application Programmer Interface

Spaces, Policies, and Patterns) e,

Laboratories

= Execution Space : where functions execute
= Encapsulates hardware resources; e.g., cores, GPU, vector units, ...

= Memory Space : where data resides
» AND what execution space can access that data
= Also differentiated by access performance; e.g., latency & bandwidth

= Execution Policy : how (and where) a user function is executed
= E.g., data parallel range : concurrently call function(i) for i = [0..N)
= User’s function is a C++ functor or C++11 lambda

= Pattern: parallel_for, parallel_reduce, parallel_scan, task, ...

= Compose: pattern + execution policy + user function; e.g.,
parallel for(Policy<Space>, Function);
= Execute Function in Space according to parallel_for pattern and Policy
= Extensible spaces, policies, and patterns (by expert developers)

Examples of Execution and Memory Spaces) e,

Compute Node

Multicore | primary

Socket .

Laboratories

Attached Accelerator
GPU _
DDR Erlmarz .
shared GDDR
deep_copy

Compute Node /

Multicore | primary

Socket g

DDR

GPU::capacit

<

A

(via pinned)

Attached Acch

GPU

shared

Erlmarx » GDDR

perform

—

GPU::perform
(via UVM)

Multidimensional Array View API (simple) ()&
" View< double**[3][8], Space > a(“a”,N,M);

= Allocate array data in memory Space with dimensions [N][M][3][8]
= Each * indicates a runtime supplied dimension

" Proposing C++ standard adjustment to enable View<double[][1[3][8],Space>
= Kokkos chooses array layout appropriate for “Space”

= a(i,j,k,1) : User’s access to array data

= QOptional array bounds checking of indices in debug compile
= “Space” accessibility enforced; e.g., GPU code cannot access CPU memory

= View Semantics: View<double**[3][8],Space>b =a;
= Ashallow copy: ‘a’ and ‘b’ are pointers to the same allocated array data
= Reference counting how many Views to the same data

= When reference count == 0, automatically deallocates data

View API: Deep Copy and Host Mirror) o

Laboratories

= deep_copy(destination_view, source_view);
= Copy array data of ‘source_view’ to array data of ‘destination_view’
= Kokkos policy: never hide an expensive deep copy operation
= Only deep copy when explicitly instructed by the user

= Avoid expensive permutation of data due to different layouts

= Mirror the dimensions and layout in Host’s memory space
typedef class View<...,Space> MyViewType ;
MyViewType a(“a”,...);
MyViewType::HostMirror a_h = create_mirror(a);
deep_copy(a,a_h); deep _copy(a_h,a);

= Avoid unnecessary deep-copy
MyViewType::HostMirror a_h = create_mirror_view(a);
= |f Space (might be an execution space) uses Host memory space
then ‘a_h’ is simply a view of ‘a’ and deep_copy is a no-op

View API (advanced)) s,

Laboratories

= View<ArrayType,Layout,Space,Attributes>
= ArrayType: scalar type, # runtime dimensions, compile-time dimensions
= Layout: user can override Kokkos’ choice for layout
= Attributes: user’s access intentions

* Why manually specify Layout ?
= Force compatibility with legacy code while incrementally porting
= Optimize performance with exotic layout

" View<double**,Tile<8,8>,Space> m(“matrix”,N,N);
* Tiling layout hidden from user code m(i,j)

= A “plugin” extension point

= Access intent attributes

= Turn off reference counting to wrap an legacy code’s array

= |ndicate const and random access to utilize GPU texture cache
= View< const double **, Cuda, RandomAccess>b =a;

= A “plugin” extension point

Subview : View of a sub-array) e,

Laboratories

B = subview(A, ...range_and_index_argument list...)
= Challenging capability due to polymorphic array Layout
= Views are strongly typed: View<ArrayType,Layout,Space,Traits>

= Compatibility constraints on B’s type, A’s type, and argument list
= runtime and compile-time dimensions
= number and type (range or index) of calling arguments
= array layout
= ‘const-ness’ and other memory access traits

= C++11 ‘auto’ capability simplifies use
auto B = subview(A, ...range_and_index_argument list...);
= Let implementation choose a compatible View type

= Caution: View’s data may become non-contiguous

Parallel Execution API (simple with C++11)

= AXPY example using C++11 lambda
parallel_for(N, KOKKOS_LAMBDA(inti)

{ y(i) = alpha * x(i) + y(i); }

);

= User functor via C++11 lambda expression
= Default execution space and range policy i = [0..N)

= Kokkos chooses which threads call function with each value of ‘i’

= DOT example using C++11 lambda
parallel_reduce(N, KOKKOS LAMBDA(int i, double & value)
{ value += x(i) * y(i); }
, result);
= Kokkos manages thread-local temporaries

= Kokkos manages scalable inter-thread reduction

Sandia
National
Laboratories

Parallel Execution API)
parallel_pattern(Policy<Space>, Function)

= User Function: C++11 Lambda or C++ Functor
= Use a functor with non-trivial function bodies
struct UserAXPY {
double alpha ; View<double*,Space> x, y ; // “calling arguments”
KOKKOS_INLINE_FUNCTION
void operator()(inti) const { y(i) = alpha * x(i) + y(i); } // function
b
= Multi-function User Functor capability
= When more than one function shares the same “calling arguments”

= Migration to Kokkos: incrementally add parallel functions to existing classes
= Execution Policy : flexibility & extensibility
= RangePolicy :i=[0..N)
= TeamPolicy : two-level parallelism with team collectives and shared memory
= Portable access to Cuda thread grid, block, and shared memory
= TaskPolicy : experimental using SNL’s Qthreads runtime

Atomic operations) e,

Laboratories

atomic_exchange, atomic_compare_exchange_strong,
atomic_fetch_add, atomic_fetch_or, atomic_fetch_and

* Thread-scalability of non-trivial algorithms and data structures
= Essential for lock-free implementations
= Concurrent summations to shared variables
= E.g., finite element computations summing to shared nodes
= Updating shared dynamic data structure
= E.g., append to a shared array or insert into a shared map

= Portably map to compiler/hardware specific capabilities
= GNU and CUDA extensions when available
= Current: any 32bit or 64bit type, may use CAS-loop implementation
= Future: any data type via “sharded lock” pattern

= |SO/C++ 2011 and 2014 standards not adequate for HPC
= Proposal in for 2017 standard to address this gap

Sandia
m National
Laboratories

Performance Evaluation

Evaluate Performance Impact of Array Layout (i) &
« Molecular dynamics computational kernel in miniMD

Simple Lennard Jones force model: F.= 63[() 2(]
Atom neighbor list to avoid N2 computations "= ! !

pos_ 1 = pos();
for(jjJ = 0; 33 < num_neighbors(i); jj++) {
J = nelghbors(l .J1);
r iJ = pos_1 — pos(j); //random read 3 floats
1T (Jr_ij| < r_cut) .1 += 6*e*((s/r_apH)N7 — 2*(s/r_ij)"13)
+
(i) = f_1i;

Test Problem
o 864k atoms, ~77 neighbors

o 2D neighbor array 150 m correct layout
(with texture)

200

. Different layouts CPU vs GPU |3
« Random read ‘pos’ through 2100 # correct layout
(G] (without texture)
GPU texture cache 50

wrong layout

Large performance loss _— - . (with texture)
with wrong array layout

Xeon Xeon Phi K20x

Evaluate Performance Overhead of Abstraction ()

Laboratories

Kokkos competitive with native programming models

= MiniFE: finite element linear system iterative solver mini-app

= Compare to versions specialized for programming models

= Running on hardware testbeds

Time (seconds)

» MiniFE CG-Solve time for 200 iterations on 200*3 mesh
20
16
12

8

.

0

K20X IvyBridge SandyBridge XeonPhi BO XeonPhi CO IBM Power7+
NVIDIA ELL u NVIDIA CuSparse m Kokkos m OpenMP
m MPI-Only # OpenCL = TBB ¥ Cilk+(1 Socket)

Kokkos’ Unordered Map (a.k.a. Hash Map) (i),
= Thread scalable fill

= Lock-free implementation with minimal use of atomics

= API deviates from C++11 unordered map
> No on-the-fly allocation / reallocation
» Index-based instead of iterator-based

= |nsert (fill) within a parallel reduce functor
= Within the functor: {status, index} = map.insert(key,value);
= Status = success | existing | failed due to insufficient capacity
= Parallel reduce the failed-count to resize the map

= Algorithmic use:
UnorderedMap<Key,Value,Space> map ;
do {
map.rehash(capacity);
capacity += (nfailed = parallel_reduce(N, functor));
} while(nfailed); // should iterate at most twice

Sandia

Unordered Map Performance Evaluation rh)

= Parallel-for insert to 88% full with 16x redundant inserts
= NW-= number attempts to insert = Capacity * 88% * 16
= Near - contiguous work indices [iw,iw+16) insert same keys
= Far - strided work indices insert same keys

= Single Accelerator Performance Tests
= NVidia Kepler K40X, 12Gbytes
= Intel Xeon Phi (Knights Corner) COES2, 61 cores, 1.2 GHz, 16Gbytes
= Limit use to 60 cores, 4 hyperthreads/core

N
o

= K40X dramatically better
——Phi-240, far performance

|
\

=+=Phi-240, near | = Xeon Phi implementation
optimized using explicit

nanosec / attempted
insert
=
o

== K40X, far
5 Ardr—r—ir—tr—tr—t—h non-caching prefetch
=#=K40X, near
0 A—i—iei—t—t—i—i " Theory: due to cache
1E+04 1E+05 1E+06 1E+07 coherency protocols and
map capacity atomics’ performance

MiniFENL Proxy Application) S,

= Solve nonlinear finite element problem via Newton iteration
= Focus on construction and fill of sparse linear system
= Thread safe, thread scalable, and performant algorithms
= Evaluate thread-parallel capabilities and programming models
= Construct sparse linear system graph and coefficient arrays
= Map finite element mesh connectivity to degree of freedom graph
= Thread-scalable algorithm for graph construction

= Compute nonlinear residual and Jacobian
= Thread-parallel finite element residual and Jacobian

= Atomic-add to fill element coefficients into linear system
= Atomic-add for thread safety, performance?

= Solve linear system for Newton iteration

Thread-Scalable Fill of Sparse Linear System

Sandia
National
Laboratories

h

= MiniFENL: Newton iteration of FEM: x,,,; = x,, — J 1(x,)r(x,,)

Scatter-Atomic-Add

+ Simpler

+ Less memory

— Slower HW atomic
Gather-Sum

+ Bit-wise reproducibility
Performance win?

= Scatter-atomic-add

= ~equal Xeon PHI
= 40% faster Kepler GPU
v' Pattern chosen
= Feedback to HW vendors:
performant atomics

Scatter-Atomic-Add

.

" Element \ | f

| Computations |
& Scatter-Add
atomic-add

4 Finite Element Data

Fill sparse matrix via Scatter-Atomic-Add or Gather-Sum ?

ra

Mapping:

" Mesh -» Sparse Graph)

-~ Element

Na \
Computations

Gather-Sum

Per-Element

\ Sparse Linear System

Coefficients

\Scratch Arrays

0.35

0.25

0.3 ‘W
N

0.2
0.15

R acririeiviried

0.05
0

Matrix Fill: microsec/node

1E+03 1E+04
Number of

1E+05 1E+06 1E+07
finite element nodes

===Phi-60 GatherSum
=#=Phi-60 ScatterAtomic
==Phi-240 GatherSum
=4=Phi-240 ScatterAtomic
==K40X GatherSum
=d=K40X ScatterAtomic

Thread-Scalable Sparse Matrix Construction (i) &

Laboratories

MiniFENL: Construct sparse matrix graph from FEM connectivity
= Thread scalable algorithm for constructing a data structure

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs
2. Parallel-scan : sparse matrix rows’ column counts into row offsets
3. Parallel-for : query unordered map to fill sparse matrix column-index array
4. Parallel-for : sort rows’ column-index subarray

0 2

k

9 1.5

b .

o 1 =#-Phi-60

g 0.5 =4=Phi-240

2, | —4-KA0X

1E+03 1E+04 1E+05 1E+06 1E+07
Number of finite element nodes

= Pattern and tools generally applicable to construction and
dynamic modification of data structures

Porting in Progress: Trilinos Suite) i

Laboratories

= Trilinos : SNL’s suite of equation solver libraries (and others)
= Previously MPI-only parallel
* Incremental refactoring to MPI+Kokkos parallel

= Tpetra : Trilinos’ core parallel sparse linear algebra library
= Vectors, multi-vectors, sparse matrices, parallel data distribution maps
* Fundamental operations: axpy, dot, matrix-vector multiply, ...
= Templated on “scalar” type: float, double, automatic differentiation (AD),
embedded uncertainty quantification (UQ), ...
= Port Tpetra to MPI+Kokkos, other libraries follow
= On schedule to complete in Spring 2015
= Use of NVIDIA’s unified virtual memory (UVM) expedited porting effort

* Embedded UQ already Kokkos-enabled through SNL/LDRD

= Greater computational intensity leads to significant speed-ups compared to
non-embedded UQ sampling algorithms

Porting in Progress: LAMMPS) i,

Laboratories

= LAMMPS : molecular dynamics application

= Fully MPI-only parallel with some (prototype) thread-parallel user packages
= Architecture specific with redundantly implemented physics

= Incrementally refactoring to MPI+Kokkos parallel
= Goal: collapse redundantly implemented physics into “core” code base

= MPI+Kokkos performing as well or better than thread-parallel user packages

LAMMPS Strongscaling

IM atoms; Standard Lennard Jones

| I I T I I

Xeon - Kokkos
Xeon - OpenMP =
Xeon Phi - Kokkos 3
Xeon Phi - OpenMP
Kepler - Kokkos
Kepler - Cuda

—
o
=
=]

T

N EmEn

Aggregate Compute Time
2

Takeaways : MPI + Kokkos for hybrid parallel ().

= Performance portability across diverse manycore architectures
= Compose : pattern + policy + function + polymorphic array layout
= to obtain architecture-appropriate memory access patterns
= AoS versus SoA dilemma is a non-issue, with the right abstractions
= Extensibility of patterns, policies, spaces, and array layout abstractions
=> future proofing versus architectural evolution?

= Negligible performance overhead versus native implementation

= R&D now addressing more challenging algorithms
= Dynamic data structures
= Task-dag and hybrid task-data parallelism
= Graph analytics algorithms

= Transition of legacy codes in progress

= Kokkos to be available via GitHub in FY15/Q3

	Kokkos:�Enabling Performance Portability of C++ Applications and Libraries�across Manycore Architectures
	Increasingly Complex Manycore Architectures�¿ Performance Portable and Future Proof Codes?
	Vision for Heterogeneous Parallelism
	Kokkos: A Layered Collection of C++ Libraries
	Performance Portability Challenge:�Best (good) performance requires computations to implement architecture-specific memory access patterns
	Kokkos Performance Portability Answer
	Projects leveraging Kokkos for MPI+X
	Projects leveraging Kokkos for MPI+X�and points-of-contact for MPI+X transition effort
	Abstractions and �Application Programmer Interface
	Spaces, Policies, and Patterns
	Examples of Execution and Memory Spaces
	Multidimensional Array View API (simple)
	View API: Deep Copy and Host Mirror
	View API (advanced)
	Subview : View of a sub-array
	Parallel Execution API (simple with C++11)
	Parallel Execution API
	Atomic operations
	Performance Evaluation
	Evaluate Performance Impact of Array Layout
	Evaluate Performance Overhead of Abstraction�Kokkos competitive with native programming models
	Kokkos’ Unordered Map (a.k.a. Hash Map)
	Unordered Map Performance Evaluation
	MiniFENL Proxy Application
	Thread-Scalable Fill of Sparse Linear System
	Thread-Scalable Sparse Matrix Construction
	Porting in Progress: Trilinos Suite
	Porting in Progress: LAMMPS
	Takeaways : MPI + Kokkos for hybrid parallel

