
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Kokkos:
Enabling Performance Portability
of C++ Applications and Libraries
across Manycore Architectures

ORNL / January 29, 2015

SAND2015-0409 O (Unlimited Release)

Increasingly Complex Manycore Architectures
¿ Performance Portable and Future Proof Codes?

1

PIM DDR

L2*

NVRAM

PIM

L1
*

Te
x

Scr

L1
*

Te
x

Scr

L1
*

Te
x

Scr

NIC L3

Memory Spaces
 - Bulk non-volatile (Flash?)
 - Standard DDR (DDR4)
 - Fast memory (HBM/HMC)
 - (Segmented) scratch-pad on die

Execution Spaces
 - Throughput cores (GPU)
 - Latency optimized cores (CPU)
 - Processing in memory

Special Hardware
 - Non caching loads
 - Read only cache
 - Atomics

Programming
models
 - GPU: CUDA-ish
 - CPU: OpenMP
 - PIM: ??

Vision for Heterogeneous Parallelism
 “MPI + X” Programming Model, separate concerns
 Inter-node: MPI and domain specific libraries layered on MPI
 Intra-node: Kokkos and domain specific libraries layered on Kokkos

 Intra-node parallelism concerns: heterogeneity & diversity
 Execution spaces (CPU, GPU, PIM, ...) have diverse performance requirements
 Memory spaces have diverse capabilities and performance characteristics
 Vendors have diverse programming models for optimal utilization of their hardware

 Standardized performance portable programming model?
 Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17
 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ...
 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ...

 Necessary condition: address execution & memory space diversity
 SNL Computing Research Center’s Kokkos (C++ library) solution
 Engagement with ISO C++ Standard committee to influence C++17

2

Application and Domain Specific Library Layer

3

Kokkos: A Layered Collection of C++ Libraries
 Applications and Domain Libraries written in Standard C++
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...
 Require C++1998 standard (supported everywhere except IBM’s old xlC)
 Prefer C++2011 for its concise lambda syntax
 Vendors are catching up to C++2011 language compliance

 Kokkos implemented with C++ template meta-programming
 In spirit of TBB, Thrust & CUSP, C++AMP, ...

Back-ends: Cuda, OpenMP, pthreads, vendor libraries ...

Sparse Linear Algebra (Trilinos)
Kokkos Containers
Kokkos Core

4

Performance Portability Challenge:
Best (good) performance requires computations to
implement architecture-specific memory access patterns
 CPUs (and Xeon Phi)
 Core-data affinity: consistent NUMA access (first touch)
 Array alignment for cache-lines and vector units
 Hyperthreads’ cooperative use of L1 cache

 GPUs
 Thread-data affinity: coalesced access with cache-line alignment
 Temporal locality and special hardware (texture cache)

 Array of Structures (AoS) vs. Structure of Arrays (SoA) dilemma
This has been the wrong concern

The right question: Abstractions for Performance Portability?

5

Kokkos Performance Portability Answer
Integrated mapping of thread parallel computations and

multidimensional array data onto manycore spaces
 Kokkos maps users’ parallel computations to threads
 Standard parallel programming model pattern; e.g., parallel-for
 Users implement C++ functions or lambdas for their parallel loop bodies
 Kokkos calls user’s code from architecture’s “hardware” threads

 Kokkos’ multidimensional array data structure has a twist
 Layout mapping: multi-index (i,j,k,...) ↔ memory location
 Kokkos chooses layout for architecture-specific memory access pattern
 Layout changes are invisible to user code
IF user code honors Kokkos’ simple array API: a(i,j,k,...)

 Polymorphic multidimensional array layout

 ... and utilizes special hardware invisibly to users’ code
 GPU texture cache to speed up read-only random access patterns
 Atomic operations for thread safety

6

Projects leveraging Kokkos for MPI+X
Albany : a Trilinos-based finite element application code
 Ice Sheet Modeling Computational Mechanics Quantum Device Design

Atmosphere Dynamics

Target Application for CAAR
Proposal [Salinger et al.]

Kokkos integration in progress

7

Projects leveraging Kokkos for MPI+X
and points-of-contact for MPI+X transition effort
 Trilinos / Tpetra : foundational data structures and kernels for sparse linear

algebra; Mark Hoemmen, Christian Trott
 Trilinos / Stokhos : accelerating embedded UQ ; Eric Phipps
 LAMMPS : molecular dynamics; Christian Trott
 ASCR Multiphysics MHD; Roger Pawlowski and Eric Cyr
 FASTMath SciDAC / Graph Algorithms : Siva Rajamanickam
 Zoltan / Graph Coloring : fast threaded graph coloring to identify independent

sets of work for task parallelism; Erik Boman, Siva Rajamanickam
 EMPRESS and miniPIC : particle-in-cell ; Matt Bettencourt
 miniAero : CFD finite element mini-application ; Ken Franco
 miniContact : contact detection for solid mechanics ; Glen Hansen
 SHIFT @ ORNL; Steve Hamilton
 Kokkos SNL/LDRD
 Directed acyclic graph of internally data parallel (coarse-grain) tasks
 sparse matrix factorization and graph algorithm mini-applications

8

Abstractions and
Application Programmer Interface

9

Spaces, Policies, and Patterns
 Execution Space : where functions execute
 Encapsulates hardware resources; e.g., cores, GPU, vector units, ...

 Memory Space : where data resides
AND what execution space can access that data
 Also differentiated by access performance; e.g., latency & bandwidth

 Execution Policy : how (and where) a user function is executed
 E.g., data parallel range : concurrently call function(i) for i = [0..N)
 User’s function is a C++ functor or C++11 lambda

 Pattern: parallel_for, parallel_reduce, parallel_scan, task, ...

 Compose: pattern + execution policy + user function; e.g.,
parallel_for(Policy<Space>, Function);

 Execute Function in Space according to parallel_for pattern and Policy

 Extensible spaces, policies, and patterns (by expert developers)

10

Examples of Execution and Memory Spaces

Compute Node

Multicore
Socket DDR

Attached Accelerator

GPU
GDDR

GPU::capacity
(via pinned)

primary

primary

GPU::perform
(via UVM)

Compute Node

Multicore
Socket DDR

primary
shared

deep_copy

Attached Accelerator

GPU
GDDR primary

perform shared

11

Multidimensional Array View API (simple)
 View< double**[3][8] , Space > a(“a”,N,M);
 Allocate array data in memory Space with dimensions [N][M][3][8]
 Each * indicates a runtime supplied dimension
 Proposing C++ standard adjustment to enable View<double[][][3][8],Space>

 Kokkos chooses array layout appropriate for “Space”

 a(i,j,k,l) : User’s access to array data
 Optional array bounds checking of indices in debug compile
 “Space” accessibility enforced; e.g., GPU code cannot access CPU memory

 View Semantics: View<double**[3][8],Space> b = a ;
 A shallow copy: ‘a’ and ‘b’ are pointers to the same allocated array data
 Reference counting how many Views to the same data
 When reference count == 0 , automatically deallocates data

12

View API: Deep Copy and Host Mirror
 deep_copy(destination_view , source_view);
 Copy array data of ‘source_view’ to array data of ‘destination_view’
 Kokkos policy: never hide an expensive deep copy operation
 Only deep copy when explicitly instructed by the user

 Avoid expensive permutation of data due to different layouts
 Mirror the dimensions and layout in Host’s memory space

typedef class View<...,Space> MyViewType ;
MyViewType a(“a”,...);
MyViewType::HostMirror a_h = create_mirror(a);
deep_copy(a , a_h); deep_copy(a_h , a);

 Avoid unnecessary deep-copy
MyViewType::HostMirror a_h = create_mirror_view(a);

 If Space (might be an execution space) uses Host memory space
then ‘a_h’ is simply a view of ‘a’ and deep_copy is a no-op

13

View API (advanced)
 View<ArrayType,Layout,Space,Attributes>
 ArrayType: scalar type, # runtime dimensions, compile-time dimensions
 Layout: user can override Kokkos’ choice for layout
 Attributes: user’s access intentions

 Why manually specify Layout ?
 Force compatibility with legacy code while incrementally porting
 Optimize performance with exotic layout

 View<double**,Tile<8,8>,Space> m(“matrix”,N,N);
 Tiling layout hidden from user code m(i,j)

 A “plug in” extension point

 Access intent attributes
 Turn off reference counting to wrap an legacy code’s array
 Indicate const and random access to utilize GPU texture cache

 View< const double **, Cuda, RandomAccess> b = a ;
 A “plug in” extension point

14

Subview : View of a sub-array
B = subview(A , ...range_and_index_argument_list...)

 Challenging capability due to polymorphic array Layout
 Views are strongly typed: View<ArrayType,Layout,Space,Traits>
 Compatibility constraints on B’s type, A’s type, and argument list
 runtime and compile-time dimensions
 number and type (range or index) of calling arguments
 array layout
 ‘const-ness’ and other memory access traits

 C++11 ‘auto’ capability simplifies use
auto B = subview(A , ...range_and_index_argument_list...);

 Let implementation choose a compatible View type
 Caution: View’s data may become non-contiguous

15

Parallel Execution API (simple with C++11)
 AXPY example using C++11 lambda

parallel_for(N , KOKKOS_LAMBDA(int i)
 { y(i) = alpha * x(i) + y(i); }
);
 User functor via C++11 lambda expression
 Default execution space and range policy i = [0..N)
 Kokkos chooses which threads call function with each value of ‘i’

 DOT example using C++11 lambda
parallel_reduce(N , KOKKOS_LAMBDA(int i , double & value)
 { value += x(i) * y(i); }
 , result);
 Kokkos manages thread-local temporaries
 Kokkos manages scalable inter-thread reduction

16

Parallel Execution API
parallel_pattern(Policy<Space> , Function)

 User Function: C++11 Lambda or C++ Functor
 Use a functor with non-trivial function bodies

struct UserAXPY {
 double alpha ; View<double*,Space> x , y ; // “calling arguments”
 KOKKOS_INLINE_FUNCTION
 void operator()(int i) const { y(i) = alpha * x(i) + y(i); } // function
};

 Multi-function User Functor capability
 When more than one function shares the same “calling arguments”
 Migration to Kokkos: incrementally add parallel functions to existing classes

 Execution Policy : flexibility & extensibility
 RangePolicy : i = [0..N)
 TeamPolicy : two-level parallelism with team collectives and shared memory
 Portable access to Cuda thread grid, block, and shared memory

 TaskPolicy : experimental using SNL’s Qthreads runtime

17

Atomic operations
atomic_exchange, atomic_compare_exchange_strong,
atomic_fetch_add, atomic_fetch_or, atomic_fetch_and

 Thread-scalability of non-trivial algorithms and data structures
 Essential for lock-free implementations
 Concurrent summations to shared variables
 E.g., finite element computations summing to shared nodes

 Updating shared dynamic data structure
 E.g., append to a shared array or insert into a shared map

 Portably map to compiler/hardware specific capabilities
 GNU and CUDA extensions when available
 Current: any 32bit or 64bit type, may use CAS-loop implementation
 Future: any data type via “sharded lock” pattern

 ISO/C++ 2011 and 2014 standards not adequate for HPC
 Proposal in for 2017 standard to address this gap

18

Performance Evaluation

Evaluate Performance Impact of Array Layout

19

 Molecular dynamics computational kernel in miniMD
 Simple Lennard Jones force model:
 Atom neighbor list to avoid N2 computations

 Test Problem
 864k atoms, ~77 neighbors
 2D neighbor array
 Different layouts CPU vs GPU
 Random read ‘pos’ through

GPU texture cache
 Large performance loss

with wrong array layout

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);
for(jj = 0; jj < num_neighbors(i); jj++) {
 j = neighbors(i,jj);
 r_ij = pos_i – pos(j); //random read 3 floats
 if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13)
}
f(i) = f_i;

0

50

100

150

200

Xeon Xeon Phi K20x

G
Fl

op
/s

correct layout
(with texture)

correct layout
(without texture)

wrong layout
(with texture)

Evaluate Performance Overhead of Abstraction
Kokkos competitive with native programming models

 MiniFE: finite element linear system iterative solver mini-app

 Compare to versions specialized for programming models

 Running on hardware testbeds

20

0
4
8

12
16
20
24

K20X IvyBridge SandyBridge XeonPhi B0 XeonPhi C0 IBM Power7+

MiniFE CG-Solve time for 200 iterations on 200^3 mesh

NVIDIA ELL NVIDIA CuSparse Kokkos OpenMP
MPI-Only OpenCL TBB Cilk+(1 Socket)

Ti
m

e
(s

ec
on

ds
)

21

Kokkos’ Unordered Map (a.k.a. Hash Map)
 Thread scalable fill

 Lock-free implementation with minimal use of atomics
 API deviates from C++11 unordered map

 No on-the-fly allocation / reallocation
 Index-based instead of iterator-based

 Insert (fill) within a parallel reduce functor
 Within the functor: {status, index} = map.insert(key,value);

 Status = success | existing | failed due to insufficient capacity
 Parallel reduce the failed-count to resize the map

 Algorithmic use:
UnorderedMap<Key,Value,Space> map ;
do {
 map.rehash(capacity);
 capacity += (nfailed = parallel_reduce(N , functor));
} while(nfailed); // should iterate at most twice

22

Unordered Map Performance Evaluation
 Parallel-for insert to 88% full with 16x redundant inserts

 NW= number attempts to insert = Capacity * 88% * 16
 Near – contiguous work indices [iw,iw+16) insert same keys
 Far – strided work indices insert same keys

 Single Accelerator Performance Tests
 NVidia Kepler K40X, 12Gbytes
 Intel Xeon Phi (Knights Corner) COES2, 61 cores, 1.2 GHz, 16Gbytes
 Limit use to 60 cores, 4 hyperthreads/core

0

5

10

15

20

1E+04 1E+05 1E+06 1E+07

na
no

se
c

/
at

te
m

pt
ed

in

se
rt

map capacity

Phi-240, far

Phi-240, near

K40X, far

K40X, near

 K40X dramatically better
performance
 Xeon Phi implementation

optimized using explicit
non-caching prefetch
 Theory: due to cache

coherency protocols and
atomics’ performance

23

MiniFENL Proxy Application
 Solve nonlinear finite element problem via Newton iteration

 Focus on construction and fill of sparse linear system
 Thread safe, thread scalable, and performant algorithms
 Evaluate thread-parallel capabilities and programming models

 Construct sparse linear system graph and coefficient arrays
 Map finite element mesh connectivity to degree of freedom graph
 Thread-scalable algorithm for graph construction

 Compute nonlinear residual and Jacobian
 Thread-parallel finite element residual and Jacobian
 Atomic-add to fill element coefficients into linear system

 Atomic-add for thread safety, performance?

 Solve linear system for Newton iteration

Thread-Scalable Fill of Sparse Linear System

24

 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏�

 Fill sparse matrix via Scatter-Atomic-Add or Gather-Sum ?
 Scatter-Atomic-Add

+ Simpler
+ Less memory
– Slower HW atomic

 Gather-Sum
+ Bit-wise reproducibility

 Performance win?
 Scatter-atomic-add
 ~equal Xeon PHI
 40% faster Kepler GPU

 Pattern chosen
 Feedback to HW vendors:

performant atomics

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

1E+03 1E+04 1E+05 1E+06 1E+07M
at

rix
 F

ill
: m

ic
ro

se
c/

no
de

Number of finite element nodes

Phi-60 GatherSum
Phi-60 ScatterAtomic
Phi-240 GatherSum
Phi-240 ScatterAtomic
K40X GatherSum
K40X ScatterAtomic

Thread-Scalable Sparse Matrix Construction
 MiniFENL: Construct sparse matrix graph from FEM connectivity
 Thread scalable algorithm for constructing a data structure

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs
2. Parallel-scan : sparse matrix rows’ column counts into row offsets
3. Parallel-for : query unordered map to fill sparse matrix column-index array
4. Parallel-for : sort rows’ column-index subarray

25

0

0.5

1

1.5

2

1E+03 1E+04 1E+05 1E+06 1E+07

M
ic

ro
se

c/
no

de

Number of finite element nodes

Phi-60

Phi-240

K40X

 Pattern and tools generally applicable to construction and
dynamic modification of data structures

26

Porting in Progress: Trilinos Suite
 Trilinos : SNL’s suite of equation solver libraries (and others)
 Previously MPI-only parallel
 Incremental refactoring to MPI+Kokkos parallel

 Tpetra : Trilinos’ core parallel sparse linear algebra library
 Vectors, multi-vectors, sparse matrices, parallel data distribution maps
 Fundamental operations: axpy, dot, matrix-vector multiply, ...
 Templated on “scalar” type: float, double, automatic differentiation (AD),

embedded uncertainty quantification (UQ), ...

 Port Tpetra to MPI+Kokkos, other libraries follow
 On schedule to complete in Spring 2015
 Use of NVIDIA’s unified virtual memory (UVM) expedited porting effort

 Embedded UQ already Kokkos-enabled through SNL/LDRD
 Greater computational intensity leads to significant speed-ups compared to

non-embedded UQ sampling algorithms

27

Porting in Progress: LAMMPS
 LAMMPS : molecular dynamics application
 Fully MPI-only parallel with some (prototype) thread-parallel user packages
 Architecture specific with redundantly implemented physics

 Incrementally refactoring to MPI+Kokkos parallel
 Goal: collapse redundantly implemented physics into “core” code base

 MPI+Kokkos performing as well or better than thread-parallel user packages

28

Takeaways : MPI + Kokkos for hybrid parallel
 Performance portability across diverse manycore architectures
 Compose : pattern + policy + function + polymorphic array layout
 to obtain architecture-appropriate memory access patterns
 AoS versus SoA dilemma is a non-issue, with the right abstractions
 Extensibility of patterns, policies, spaces, and array layout abstractions

=> future proofing versus architectural evolution?

 Negligible performance overhead versus native implementation

 R&D now addressing more challenging algorithms
 Dynamic data structures
 Task-dag and hybrid task-data parallelism
 Graph analytics algorithms

 Transition of legacy codes in progress

 Kokkos to be available via GitHub in FY15/Q3

	Kokkos:�Enabling Performance Portability of C++ Applications and Libraries�across Manycore Architectures
	Increasingly Complex Manycore Architectures�¿ Performance Portable and Future Proof Codes?
	Vision for Heterogeneous Parallelism
	Kokkos: A Layered Collection of C++ Libraries
	Performance Portability Challenge:�Best (good) performance requires computations to implement architecture-specific memory access patterns
	Kokkos Performance Portability Answer
	Projects leveraging Kokkos for MPI+X
	Projects leveraging Kokkos for MPI+X�and points-of-contact for MPI+X transition effort
	Abstractions and �Application Programmer Interface
	Spaces, Policies, and Patterns
	Examples of Execution and Memory Spaces
	Multidimensional Array View API (simple)
	View API: Deep Copy and Host Mirror
	View API (advanced)
	Subview : View of a sub-array
	Parallel Execution API (simple with C++11)
	Parallel Execution API
	Atomic operations
	Performance Evaluation
	Evaluate Performance Impact of Array Layout
	Evaluate Performance Overhead of Abstraction�Kokkos competitive with native programming models
	Kokkos’ Unordered Map (a.k.a. Hash Map)
	Unordered Map Performance Evaluation
	MiniFENL Proxy Application
	Thread-Scalable Fill of Sparse Linear System
	Thread-Scalable Sparse Matrix Construction
	Porting in Progress: Trilinos Suite
	Porting in Progress: LAMMPS
	Takeaways : MPI + Kokkos for hybrid parallel

