Sandia

Exceptional service in the national interest National
Laboratories

Preparing Sandia's Aplication Portfolio for the Future
Using Kokkos

Christian Trott, Daniel Sunderland, Carter Edwards, Si Hammond
crtrott@sandia.gov

Center for Computing Research
SAND2017-2110 C Sandia National Laboratories, NM

DEPARTMENT OF ///A ' .'
ENERGY ///’ v \ < Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
National Nuclear Security Administration Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2016-2672 C




New Programming Models T .

= HPC is at a Crossroads
= Diversifying Hardware Architectures
= More parallelism necessitates paradigm shift from MPI-only

* Need for New Programming Models

= Performance Portability: OpenMP 4.5, OpenACC, Kokkos, RAJA, SyCL,
C++207?, ...

= Resilience and Load Balancing: Legion, HPX, UPC++, ...

= Vendordecouplingdrives external development

My (slightly changed) Goal for the Talk:
Describe what it took to get Kokkos accepted by legacy applications

2




Kokkos: Performance, Portability and Productivity ~— m)¥es.,

é é Albany

LAMMPS Trilinos

- - - e - Kokkos — - - - -

{ﬁ}\ J Q ) A

Multi-Core Many-Core APU CPU + GPU

v

https://github.com/kokkos




Performance Portability through Abstraction

Sandia
m National _
Laboratories

Separating of Concerns for Future Systems...

Data Structures

Memory Spaces ("“Where

- Multiple-Levels
- Logical Space (think UVM vs explicit)

Viemory Layouts ("How

- Architecture dependent index-maps
- Also needed for subviews

a Memory Traits

- Access Intent: Stream, Random, ...
- Access Behavior: Atomic

- Enables special load paths: i.e. texture

Parallel Execution

Execution Spaces (“Where”)

- N-Level
- Support Heterogeneous Execution

Execution Patterns (“How”)

- parallel_for/reduce/scan, task spawn
- Enable nesting

Execution Policies

- Range, Team, Task-Dag
- Dynamic/ Static Scheduling
- Support non-persistent scratch-pads




Timeline T

2008 Initial Kokkos: Linear Algebra for Trilinos

2011 Restart of Kokkos: Scope now Programming Model
2012 Mantevo MiniApps: Compare Kokkos to other Models
2013 LAMMPS: Demonstrate Legacy App Transition

Trilinos: Move Tpetra over to use Kokkos Views
2014

Multiple Apps start exploring (Albany, Uintah, ...)
2015 Github Release of Kokkos 2.0

2016 Sandia Multiday Tutorial (~80 attendees)

Sandia Decision to prefer Kokkos over other models

2017 DOE Exascale Computing Project starts
Kokkos-Kernels and Kokkos-Tools Release
9




Initial Demonstrations ) i,

= Demonstrate Feasibility of Performance Portability

= Development of a number of MiniApps from different science domains

= Demonstrate Low Performance Loss versus Native Models

= MiniAppsareimplementedinvarious programming models

= DOE TriLab Collaboration

[ |
ShOW KOkkOS WOFkS for Higher B HSW 1x16 OHSW 1x32 OP81x40 XL BKNC1x224 OARM64 1x8 E NV K40
otherlabsapp B 000

LULESH Figure of Merit Results (Problem 60)

12000

= Note this is historical data:
Improvements were & 8000

= 000
found, RAJAimplemented 2 2000 ] i
similar optimization etc. 2000 EIEIL]J .

X N & ' N §
& T TS
Q,(\ . (\,z & \((\ =
R & &




Training the User-Base )

National
Laboratories
= Typical Legacy Application Developer
= Science Background

= Mostly Serial Coding (MPI apps usually have communication layer few
peopletouch)

= Little hardware background, little parallel programming experience
= Not sufficient to teach Programming Model Syntax
= Need trainingin parallel programmingtechniques

= Teach fundamental hardware knowledge (how does CPU, MIC and GPU
differ, and what does it mean for my code)

= Need trainingin performance profiling
= Regular Kokkos Tutorials

= ~200 slides, 9 hands-on exercises to teach parallel programming
techniques, performance considerations and Kokkos

= Held at GTC, and SC; Also atrequest of institutions

= Now dedicated ECP Kokkos support project: develop online support
community 7



Keeping Applications Happy ) i

Laboratories

= Never underestimate developers ability to find new corner
cases!!

= Havinga Programming Model deployed in MiniAppsora single bigapp is
very different from havinghalfa dozen multi-millionline code customers.

= 430 Issuesin 22 months :
Issues since 2015

m ~)25% are small enhancements

= ~20% bigger feature requests 500 m Other
= ~25% are bugs: often corner cases 400 = Quest
uestion
= Example: Subviews
p 300 B Compiler Issue
= |nitiallydatatype needed to match
including compile time dimensions 200 ® Bug
= Allowcompile/runtime conversion . Foat
eature
= Allow Layout conversion if possible 100 Request
= Automatically find best layout 0 B Enhancements
= Addsubview patterns Issues

8



Testing and Software Quality ) .

" Programming Models are invasive
= Reach many code locations:all parallelizable loops
= Some take over low level data structures
= Potentially costlyto back outagain

= Performance Portability implies multi platform
= Much greater variety of compilers and architectures

= Programming model needsto support union of customer needs

= Testing on SNL Testbeds
= |ntel Haswell, KNL; IBM Power; Cavium ARM; NVIDIA Kepler, Pascal
= 15 compilers (GCC, Intel, Clang, IBM, PGI)
= >200 configurations every night

= SEMS: Support Common Software Stack accross SNL
= Applicationteamsdon’t have the resources for multiple software stacks

= Deliver tested compiler/tpl combinations across diverse machines 9




Building an EcoSystem

MiniApps Applications

Trilinos
(Linear Solvers, Load Balancing,
Discretization, Distributed Linear
Algebra)

Kokkos — Kernels
(Sparse/Dense BLAS, Graph Kernels, Tensor
Kernels)

Algorithms Containers
(Random, Sort) (Map, CrsGraph, Mem Pool)

VS

Kokkos
(Parallel Execution, Data Allocation, Data Transfer)

Sandia

mNational
Laboratories
N\ )
m
O ~~
(@)]
2 =
(@)) > C
c ."é"a
o= |
2| | 5S¢
3 £9
0 o £ o
o0 o
S 2 ° 8
C
| © 50
(@) o+
(7)) =
o = Q o
X = S5 O
X O NN o
oA -]
v - %)
o 0 c
© O O
= < R
EECE
Q.
2 o
= <
X
J J

std::thread OpenMP CUDA

10




Necessary Resources ) &=

" Longterm development:
= ~6 years effort so far
= onlynow seriously workingon majorapplications

= Now more Resources for Support/Toolsthan core Model R&D
= ~2FTE on core Kokkos development
= ~ 1.5FTE application support
= ~2FTE on Toolsand Kokkos Kernels

= Diverse hardware resources for testing and development
= Equivalent of 2-3 nodes for dedicated testing
= ~5 differentarchitecture testbeds for development
= Beta access to all major HPC compilers

" |ntensive Collaboration with Vendors
= Workingon Compiler Bugs, Compilerimprovements and new backends

11




Further Material )

= https://github.com/kokkos Kokkos Github Organization

Kokkos: Core library, Containers, Algorithms

Kokkos-Kernels: Sparse and Dense BLAS, Graph, Tensor (under
development)

Kokkos-Tools: Profiling and Debugging
Kokkos-MiniApps: MiniApp repository and links
Kokkos-Tutorials: Extensive Tutorials with Hands-On Exercises

= https://cs.sandia.gov Publications (search for ’Kokkos’)

Many Presentations on Kokkosand its use in libraries and apps

= www.gputechconf.com/stchew/on-demand-gtc.php

Search for Kokkos: recorded talks on Kokkos and some usage




Sandia
National
Laboratories

Exceptional service in the national interest

http://www.github.com/kokkos




