
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2016-2672 C

Preparing	Sandia's	Application	Portfolio	for	the	Future	
Using	Kokkos

Christian	 Trott,	Daniel	Sunderland,	 Carter	Edwards,	Si	Hammond
crtrott@sandia.gov

Center	 for	Computing	Research
Sandia	National	Laboratories,	NMSAND2017-2110	C

New	Programming	Models

§ HPC	is	at	a	Crossroads
§ Diversifying	Hardware	Architectures
§ More	parallelism	necessitates	paradigm	shift	from	MPI-only

§ Need	for	New	Programming	Models	
§ Performance	Portability:	OpenMP 4.5,	OpenACC,	Kokkos,	RAJA,	SyCL,	

C++20?,	…
§ Resilience	and	Load	Balancing:	Legion,	HPX,	UPC++,	...

§ Vendor	decoupling	drives	external	development

2

My	(slightly	changed)	Goal	for	the	Talk:	
Describe	what	it	took	to	get	Kokkos accepted	by	legacy	applications	

Kokkos:	Performance,	Portability	and	Productivity

DDR#

HBM#

DDR#

HBM#

DDR#DDR#

DDR#

HBM#HBM#

Kokkos#

LAMMPS# Sierra# Albany#Trilinos#

https://github.com/kokkos

Performance	Portability	through	Abstraction

Kokkos

Execution Spaces (“Where”)

Execution Patterns (“How”)

Execution Policies

- N-Level
- Support Heterogeneous Execution

- parallel_for/reduce/scan, task spawn
- Enable nesting

- Range, Team, Task-Dag
- Dynamic / Static Scheduling
- Support non-persistent scratch-pads

Memory Spaces (“Where”)

Memory Layouts (“How”)

Memory Traits

- Multiple-Levels
- Logical Space (think UVM vs explicit)

- Architecture dependent index-maps
- Also needed for subviews

- Access Intent: Stream, Random, …
- Access Behavior: Atomic
- Enables special load paths: i.e. texture

Parallel ExecutionData Structures

Separating of Concerns for Future Systems…

Timeline

5

Initial Kokkos: Linear Algebra for Trilinos

Restart of Kokkos: Scope now Programming Model

Mantevo MiniApps: Compare Kokkos to other Models

LAMMPS: Demonstrate Legacy App Transition

Trilinos: Move Tpetra over to use Kokkos Views

Multiple Apps start exploring (Albany, Uintah, …)

Sandia Multiday Tutorial (~80 attendees)

Sandia Decision to prefer Kokkos over other models

Github Release of Kokkos 2.0

Kokkos-Kernels and Kokkos-Tools Release

DOE Exascale Computing Project starts

2008

2011

2013

2012

2014

2016

2015

2017

17"

0"
2000"
4000"
6000"
8000"
10000"
12000"
14000"

FO
M
+(Z

/s
)+

LULESH+Figure+of+Merit+Results+(Problem+60)+

HSW"1x16" HSW"1x32" P8"1x40"XL" KNC"1x224" ARM64"1x8" NV"K40"Higher"
is"

Better"

Results"by"Dennis"Dinge,"Christian"Trott"and"Si"Hammond"

Initial	Demonstrations

6

§ Demonstrate	Feasibility	of	Performance	Portability
§ Development	of	a	number	of	MiniApps from	different	science	domains

§ Demonstrate	Low	Performance	Loss	versus	Native	Models
§ MiniApps are	implemented	in	various	programming	models

§ DOE	TriLab Collaboration
§ Show	Kokkos works	for	

other	labs	app
§ Note	this	is	historical	data:	

Improvements	were	
found,	RAJA	implemented	
similar	optimization	etc.	

Training	the	User-Base
§ Typical	Legacy	Application	Developer

§ Science	Background
§ Mostly	Serial	Coding	(MPI	apps	usually	have	communication	layer	few	

people	touch)
§ Little	hardware	background,	little	parallel	programming	experience

§ Not	sufficient	to	teach	Programming	Model	Syntax
§ Need	training	in	parallel	programming	techniques
§ Teach	fundamental	hardware	knowledge	(how	does	CPU,	MIC	and	GPU	

differ,	and	what	does	it	mean	for	my	code)
§ Need	training	in	performance	profiling

§ Regular	Kokkos Tutorials
§ ~200	slides,	9	hands-on	exercises	to	teach	parallel	programming	

techniques,	performance	considerations	and	Kokkos
§ Held	at	GTC,	and	SC;	Also	at	request	of	institutions
§ Now	dedicated	ECP	Kokkos support	project:	develop	online	support	

community 7

Keeping	Applications	Happy
§ Never	underestimate	developers	ability	to	find	new	corner	

cases!!
§ Having	a	Programming	Model	deployed	in	MiniApps or	a	single	big	app	is	

very	different	from	having	half	a	dozen	multi-million	line	code	customers.
§ 430	Issues	in	22	months
§ ~25%	are	small	enhancements
§ ~20%	bigger	feature	requests
§ ~25%	are	bugs:	often	corner	cases

8
0

100

200

300

400

500

Issues

Issues since 2015

Other

Question

Compiler Issue

Bug

Feature
Request
Enhancements

§ Example:	Subviews
§ Initially	data	type	needed	to	match	

including	compile	time	dimensions
§ Allow	compile/runtime	conversion
§ Allow	Layout	conversion	if	possible
§ Automatically	find	best	layout
§ Add	subviewpatterns

Testing	and	Software	Quality
§ Programming	Models	are	invasive

§ Reach	many	code	locations:	all	parallelizable	loops
§ Some	take	over	low	level	data	structures
§ Potentially	costly	to	back	out	again

§ Performance	Portability	implies	multi	platform
§ Much	greater	variety	of	compilers	and	architectures
§ Programming	model	needs	to	support	union	of	customer	needs

§ Testing	on	SNL	Testbeds
§ Intel	Haswell,	KNL;	IBM	Power;	Cavium	ARM;	NVIDIA	Kepler,	Pascal
§ 15	compilers	(GCC,	Intel,	Clang,	IBM,	PGI)
§ >200	configurations	every	night		

§ SEMS:	Support	Common	Software	Stack	accross SNL
§ Application	teams	don’t	have	the	resources	for	multiple	software	stacks
§ Deliver	tested	compiler/tpl combinations	across	diverse	machines 9

Building	an	EcoSystem

10

Algorithms
(Random, Sort)

Containers
(Map, CrsGraph, Mem Pool)

Kokkos
(Parallel Execution, Data Allocation, Data Transfer)

Kokkos – Kernels
(Sparse/Dense BLAS, Graph Kernels, Tensor

Kernels)

Ko
kk

os
–

To
ol

s
(K

ok
ko

s
aw

ar
e

P
ro

fil
in

g
an

d
D

eb
ug

gi
ng

 T
oo

ls
)

Trilinos
(Linear Solvers, Load Balancing,
Discretization, Distributed Linear

Algebra)

Ko
kk

os
–

Su
pp

or
t C

om
m

un
ity

(A
pp

lic
at

io
n

S
up

po
rt,

 D
ev

el
op

er
 T

ra
in

in
g)

ApplicationsMiniApps

std::thread OpenMP CUDA ROCm

Necessary	Resources
§ Long	term	development:	

§ ~6	years	effort	so	far
§ only	now	seriously	working	on	major	applications

§ Now	more	Resources	for	Support/Tools	than	core	Model	R&D
§ ~	2	FTE	on	core	Kokkos development
§ ~	1.5	FTE	application	support
§ ~	2	FTE	on	Tools	and	Kokkos Kernels

§ Diverse	hardware	resources	for	testing	and	development
§ Equivalent	of	2-3	nodes	for	dedicated	testing
§ ~5	different	architecture	testbeds	for	development
§ Beta	access	to	all	major	HPC	compilers

§ Intensive	Collaboration	with	Vendors	
§ Working	on	Compiler	Bugs,	Compiler	improvements	and	new	backends

11

Further	Material

§ https://github.com/kokkos Kokkos Github Organization
§ Kokkos: Core	library,	Containers,	Algorithms
§ Kokkos-Kernels: Sparse	and	Dense	BLAS,	Graph,	Tensor	(under	

development)
§ Kokkos-Tools: Profiling	and	Debugging	
§ Kokkos-MiniApps:MiniApp repository	and	links
§ Kokkos-Tutorials: Extensive	Tutorials	with	Hands-On	Exercises

§ https://cs.sandia.gov Publications	(search	for	’Kokkos’)
§ Many	Presentations	on	Kokkos and	its	use	in	libraries	and	apps

§ www.gputechconf.com/gtcnew/on-demand-gtc.php
§ Search	for	Kokkos:	recorded	talks	on	Kokkos and	some	usage

12

http://www.github.com/kokkos

