
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Kokkos:
Enabling Performance Portability
of C++ Applications and Libraries
across Manycore Architectures

NECDC / October 22, 2014

SAND2014-18527C (Unlimited Release)

Increasingly Complex Manycore Architectures
¿ Performance Portable and Future Proof Codes?

1

PIM DDR

L2*

NVRAM

PIM

L1
*

Te
x

Scr

L1
*

Te
x

Scr

L1
*

Te
x

Scr

NIC L3

Memory Spaces
 - Bulk non-volatile (Flash?)
 - Standard DDR (DDR4)
 - Fast memory (HBM/HMC)
 - (Segmented) scratch-pad on die

Execution Spaces
 - Throughput cores (GPU)
 - Latency optimized cores (CPU)
 - Processing in memory

Special Hardware
 - Non caching loads
 - Read only cache
 - Atomics

Programming
models
 - GPU: CUDA-ish
 - CPU: OpenMP
 - PIM: ??

Vision for Heterogeneous Parallelism
 “MPI + X” Programming Model, separate concerns
 Inter-node: MPI and domain specific libraries layered on MPI
 Intra-node: Kokkos and domain specific libraries layered on Kokkos

 Intra-node parallelism, heterogeneity & diversity concerns
 Execution spaces (CPU, GPU, PIM, ...) have diverse performance requirements
 Memory spaces have diverse capabilities and performance characteristics
 Vendors have diverse programming models for optimal utilization of their hardware

 Standardized performance portable programming model?
 Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17
 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ...
 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ...

 Necessary condition: address execution & memory space diversity
 SNL Computing Research Center’s Kokkos (C++ library) solution
 Engagement with ISO C++ Standard committee to influence C++17

2

Application and Domain Specific Library Layer

3

Kokkos: A Layered Collection of Libraries
 Applications and Domain Libraries written in Standard C++
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...
 Require C++1998 standard (supported everywhere except IBM’s xlC)
 Prefer C++2011 for its concise lambda syntax (LLNL’s RAJA requires this)
 As soon as vendors catch up to C++2011 language compliance

 Kokkos implemented with C++ template meta-programming
 In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ...

Back-ends: Cuda, OpenMP, pthreads, vendor libraries ...

Kokkos Sparse Linear Algebra
Kokkos Containers
Kokkos Core

4

Performance Portability Challenge:
Best (good) performance requires computations to
implement architecture-specific memory access patterns
 CPUs (and Xeon Phi)
 Core-data affinity: consistent NUMA access (first touch)
 Array alignment for cache-lines and vector units
 Hyperthreads’ cooperative use of L1 cache

 GPUs
 Thread-data affinity: coalesced access with cache-line alignment
 Temporal locality and special hardware (texture cache)

 Array of Structures (AoS) vs. Structure of Arrays (SoA) dilemma
This has been the wrong concern

Ask the right question: Abstractions for Performance Portability ?

5

Kokkos Performance Portability Answer
Integrated mapping of thread parallel computations and

multidimensional array data onto manycore spaces
 Kokkos maps users’ parallel computations to threads
 Standard parallel programming model pattern; e.g., parallel-for
 Users implement C++ functions or lambdas for their parallel loop bodies
 Kokkos calls user’s code from architecture’s “hardware” threads

 Kokkos’ multidimensional array data structure has a twist
 Layout mapping: multi-index (i,j,k,...) ↔ memory location
 Kokkos chooses layout for architecture-specific memory access pattern
 Layout changes are invisible to user code
IF user code honors Kokkos’ simple array API: a(i,j,k,...)

 “Polymorphic multidimensional array layout”

 Bonus: utilize special hardware invisibly to users’ code
 GPU texture cache to speed up read-only random access patterns
 Atomic operations for thread safety

6

Kokkos-Core’s Multidimensional Array API
 View< double**[3][8] , Space > a(“a”,N,M);
 User allocates array data in “Space” with dimensions [N][M][3][8]
 Each * indicates a runtime supplied dimension

 Kokkos chooses layout appropriate for “Space”

 a(i,j,k,l) : User’s access to array data
 Bounds checking of indices when debugging
 “Space” accessibility enforced; e.g., GPU code cannot access CPU memory

 View Semantics: View<double**[3][8],Space> b = a ;
 A shallow copy: ‘a’ and ‘b’ are pointers to the same allocated array data
 Reference counting: last View automatically deallocates data

 deep_copy(destination_view , source_view);
 Copy array data across memory spaces
 Never hide an expensive deep copy operation from the user

 Only deep copy when a user calls the deep_copy function

7

Kokkos-Core’s Multidimensional Array API
 Advanced: View<ArrayType,Layout,Space,Attributes>
 ArrayType: scalar type, # runtime dimensions, compile-time dimensions
 Layout: user can override Kokkos’ choice for layout
 Attributes: user’s access intentions

 Why manually specify Layout ?
 Force compatibility with legacy code while incrementally porting
 Optimize performance with exotic layout

 View<double**,Tile<8,8>,Space> m(“matrix”,N,N);
 Tiling layout hidden from user code m(i,j)

 A “plug in” extension point

 Access intention attributes
 Turn off reference counting to wrap an legacy code’s array
 Indicate random access to utilize GPU texture cache

 View< const double **, Cuda, RandomAccess>
 A “plug in” extension point

8

Kokkos-Core’s Parallel Execution API
 parallel_for(N , [=](int i) { z(i) = x(i) + y(i); }); ← simplest API
 Using C++11 lambda expression and default execution space
 Call parallel loop body from hardware threads with i = [0..N)
 Kokkos chooses which threads call with which value of ‘i’

 parallel_reduce(RangePolicy<Space>(N) , loop_body_functor);
 Range execution policy specifies what execution space
 functor is a user supplied C++ class object with
 a member function implementing the parallel loop body
 member variables used by the parallel loop body function

 API: ParallelPattern(ExecutionPolicy , LoopBody)
 ParallelPattern: parallel_for, parallel_reduce, parallel_scan
 ExecutionPolicy: execution space and parallel iteration space
 LoopBody: user’s C++ class object or C++11 lambda expression

 Execution policy is a “plug in” extension point
 E.g., thread league-team policy, asynchronous task policy

Evaluate Performance Impact of Array Layout

9

 Molecular dynamics computational kernel in miniMD
 Simple Lennard Jones force model:
 Atom neighbor list to avoid N2 computations

 Test Problem
 864k atoms, ~77 neighbors
 2D neighbor array
 Different layouts CPU vs GPU
 Random read ‘pos’ through

GPU texture cache
 Large performance loss

with wrong array layout

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);
for(jj = 0; jj < num_neighbors(i); jj++) {
 j = neighbors(i,jj);
 r_ij = pos_i – pos(j); //random read 3 floats
 if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13)
}
f(i) = f_i;

0

50

100

150

200

Xeon Xeon Phi K20x

G
Fl

op
/s

correct layout
(with texture)

correct layout
(without texture)

wrong layout
(with texture)

Evaluate Performance Overhead of Abstraction
Kokkos competitive with native programming models

 MiniFE: finite element linear system iterative solver mini-app

 Compare to versions specialized for programming models

 Running on hardware testbeds

10

0
4
8

12
16
20
24

K20X IvyBridge SandyBridge XeonPhi B0 XeonPhi C0 IBM Power7+

MiniFE CG-Solve time for 200 iterations on 200^3 mesh

NVIDIA ELL NVIDIA CuSparse Kokkos OpenMP
MPI-Only OpenCL TBB Cilk+(1 Socket)

Ti
m

e
(s

ec
on

ds
)

11

MiniFENL Proxy Application
 Solve nonlinear finite element problem via Newton iteration

 Focus on construction and fill of sparse linear system
 Thread safe, thread scalable, and performant algorithms
 Evaluate thread-parallel capabilities and programming models

 Construct sparse linear system graph and coefficient arrays
 Map finite element mesh connectivity to degree of freedom graph
 Thread-scalable algorithm for graph construction

 Compute nonlinear residual and Jacobian
 Thread-parallel finite element residual and Jacobian
 Atomic-add to fill element coefficients into linear system

 Atomic-add for thread safety, performance?

 Solve linear system for Newton iteration

Thread-Scalable Fill of Sparse Linear System

12

 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏�

 Fill sparse matrix via Scatter-Atomic-Add or Gather-Sum ?
 Scatter-Atomic-Add

+ Simpler
+ Less memory
– Slower HW atomic

 Gather-Sum
+ Bit-wise reproducibility

 Performance win?
 Scatter-atomic-add
 ~equal Xeon PHI
 40% faster Kepler GPU

 Pattern chosen
 Feedback to HW vendors:

performant atomics

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

1E+03 1E+04 1E+05 1E+06 1E+07M
at

rix
 F

ill
: m

ic
ro

se
c/

no
de

Number of finite element nodes

Phi-60 GatherSum
Phi-60 ScatterAtomic
Phi-240 GatherSum
Phi-240 ScatterAtomic
K40X GatherSum
K40X ScatterAtomic

Thread-Scalable Sparse Matrix Construction
 MiniFENL: Construct sparse matrix graph from FEM connectivity
 Thread scalable algorithm for constructing a data structure

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs
2. Parallel-scan : sparse matrix rows’ column counts into row offsets
3. Parallel-for : query unordered map to fill sparse matrix column-index array
4. Parallel-for : sort rows’ column-index subarray

13

0

0.5

1

1.5

2

1E+03 1E+04 1E+05 1E+06 1E+07

M
ic

ro
se

c/
no

de

Number of finite element nodes

Phi-60

Phi-240

K40X

 Pattern and tools generally applicable to construction and
dynamic modification of data structures

14

Porting in Progress: Trilinos
 Trilinos : SNL’s suite of equation solver libraries (and others)
 Currently MPI-only parallel
 Incremental refactoring to MPI+Kokkos parallel

 Tpetra : Trilinos’ core parallel sparse linear algebra library
 Vectors, multi-vectors, sparse matrices, parallel data distribution maps
 Fundamental operations: axpy, dot, matrix-vector multiply, ...
 Templated on “scalar” type: float, double, automatic differentiation (AD),

embedded uncertainty quantification (UQ), ...

 Port Tpetra to MPI+Kokkos, other libraries follow
 On schedule to complete in Spring 2015
 Use of NVIDIA’s unified virtual memory (UVM) expedited porting effort

 Embedded UQ already Kokkos-enabled through LDRD
 Greater computational intensity leads to significant speed-ups compared to

non-embedded UQ sampling algorithms

15

Porting in Progress: LAMMPS
 LAMMPS : molecular dynamics application
 Fully MPI-only parallel with some (prototype) thread-parallel user packages
 Architecture specific with redundantly implemented physics

 Incrementally refactoring to MPI+Kokkos parallel
 Collapse redundantly implemented physics into “core” code base

 MPI+Kokkos performing as well or better than thread-parallel user packages

16

Takeaways : MPI + Kokkos for hybrid parallel

 Performance portability across disparate manycore architectures
 Compose mappings to control data access patterns
 parallel loop body → hardware threads
 multidimensional array layout → space-allocated data

 AoS versus SoA dilemma is solved

 Negligible performance overhead versus native implementation

 R&D now addressing more challenging algorithms
 “Plug in” extension points to facilitate R&D
 Construction and fill of sparse linear system
 Not discussed: LDRD for hybrid task-data parallelism and graph analytics

 Transition of legacy codes in progress: Trilinos, LAMMPS

 Kokkos to be released to public via GitHub in FY15/Q2

	Kokkos:�Enabling Performance Portability of C++ Applications and Libraries�across Manycore Architectures�
	Increasingly Complex Manycore Architectures�¿ Performance Portable and Future Proof Codes?
	Vision for Heterogeneous Parallelism
	Kokkos: A Layered Collection of Libraries
	Performance Portability Challenge:�Best (good) performance requires computations to implement architecture-specific memory access patterns
	Kokkos Performance Portability Answer
	Kokkos-Core’s Multidimensional Array API
	Kokkos-Core’s Multidimensional Array API
	Kokkos-Core’s Parallel Execution API
	Evaluate Performance Impact of Array Layout
	Evaluate Performance Overhead of Abstraction�Kokkos competitive with native programming models
	MiniFENL Proxy Application
	Thread-Scalable Fill of Sparse Linear System
	Thread-Scalable Sparse Matrix Construction
	Porting in Progress: Trilinos
	Porting in Progress: LAMMPS
	Takeaways : MPI + Kokkos for hybrid parallel

