Sandia
National
Laboratories

Exceptional
service

in the

national

interest

Kokkos:
Enabling Performance Portability
of C++ Applications and Libraries
across Manycore Architectures

NECDC / October 22, 2014

SAND2014-18527C (Unlimited Release)

LAty
Fuly U.5. DEPARTMENT OF i '_" ‘\Qa‘
-] o
O, ENERGY VIS4
SandiaN nal Labor es is a multi-progra Ib tory managed and operated by Sandia Corj pora wholly owned subsidiary of Lockheed Marti
Corpor f the US D epartment of Energy’s National Nuclear Security Administration under col DE ACO04- 94AL85000 SAND NO. 2011- XXXXP

Sandia

Increasingly Complex Manycore Architectures 1V .
¢ Performance Portable and Future Proof Codes?

Special Hardware
- Non caching loads
- Read only cache
- Atomics

Programming
models

- GPU: CUDA-ish
- CPU: OpenMP
- PIM: ??

Memory Spaces
- Bulk non-volatile (Flash?)
- Standard DDR (DDR4)
- Fast memory (HBM/HMC)
- (Segmented) scratch-pad on die

Execution Spaces
- Throughput cores (GPU)
- Latency optimized cores (CPU)
- Processing in memory

L3

Vision for Heterogeneous Parallelism) e,

= “MPI + X” Programming Model, separate concerns
" Inter-node: MPI and domain specific libraries layered on MPI
= Intra-node: Kokkos and domain specific libraries layered on Kokkos
" Intra-node parallelism, heterogeneity & diversity concerns
= Execution spaces (CPU, GPU, PIM, ...) have diverse performance requirements
= Memory spaces have diverse capabilities and performance characteristics
= Vendors have diverse programming models for optimal utilization of their hardware
= Standardized performance portable programming model?
= Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17
= Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ...
= Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ...
= Necessary condition: address execution & memory space diversity
= SNL Computing Research Center’s Kokkos (C++ library) solution
= Engagement with ISO C++ Standard committee to influence C++17

Kokkos: A Layered Collection of Libraries (i) i,

= Applications and Domain Libraries written in Standard C++
= Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...
= Require C++1998 standard (supported everywhere except IBM’s xIC)
= Prefer C++2011 for its concise lambda syntax (LLNL’s RAJA requires this)
As soon as vendors catch up to C++2011 language compliance

Application and Domain Specific Library Layer

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: Cuda, OpenMP, pthreads, vendor libraries ...

= Kokkos implemented with C++ template meta-programming
= |n spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAIA, ...

Performance Portability Challenge: i) deom
Best (good) performance requires computations to
implement architecture-specific memory access patterns

= CPUs (and Xeon Phi)

= Core-data affinity: consistent NUMA access (first touch)

= Array alignment for cache-lines and vector units
= Hyperthreads’ cooperative use of L1 cache

= GPUs

= Thread-data affinity: coalesced access with cache-line alignment
= Temporal locality and special hardware (texture cache)

= Array of Structures (AoS) vs. Structure of Arrays (SoA) dilemma
» This has been the wrong concern

Ask the right question: Abstractions for Performance Portability ?

Kokkos Performance Portability Answer) i

Laboratories

Integrated mapping of thread parallel computations and
multidimensional array data onto manycore spaces

= Kokkos maps users’ parallel computations to threads
= Standard parallel programming model pattern; e.g., parallel-for
= Users implement C++ functions or lambdas for their parallel loop bodies
= Kokkos calls user’s code from architecture’s “hardware” threads

= Kokkos’ multidimensional array data structure has a twist
" Layout mapping: multi-index (i,j,k,...) <> memory location
= Kokkos chooses layout for architecture-specific memory access pattern
= Layout changes are invisible to user code
~ IF user code honors Kokkos’ simple array API: a(i,j,k,...)
= “Polymorphic multidimensional array layout”

= Bonus: utilize special hardware invisibly to users’ code
= GPU texture cache to speed up read-only random access patterns
= Atomic operations for thread safety

Kokkos-Core’s Multidimensional Array APl ()&
" View< double**[3][8], Space > a(“a”,N,M);

= User allocates array data in “Space” with dimensions [N][M][3][8]

= Each * indicates a runtime supplied dimension
= Kokkos chooses layout appropriate for “Space”

= a(i,j,k,1) : User’s access to array data
= Bounds checking of indices when debugging
= “Space” accessibility enforced; e.g., GPU code cannot access CPU memory

= View Semantics: View<double**[3][8],Space>b =a;
= Ashallow copy: ‘a’ and ‘b’ are pointers to the same allocated array data
= Reference counting: last View automatically deallocates data

* deep_copy(destination_view , source_view);
= Copy array data across memory spaces
= Never hide an expensive deep copy operation from the user
» Only deep copy when a user calls the deep_copy function

Kokkos-Core’s Multidimensional Array APl ()&

Laboratories

= Advanced: View<ArrayType,Layout,Space,Attributes>
= ArrayType: scalar type, # runtime dimensions, compile-time dimensions
= Layout: user can override Kokkos’ choice for layout
= Attributes: user’s access intentions

* Why manually specify Layout ?
= Force compatibility with legacy code while incrementally porting
= Optimize performance with exotic layout

" View<double**,Tile<8,8>,Space> m(“matrix”,N,N);
= Tiling layout hidden from user code m(i,j)

= A “plugin” extension point

= Access intention attributes

= Turn off reference counting to wrap an legacy code’s array
= |ndicate random access to utilize GPU texture cache

* View< const double **, Cuda, RandomAccess>
= A “plugin” extension point

Kokkos-Core’s Parallel Execution API EEN
= parallel_for(N, [=](inti) {z(i) = x(i) + y(i); }); €< simplest API

= Using C++11 lambda expression and default execution space

= Call parallel loop body from hardware threads with i = [0..N)
= Kokkos chooses which threads call with which value of ‘i’

= parallel_reduce(RangePolicy<Space>(N), loop_body functor);
= Range execution policy specifies what execution space
= functor is a user supplied C++ class object with
= a member function implementing the parallel loop body
= member variables used by the parallel loop body function

= API: ParallelPattern(ExecutionPolicy , LoopBody)
= ParallelPattern: parallel_for, parallel_reduce, parallel _scan
= ExecutionPolicy: execution space and parallel iteration space
= LoopBody: user’s C++ class object or C++11 lambda expression
= Execution policy is a “plug in” extension point
= E.g., thread league-team policy, asynchronous task policy

Evaluate Performance Impact of Array Layout (i) &
« Molecular dynamics computational kernel in miniMD

Simple Lennard Jones force model: F.= 63[() 2(]
Atom neighbor list to avoid N2 computations "= ! !

pos_ 1 = pos();
for(jjJ = 0; 33 < num_neighbors(i); jj++) {
J = nelghbors(l .J1);
r iJ = pos_1 — pos(j); //random read 3 floats
1T (Jr_ij| < r_cut) .1 += 6*e*((s/r_apH)N7 — 2*(s/r_ij)"13)
+
(i) = f_1i;

Test Problem
o 864k atoms, ~77 neighbors

o 2D neighbor array 150 m correct layout
(with texture)

200

. Different layouts CPU vs GPU |3
« Random read ‘pos’ through 2100 # correct layout
(G] (without texture)
GPU texture cache 50

wrong layout

Large performance loss _— - . (with texture)
with wrong array layout

Xeon Xeon Phi K20x

Evaluate Performance Overhead of Abstraction ()

Laboratories

Kokkos competitive with native programming models

= MiniFE: finite element linear system iterative solver mini-app

= Compare to versions specialized for programming models

= Running on hardware testbeds

Time (seconds)

» MiniFE CG-Solve time for 200 iterations on 200*3 mesh
20
16
12

8

.

0

K20X IvyBridge SandyBridge XeonPhi BO XeonPhi CO IBM Power7+
NVIDIA ELL u NVIDIA CuSparse m Kokkos m OpenMP
m MPI-Only # OpenCL = TBB ¥ Cilk+(1 Socket)

MiniFENL Proxy Application) S,

= Solve nonlinear finite element problem via Newton iteration
= Focus on construction and fill of sparse linear system
= Thread safe, thread scalable, and performant algorithms
= Evaluate thread-parallel capabilities and programming models
= Construct sparse linear system graph and coefficient arrays
= Map finite element mesh connectivity to degree of freedom graph
= Thread-scalable algorithm for graph construction

= Compute nonlinear residual and Jacobian
= Thread-parallel finite element residual and Jacobian

= Atomic-add to fill element coefficients into linear system
= Atomic-add for thread safety, performance?

= Solve linear system for Newton iteration

Thread-Scalable Fill of Sparse Linear System

Sandia
National
Laboratories

h

= MiniFENL: Newton iteration of FEM: x,,,; = x,, — J 1(x,)r(x,,)

Scatter-Atomic-Add

+ Simpler

+ Less memory

— Slower HW atomic
Gather-Sum

+ Bit-wise reproducibility
Performance win?

= Scatter-atomic-add

= ~equal Xeon PHI
= 40% faster Kepler GPU
v' Pattern chosen
= Feedback to HW vendors:
performant atomics

Scatter-Atomic-Add

.

" Element \ | f

| Computations |
& Scatter-Add
atomic-add

4 Finite Element Data

Fill sparse matrix via Scatter-Atomic-Add or Gather-Sum ?

ra

Mapping:

" Mesh -» Sparse Graph)

-~ Element

Na \
Computations

Gather-Sum

Per-Element

\ Sparse Linear System

Coefficients

\Scratch Arrays

0.35

0.25

0.3 ‘W
N

0.2
0.15

R acririeiviried

0.05
0

Matrix Fill: microsec/node

1E+03 1E+04
Number of

1E+05 1E+06 1E+07
finite element nodes

===Phi-60 GatherSum
=#=Phi-60 ScatterAtomic
==Phi-240 GatherSum
=4=Phi-240 ScatterAtomic
==K40X GatherSum
=d=K40X ScatterAtomic

Thread-Scalable Sparse Matrix Construction (i) &

Laboratories

MiniFENL: Construct sparse matrix graph from FEM connectivity
= Thread scalable algorithm for constructing a data structure

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs
2. Parallel-scan : sparse matrix rows’ column counts into row offsets
3. Parallel-for : query unordered map to fill sparse matrix column-index array
4. Parallel-for : sort rows’ column-index subarray

0 2

k

9 1.5

b .

o 1 =#-Phi-60

g 0.5 =4=Phi-240

2, | —4-KA0X

1E+03 1E+04 1E+05 1E+06 1E+07
Number of finite element nodes

= Pattern and tools generally applicable to construction and
dynamic modification of data structures

Porting in Progress: Trilinos) e,

Laboratories

= Trilinos : SNL’s suite of equation solver libraries (and others)
= Currently MPIl-only parallel
* Incremental refactoring to MPI+Kokkos parallel

= Tpetra : Trilinos’ core parallel sparse linear algebra library
= Vectors, multi-vectors, sparse matrices, parallel data distribution maps
* Fundamental operations: axpy, dot, matrix-vector multiply, ...
= Templated on “scalar” type: float, double, automatic differentiation (AD),
embedded uncertainty quantification (UQ), ...
= Port Tpetra to MPI+Kokkos, other libraries follow
= On schedule to complete in Spring 2015
= Use of NVIDIA’s unified virtual memory (UVM) expedited porting effort

* Embedded UQ already Kokkos-enabled through LDRD

= Greater computational intensity leads to significant speed-ups compared to
non-embedded UQ sampling algorithms

Porting in Progress: LAMMPS) i,

Laboratories

= LAMMPS : molecular dynamics application

= Fully MPI-only parallel with some (prototype) thread-parallel user packages
= Architecture specific with redundantly implemented physics

= Incrementally refactoring to MPI+Kokkos parallel
= Collapse redundantly implemented physics into “core” code base

= MPI+Kokkos performing as well or better than thread-parallel user packages

LAMMPS Strongscaling

IM atoms; Standard Lennard Jones

| I I T I I

Xeon - Kokkos
Xeon - OpenMP =
Xeon Phi - Kokkos 3
Xeon Phi - OpenMP
Kepler - Kokkos
Kepler - Cuda

—
o
=
=]

T

N EmEn

Aggregate Compute Time
2

Takeaways : MPI + Kokkos for hybrid parallel ().

= Performance portability across disparate manycore architectures
= Compose mappings to control data access patterns
= parallel loop body - hardware threads
= multidimensional array layout - space-allocated data
= A0S versus SoA dilemma is solved

= Negligible performance overhead versus native implementation

= R&D now addressing more challenging algorithms
= “Plugin” extension points to facilitate R&D
= Construction and fill of sparse linear system
= Not discussed: LDRD for hybrid task-data parallelism and graph analytics

= Transition of legacy codes in progress: Trilinos, LAMMPS

= Kokkos to be released to public via GitHub in FY15/Q2

	Kokkos:�Enabling Performance Portability of C++ Applications and Libraries�across Manycore Architectures�
	Increasingly Complex Manycore Architectures�¿ Performance Portable and Future Proof Codes?
	Vision for Heterogeneous Parallelism
	Kokkos: A Layered Collection of Libraries
	Performance Portability Challenge:�Best (good) performance requires computations to implement architecture-specific memory access patterns
	Kokkos Performance Portability Answer
	Kokkos-Core’s Multidimensional Array API
	Kokkos-Core’s Multidimensional Array API
	Kokkos-Core’s Parallel Execution API
	Evaluate Performance Impact of Array Layout
	Evaluate Performance Overhead of Abstraction�Kokkos competitive with native programming models
	MiniFENL Proxy Application
	Thread-Scalable Fill of Sparse Linear System
	Thread-Scalable Sparse Matrix Construction
	Porting in Progress: Trilinos
	Porting in Progress: LAMMPS
	Takeaways : MPI + Kokkos for hybrid parallel

