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Increasingly Complex Manycore Architectures 
¿ Performance Portable and Future Proof Codes? 
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Memory Spaces 
  - Bulk non-volatile (Flash?) 
  - Standard DDR (DDR4) 
  - Fast memory (HBM/HMC) 
  - (Segmented) scratch-pad on die 
 
Execution Spaces 
  - Throughput cores (GPU) 
  - Latency optimized cores (CPU) 
  - Processing in memory  
 

Special Hardware 
  - Non caching loads 
  - Read only cache 
  - Atomics 

Programming 
models 
  - GPU: CUDA-ish 
  - CPU: OpenMP 
  - PIM: ?? 



Vision for Heterogeneous Parallelism 
 “MPI + X” Programming Model, separate concerns 
 Inter-node: MPI      and domain specific libraries layered on MPI 
 Intra-node: Kokkos and domain specific libraries layered on Kokkos 

 Intra-node parallelism, heterogeneity & diversity concerns 
 Execution spaces (CPU, GPU, PIM, ...) have diverse performance requirements 
 Memory spaces have diverse capabilities and performance characteristics 
 Vendors have diverse programming models for optimal utilization of their hardware 

 Standardized performance portable programming model? 
 Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17 
 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ... 
 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ... 

 Necessary condition: address execution & memory space diversity 
 SNL Computing Research Center’s Kokkos (C++ library) solution 
 Engagement with ISO C++ Standard committee to influence C++17 
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Application and Domain Specific Library Layer 
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Kokkos: A Layered Collection of Libraries 
 Applications and Domain Libraries written in Standard C++ 
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ... 
 Require C++1998 standard (supported everywhere except IBM’s xlC) 
 Prefer C++2011 for its concise lambda syntax (LLNL’s RAJA requires this) 
 As soon as vendors catch up to C++2011 language compliance 

 
 
 
 
 
 

 Kokkos implemented with C++ template meta-programming 
 In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ... 

Back-ends: Cuda, OpenMP, pthreads, vendor libraries ... 

Kokkos Sparse Linear Algebra 
Kokkos Containers 
Kokkos Core 
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Performance Portability Challenge: 
Best (good) performance requires computations to 
implement architecture-specific memory access patterns 
 CPUs (and Xeon Phi) 
 Core-data affinity: consistent NUMA access (first touch) 
 Array alignment for cache-lines and vector units 
 Hyperthreads’ cooperative use of L1 cache 

 GPUs 
 Thread-data affinity: coalesced access with cache-line alignment 
 Temporal locality and special hardware (texture cache) 

 Array of Structures (AoS) vs. Structure of Arrays (SoA) dilemma 
This has been the wrong concern 

Ask the right question: Abstractions for Performance Portability ? 
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Kokkos Performance Portability Answer 
Integrated mapping of thread parallel computations and 

multidimensional array data onto manycore spaces 
 Kokkos maps users’ parallel computations to threads 
 Standard parallel programming model pattern; e.g., parallel-for 
 Users implement C++ functions or lambdas for their parallel loop bodies 
 Kokkos calls user’s code from architecture’s “hardware” threads 

 Kokkos’ multidimensional array data structure has a twist 
 Layout mapping: multi-index (i,j,k,...) ↔ memory location 
 Kokkos chooses layout for architecture-specific memory access pattern 
 Layout changes are invisible to user code 
IF user code honors Kokkos’ simple array API: a(i,j,k,...) 

 “Polymorphic multidimensional array layout” 

 Bonus: utilize special hardware invisibly to users’ code  
 GPU texture cache to speed up read-only random access patterns 
 Atomic operations for thread safety 
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Kokkos-Core’s Multidimensional Array API 
 View< double**[3][8] , Space > a(“a”,N,M); 
 User allocates array data in “Space” with dimensions [N][M][3][8] 
 Each * indicates a runtime supplied dimension 

 Kokkos chooses layout appropriate for “Space” 

 a(i,j,k,l) : User’s access to array data 
 Bounds checking of indices when debugging 
 “Space” accessibility enforced; e.g., GPU code cannot access CPU memory 

 View Semantics: View<double**[3][8],Space> b = a ; 
 A shallow copy: ‘a’ and ‘b’ are pointers to the same allocated array data 
 Reference counting: last View automatically deallocates data 

 deep_copy( destination_view , source_view ); 
 Copy array data across memory spaces 
 Never hide an expensive deep copy operation from the user 

 Only deep copy when a user calls the deep_copy function 
 



7 

Kokkos-Core’s Multidimensional Array API 
 Advanced: View<ArrayType,Layout,Space,Attributes> 
 ArrayType: scalar type, # runtime dimensions, compile-time dimensions 
 Layout: user can override Kokkos’ choice for layout 
 Attributes: user’s access intentions 

 Why manually specify Layout ? 
 Force compatibility with legacy code while incrementally porting 
 Optimize performance with exotic layout 

 View<double**,Tile<8,8>,Space> m(“matrix”,N,N); 
 Tiling layout hidden from user code  m(i,j) 

 A “plug in” extension point 

 Access intention attributes 
 Turn off reference counting to wrap an legacy code’s array 
 Indicate random access to utilize GPU texture cache 

 View< const double **, Cuda, RandomAccess> 
 A “plug in” extension point 
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Kokkos-Core’s Parallel Execution API 
 parallel_for( N , [=]( int i ) { z(i) = x(i) + y(i); } );  ← simplest API 
 Using C++11 lambda expression and default execution space 
 Call parallel loop body from hardware threads with i = [0..N) 
 Kokkos chooses which threads call with which value of ‘i’ 

 parallel_reduce( RangePolicy<Space>(N) ,  loop_body_functor ); 
 Range execution policy specifies what execution space 
 functor is a user supplied C++ class object with 
 a member function implementing the parallel loop body 
 member variables used by the parallel loop body function 

 API: ParallelPattern( ExecutionPolicy , LoopBody ) 
 ParallelPattern: parallel_for, parallel_reduce, parallel_scan 
 ExecutionPolicy: execution space and parallel iteration space 
 LoopBody: user’s C++ class object or C++11 lambda expression 

 Execution policy is a “plug in” extension point 
 E.g., thread league-team policy, asynchronous task policy 



Evaluate Performance Impact of Array Layout 
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 Molecular dynamics computational kernel in miniMD 
 Simple Lennard Jones force model: 
 Atom neighbor list to avoid N2 computations 
 

 

 

 Test Problem 
 864k atoms, ~77 neighbors 
 2D neighbor array 
 Different layouts CPU vs GPU 
 Random read ‘pos’ through 

GPU texture cache  
 Large performance loss 

with wrong array layout 

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);  
for( jj = 0; jj < num_neighbors(i); jj++) { 
  j = neighbors(i,jj);  
  r_ij = pos_i – pos(j); //random read 3 floats 
  if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13) 
} 
f(i) = f_i; 
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Evaluate Performance Overhead of Abstraction 
Kokkos competitive with native programming models 

 MiniFE: finite element linear system iterative solver mini-app 

 Compare to versions specialized for programming models 

 Running on hardware testbeds 
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MiniFENL Proxy Application 
 Solve nonlinear finite element problem via Newton iteration 

 Focus on construction and fill of sparse linear system 
 Thread safe, thread scalable, and performant algorithms  
 Evaluate thread-parallel capabilities and programming models 

 Construct sparse linear system graph and coefficient arrays 
 Map finite element mesh connectivity to degree of freedom graph 
 Thread-scalable algorithm for graph construction 

 Compute nonlinear residual and Jacobian 
 Thread-parallel finite element residual and Jacobian 
 Atomic-add to fill element coefficients into linear system 

 Atomic-add for thread safety, performance? 

 Solve linear system for Newton iteration 
 



Thread-Scalable Fill of Sparse Linear System 
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 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏� 

 Fill sparse matrix via Scatter-Atomic-Add or Gather-Sum ? 
 Scatter-Atomic-Add 

+ Simpler 
+ Less memory 
– Slower HW atomic 

 Gather-Sum 
+ Bit-wise reproducibility 

 Performance win? 
 Scatter-atomic-add 
 ~equal Xeon PHI 
 40% faster Kepler GPU 

 Pattern chosen 
 Feedback to HW vendors: 

performant atomics 
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Thread-Scalable Sparse Matrix Construction 
 MiniFENL: Construct sparse matrix graph from FEM connectivity 
 Thread scalable algorithm for constructing a data structure 

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs 
2. Parallel-scan : sparse matrix rows’ column counts into row offsets 
3. Parallel-for : query unordered map to fill sparse matrix column-index array 
4. Parallel-for : sort rows’ column-index subarray 
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 Pattern and tools generally applicable to construction and 
dynamic modification of data structures  
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Porting in Progress: Trilinos 
 Trilinos : SNL’s suite of equation solver libraries (and others) 
 Currently MPI-only parallel 
 Incremental refactoring to MPI+Kokkos parallel 

 Tpetra : Trilinos’ core parallel sparse linear algebra library 
 Vectors, multi-vectors, sparse matrices, parallel data distribution maps 
 Fundamental operations: axpy, dot, matrix-vector multiply, ... 
 Templated on “scalar” type: float, double, automatic differentiation (AD), 

embedded uncertainty quantification (UQ), ... 

 Port Tpetra to MPI+Kokkos, other libraries follow 
 On schedule to complete in Spring 2015 
 Use of NVIDIA’s unified virtual memory (UVM) expedited porting effort 

 Embedded UQ already Kokkos-enabled through LDRD 
 Greater computational intensity leads to significant speed-ups compared to 

non-embedded UQ sampling algorithms 
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Porting in Progress: LAMMPS 
 LAMMPS : molecular dynamics application 
 Fully MPI-only parallel with some (prototype) thread-parallel user packages 
 Architecture specific with redundantly implemented physics 

 Incrementally refactoring to MPI+Kokkos parallel 
 Collapse redundantly implemented physics into “core” code base 

 MPI+Kokkos performing as well or better than thread-parallel user packages 
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Takeaways : MPI + Kokkos for hybrid parallel 

 Performance portability across disparate manycore architectures 
 Compose mappings to control data access patterns 
 parallel loop body → hardware threads 
 multidimensional array layout → space-allocated data 

 AoS versus SoA dilemma is solved 

 Negligible performance overhead versus native implementation 

 R&D now addressing more challenging algorithms 
 “Plug in” extension points to facilitate R&D 
 Construction and fill of sparse linear system 
 Not discussed: LDRD for hybrid task-data parallelism and graph analytics 

 Transition of legacy codes in progress: Trilinos, LAMMPS 

 Kokkos to be released to public via GitHub in FY15/Q2 
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