
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Kokkos:
Enabling Performance Portability
of C++ Applications and Libraries
across Manycore Architectures

NECDC / October 22, 2014

SAND2014-18527C (Unlimited Release)

Increasingly Complex Manycore Architectures
¿ Performance Portable and Future Proof Codes?

1

PIM DDR

L2*

NVRAM

PIM

L1
*

Te
x

Scr

L1
*

Te
x

Scr

L1
*

Te
x

Scr

NIC L3

Memory Spaces
 - Bulk non-volatile (Flash?)
 - Standard DDR (DDR4)
 - Fast memory (HBM/HMC)
 - (Segmented) scratch-pad on die

Execution Spaces
 - Throughput cores (GPU)
 - Latency optimized cores (CPU)
 - Processing in memory

Special Hardware
 - Non caching loads
 - Read only cache
 - Atomics

Programming
models
 - GPU: CUDA-ish
 - CPU: OpenMP
 - PIM: ??

Vision for Heterogeneous Parallelism
 “MPI + X” Programming Model, separate concerns
 Inter-node: MPI and domain specific libraries layered on MPI
 Intra-node: Kokkos and domain specific libraries layered on Kokkos

 Intra-node parallelism, heterogeneity & diversity concerns
 Execution spaces (CPU, GPU, PIM, ...) have diverse performance requirements
 Memory spaces have diverse capabilities and performance characteristics
 Vendors have diverse programming models for optimal utilization of their hardware

 Standardized performance portable programming model?
 Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17
 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ...
 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ...

 Necessary condition: address execution & memory space diversity
 SNL Computing Research Center’s Kokkos (C++ library) solution
 Engagement with ISO C++ Standard committee to influence C++17

2

Application and Domain Specific Library Layer

3

Kokkos: A Layered Collection of Libraries
 Applications and Domain Libraries written in Standard C++
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...
 Require C++1998 standard (supported everywhere except IBM’s xlC)
 Prefer C++2011 for its concise lambda syntax (LLNL’s RAJA requires this)
 As soon as vendors catch up to C++2011 language compliance

 Kokkos implemented with C++ template meta-programming
 In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ...

Back-ends: Cuda, OpenMP, pthreads, vendor libraries ...

Kokkos Sparse Linear Algebra
Kokkos Containers
Kokkos Core

4

Performance Portability Challenge:
Best (good) performance requires computations to
implement architecture-specific memory access patterns
 CPUs (and Xeon Phi)
 Core-data affinity: consistent NUMA access (first touch)
 Array alignment for cache-lines and vector units
 Hyperthreads’ cooperative use of L1 cache

 GPUs
 Thread-data affinity: coalesced access with cache-line alignment
 Temporal locality and special hardware (texture cache)

 Array of Structures (AoS) vs. Structure of Arrays (SoA) dilemma
This has been the wrong concern

Ask the right question: Abstractions for Performance Portability ?

5

Kokkos Performance Portability Answer
Integrated mapping of thread parallel computations and

multidimensional array data onto manycore spaces
 Kokkos maps users’ parallel computations to threads
 Standard parallel programming model pattern; e.g., parallel-for
 Users implement C++ functions or lambdas for their parallel loop bodies
 Kokkos calls user’s code from architecture’s “hardware” threads

 Kokkos’ multidimensional array data structure has a twist
 Layout mapping: multi-index (i,j,k,...) ↔ memory location
 Kokkos chooses layout for architecture-specific memory access pattern
 Layout changes are invisible to user code
IF user code honors Kokkos’ simple array API: a(i,j,k,...)

 “Polymorphic multidimensional array layout”

 Bonus: utilize special hardware invisibly to users’ code
 GPU texture cache to speed up read-only random access patterns
 Atomic operations for thread safety

6

Kokkos-Core’s Multidimensional Array API
 View< double**[3][8] , Space > a(“a”,N,M);
 User allocates array data in “Space” with dimensions [N][M][3][8]
 Each * indicates a runtime supplied dimension

 Kokkos chooses layout appropriate for “Space”

 a(i,j,k,l) : User’s access to array data
 Bounds checking of indices when debugging
 “Space” accessibility enforced; e.g., GPU code cannot access CPU memory

 View Semantics: View<double**[3][8],Space> b = a ;
 A shallow copy: ‘a’ and ‘b’ are pointers to the same allocated array data
 Reference counting: last View automatically deallocates data

 deep_copy(destination_view , source_view);
 Copy array data across memory spaces
 Never hide an expensive deep copy operation from the user

 Only deep copy when a user calls the deep_copy function

7

Kokkos-Core’s Multidimensional Array API
 Advanced: View<ArrayType,Layout,Space,Attributes>
 ArrayType: scalar type, # runtime dimensions, compile-time dimensions
 Layout: user can override Kokkos’ choice for layout
 Attributes: user’s access intentions

 Why manually specify Layout ?
 Force compatibility with legacy code while incrementally porting
 Optimize performance with exotic layout

 View<double**,Tile<8,8>,Space> m(“matrix”,N,N);
 Tiling layout hidden from user code m(i,j)

 A “plug in” extension point

 Access intention attributes
 Turn off reference counting to wrap an legacy code’s array
 Indicate random access to utilize GPU texture cache

 View< const double **, Cuda, RandomAccess>
 A “plug in” extension point

8

Kokkos-Core’s Parallel Execution API
 parallel_for(N , [=](int i) { z(i) = x(i) + y(i); }); ← simplest API
 Using C++11 lambda expression and default execution space
 Call parallel loop body from hardware threads with i = [0..N)
 Kokkos chooses which threads call with which value of ‘i’

 parallel_reduce(RangePolicy<Space>(N) , loop_body_functor);
 Range execution policy specifies what execution space
 functor is a user supplied C++ class object with
 a member function implementing the parallel loop body
 member variables used by the parallel loop body function

 API: ParallelPattern(ExecutionPolicy , LoopBody)
 ParallelPattern: parallel_for, parallel_reduce, parallel_scan
 ExecutionPolicy: execution space and parallel iteration space
 LoopBody: user’s C++ class object or C++11 lambda expression

 Execution policy is a “plug in” extension point
 E.g., thread league-team policy, asynchronous task policy

Evaluate Performance Impact of Array Layout

9

 Molecular dynamics computational kernel in miniMD
 Simple Lennard Jones force model:
 Atom neighbor list to avoid N2 computations

 Test Problem
 864k atoms, ~77 neighbors
 2D neighbor array
 Different layouts CPU vs GPU
 Random read ‘pos’ through

GPU texture cache
 Large performance loss

with wrong array layout

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);
for(jj = 0; jj < num_neighbors(i); jj++) {
 j = neighbors(i,jj);
 r_ij = pos_i – pos(j); //random read 3 floats
 if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13)
}
f(i) = f_i;

0

50

100

150

200

Xeon Xeon Phi K20x

G
Fl

op
/s

correct layout
(with texture)

correct layout
(without texture)

wrong layout
(with texture)

Evaluate Performance Overhead of Abstraction
Kokkos competitive with native programming models

 MiniFE: finite element linear system iterative solver mini-app

 Compare to versions specialized for programming models

 Running on hardware testbeds

10

0
4
8

12
16
20
24

K20X IvyBridge SandyBridge XeonPhi B0 XeonPhi C0 IBM Power7+

MiniFE CG-Solve time for 200 iterations on 200^3 mesh

NVIDIA ELL NVIDIA CuSparse Kokkos OpenMP
MPI-Only OpenCL TBB Cilk+(1 Socket)

Ti
m

e
(s

ec
on

ds
)

11

MiniFENL Proxy Application
 Solve nonlinear finite element problem via Newton iteration

 Focus on construction and fill of sparse linear system
 Thread safe, thread scalable, and performant algorithms
 Evaluate thread-parallel capabilities and programming models

 Construct sparse linear system graph and coefficient arrays
 Map finite element mesh connectivity to degree of freedom graph
 Thread-scalable algorithm for graph construction

 Compute nonlinear residual and Jacobian
 Thread-parallel finite element residual and Jacobian
 Atomic-add to fill element coefficients into linear system

 Atomic-add for thread safety, performance?

 Solve linear system for Newton iteration

Thread-Scalable Fill of Sparse Linear System

12

 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏�

 Fill sparse matrix via Scatter-Atomic-Add or Gather-Sum ?
 Scatter-Atomic-Add

+ Simpler
+ Less memory
– Slower HW atomic

 Gather-Sum
+ Bit-wise reproducibility

 Performance win?
 Scatter-atomic-add
 ~equal Xeon PHI
 40% faster Kepler GPU

 Pattern chosen
 Feedback to HW vendors:

performant atomics

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

1E+03 1E+04 1E+05 1E+06 1E+07M
at

rix
 F

ill
: m

ic
ro

se
c/

no
de

Number of finite element nodes

Phi-60 GatherSum
Phi-60 ScatterAtomic
Phi-240 GatherSum
Phi-240 ScatterAtomic
K40X GatherSum
K40X ScatterAtomic

Thread-Scalable Sparse Matrix Construction
 MiniFENL: Construct sparse matrix graph from FEM connectivity
 Thread scalable algorithm for constructing a data structure

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs
2. Parallel-scan : sparse matrix rows’ column counts into row offsets
3. Parallel-for : query unordered map to fill sparse matrix column-index array
4. Parallel-for : sort rows’ column-index subarray

13

0

0.5

1

1.5

2

1E+03 1E+04 1E+05 1E+06 1E+07

M
ic

ro
se

c/
no

de

Number of finite element nodes

Phi-60

Phi-240

K40X

 Pattern and tools generally applicable to construction and
dynamic modification of data structures

14

Porting in Progress: Trilinos
 Trilinos : SNL’s suite of equation solver libraries (and others)
 Currently MPI-only parallel
 Incremental refactoring to MPI+Kokkos parallel

 Tpetra : Trilinos’ core parallel sparse linear algebra library
 Vectors, multi-vectors, sparse matrices, parallel data distribution maps
 Fundamental operations: axpy, dot, matrix-vector multiply, ...
 Templated on “scalar” type: float, double, automatic differentiation (AD),

embedded uncertainty quantification (UQ), ...

 Port Tpetra to MPI+Kokkos, other libraries follow
 On schedule to complete in Spring 2015
 Use of NVIDIA’s unified virtual memory (UVM) expedited porting effort

 Embedded UQ already Kokkos-enabled through LDRD
 Greater computational intensity leads to significant speed-ups compared to

non-embedded UQ sampling algorithms

15

Porting in Progress: LAMMPS
 LAMMPS : molecular dynamics application
 Fully MPI-only parallel with some (prototype) thread-parallel user packages
 Architecture specific with redundantly implemented physics

 Incrementally refactoring to MPI+Kokkos parallel
 Collapse redundantly implemented physics into “core” code base

 MPI+Kokkos performing as well or better than thread-parallel user packages

16

Takeaways : MPI + Kokkos for hybrid parallel

 Performance portability across disparate manycore architectures
 Compose mappings to control data access patterns
 parallel loop body → hardware threads
 multidimensional array layout → space-allocated data

 AoS versus SoA dilemma is solved

 Negligible performance overhead versus native implementation

 R&D now addressing more challenging algorithms
 “Plug in” extension points to facilitate R&D
 Construction and fill of sparse linear system
 Not discussed: LDRD for hybrid task-data parallelism and graph analytics

 Transition of legacy codes in progress: Trilinos, LAMMPS

 Kokkos to be released to public via GitHub in FY15/Q2

	Kokkos:�Enabling Performance Portability of C++ Applications and Libraries�across Manycore Architectures�
	Increasingly Complex Manycore Architectures�¿ Performance Portable and Future Proof Codes?
	Vision for Heterogeneous Parallelism
	Kokkos: A Layered Collection of Libraries
	Performance Portability Challenge:�Best (good) performance requires computations to implement architecture-specific memory access patterns
	Kokkos Performance Portability Answer
	Kokkos-Core’s Multidimensional Array API
	Kokkos-Core’s Multidimensional Array API
	Kokkos-Core’s Parallel Execution API
	Evaluate Performance Impact of Array Layout
	Evaluate Performance Overhead of Abstraction�Kokkos competitive with native programming models
	MiniFENL Proxy Application
	Thread-Scalable Fill of Sparse Linear System
	Thread-Scalable Sparse Matrix Construction
	Porting in Progress: Trilinos
	Porting in Progress: LAMMPS
	Takeaways : MPI + Kokkos for hybrid parallel

