Sandia
National
Laboratories

Exceptional
service

in the

national

interest

Kokkos, a Manycore Device
Performance Portability Library
for C++ HPC Applications

H. Carter Edwards, Christian Trott,
Daniel Sunderland

Sandia National Laboratories

GPU TECHNOLOGY CONFERENCE 2014
MARCH 24-27, 2013 | SAN JOSE, CALIFORNIA

SAND2014-2317C (Unlimited Release)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP




Sandia

Increasingly Complex Heterogeneous Future; @i,
¢ Future Proof Performance Portable Code?

Special Hardware
- Non caching loads
- Read only cache
- Atomics

Programming
models

- GPU: CUDA-ish
- CPU: OpenMP
- PIM: ??

Memory Spaces
- Bulk non-volatile (Flash?)
- Standard DDR (DDR4)
- Fast memory (HBM/HMC)
- (Segmented) scratch-pad on die

Execution Spaces
- Throughput cores (GPU)
- Latency optimized cores (CPU)
- Processing in memory

L3




. Sandia
Outline L

= What is Kokkos

= Layered collection of C++ libraries
= Thread parallel programming model that managed data access patterns

= Evaluation via mini-applications

= Refactoring legacy libraries and applications
= CUDA UVM (unified virtual memory) in the critical path!

= Conclusion




Kokkos: A Layered Collection of Libraries ) &=

= Standard C++, Not a language extension
= |n spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ...
= Not a language extension: OpenMP, OpenACC, OpenCL, CUDA

= Uses C++ template meta-programming
= Currently rely upon C++1998 standard (everywhere except IBM’s xIC)
= Prefer to require C++2011 for lambda syntax
Need CUDA with C++2011 language compliance

Application & Library Domain Layer

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...




Kokkos’ Layered Libraries ) e

= Core
= Multidimensional arrays and subarrays in memory spaces
= parallel_for, parallel_reduce, parallel_scan on execution spaces
= Atomic operations: compare-and-swap, add, bitwise-or, bitwise-and

= Containers
» UnorderedMap - fast lookup and thread scalable insert / delete
= Vector — subset of std::vector functionality to ease porting
= Compress Row Storage (CRS) graph
= Host mirrored & synchronized device resident arrays
= Sparse Linear Algebra
= Sparse matrices and linear algebra operations
= Wrappers for vendors’ libraries
= Portability layer for Trilinos manycore solvers




Kokkos Core: Managing Data Access rh) e,
Performance Portability Challenge:
Require Device-Dependent Memory Access Patterns
= CPUs (and Xeon Phi)

= Core-data affinity: consistent NUMA access (first touch)
= Hyperthreads’ cooperative use of L1 cache
= Alignment for cache-lines and vector units

= GPUs

= Thread-data affinity: coalesced access with cache-line alignment
= Temporal locality and special hardware (texture cache)

= ¢ “Array of Structures” vs. “Structure of Arrays” ?
» This is, and has been, the wrong question

Right question: Abstractions for Performance Portability ?




Sandia

Kokkos Core: Fundamental Abstractions T &=,

= Devices have Execution Space and Memory Spaces
= Execution spaces: Subset of CPU cores, GPU, ...

= Memory spaces: host memory, host pinned memory, GPU global memory,
GPU shared memory, GPU UVM memory, ...

= Dispatch computation to execution space accessing data in memory spaces

= Multidimensional Arrays, with a twist
= Map multi-index (i,j,k,...) <> memory location in a memory space
= Map is derived from an array layout
» Choose layout for device-specific memory access pattern
= Make layout changes transparent to the user code;
» IF the user code honors the simple API: a(i,j,k,...)

Separates user’s index space from memory layout




Kokkos Core: Multidimensional Array )
Allocation, Access, and Layout

= Allocate and access multidimensional arrays
class View< double * * [3][8], Device > a(“a”,N,M);

= Dimension [N][M][3][8] ; two runtime, two compile-time
= afi,j,k,l) : access data via multi-index with device-specific map
= |ndex map inserted at compile-time (C++ template meta programming)

= |dentical C++ ‘View’ objects used in host and device code

= Assertions that ‘a(i,j,k,1)’ access is correct
= Compile-time:
= Execution space can access memory space (instead of runtime segfault)
= Array rank == multi-index rank
= Runtime (debug mode)
= Array bounds checking
= Uses Cuda ‘assert’ mechanism on GPU



Kokkos Core: Multidimensional Array )
Layout and Access Attributes

= Override device’s default array layout
class View<double**[3][8], Layout , Device> a(“a”,N,M);
= E.g., force row-major or column-major
» Multi-index access is unchanged in user code
= Layoutis an extension point for blocking, tiling, etc.

= Example: Tiled layout
class View<double**, TileLeft<8,8>, Device> b(“b”,N,M);

» Layout changes are transparent to user code
» IF the user code honors the a(i,j,k,...) API

= Data access attributes — user’s intent
class View<const double**[3][8], Device, RandomRead>x=a;

= Constant + RandomRead + GPU - read through GPU texture cache
= Transparent to user code




Kokkos Core: Deep Copy Array Data )
NEVER have a hidden, expensive deep-copy

= Only deep-copy when explicitly instructed by user code

= Avoid expensive permutation of data due to different layouts

= Mirror the layout in Host memory space
typedef class View<...,Device> MyViewType ;

MyViewType a(“a”,...);

MyViewType::HostMirror a_h = create_mirror( a );

deep_copy(a,a_h); deep_copy(a_h,a);

= Avoid unnecessary deep-copy
MyViewType::HostMirror a_h = create_mirror_view( a );

= |f Device uses host memory or if Host can access Device memory space
(CUDA unified virtual memory)

= Then ‘a_h’is simply a view of ‘a’ and deep_copy is a no-op




Kokkos Core: Dispatch Data Parallel Functors (i) &=
‘NW’ units of data parallel work

= parallel_for( NW, functor)
= Call functor( iw ) with iw € [0,NW) and #thread < NW

= parallel_reduce( NW, functor)
= Call functor(iw, value ) which contributes to reduction ‘value’
= |nter-thread reduction via functor.init(value) & functor.join(value,input)
= Kokkos manages inter-thread reduction algorithms and scratch space

= parallel_scan( NW, functor))
= Call functor(iw, value, final_flag ) multiple times (possibly)
= if final_flag == true then ‘value’ is the prefix sum for ‘iw’
= |nter-thread reduction via functor.init(value) & functor.join(value,input)
= Kokkos manages inter-thread reduction algorithms and scratch space




Kokkos Core: Dispatch Data Parallel Functors (i) &,
League of Thread Teams (grid of thread blocks)

= parallel_for( { ##teams , #threads/team }, functor)
= Call functor( teaminfo )
= teaminfo = { #fteams, team-id, #threads/team, thread-in-team-id }

= parallel_reduce( { #teams , #threads/team }, functor)
= Call functor( teaminfo , value )

= parallel_scan( { #teams , #threads/team }, functor)
= Call functor( teaminfo , value, final_flag)

= A Thread Team has
= Concurrent execution with intra-team collectives (barrier, reduce, scan)
= Team-shared scratch memory
= Exclusive use of CPU and Xeon Phi cores while executing




Kokkos Core: Manage Memory Access Pattern () 5.,
Compose Parallel Dispatch O Array Layout

= Parallel Dispatch
= Maps calls to functor(iw) onto threads
= GPU: iw = threadldx + blockDim * blocklds
" CPU:iw €[begin,end)y, ; contiguous partitions among threads
= Multidimensional Array Layout
= Contract: leading dimension (right most) is parallel work dimension
= Leading multi-index is ‘iw’ : a( iw, j,k,l)
= Choose array layout for required access pattern
" Choose AoS for CPU and SoA for GPU

= Fine-tuning
= E.g., padding dimensions for cache line alignment



National

Kokkos Containers ) =,

= Kokkos::DualView< type, device >
= Bundling a View and its View::HostMirror into a single class

= Track which View was most recently updated

= Synchronize: deep copy from most recently updated view to other view
= Host - device OR device - host

= Capture a common usage pattern into DualView class

= Kokkos::Vector< type, device >
= Thin layer on rank-one View with “look & feel” of std::vector
= No dynamic sizing from the device execution space
= Thread scalability issues
= Aid porting of code using std::vector

= That does not dynamically resize within a kernels




National

Kokkos Containers: Unordered Map ) i

= Thread scalable
= Lock-free implementation with minimal/essential use of atomics

= API deviates from C++11 unordered map
> No on-the-fly allocation / reallocation
» Index-based instead of iterator-based

= |nsert (fill) within a parallel reduce functor
= Functor: {status, index} = map.insert(key,value);
= Status = success | existing | failed due to insufficient capacity
= Reduction on failed-count to resize the map

= Host:
UnorderedMap<Key,Value,Device> map ;
do {
map.rehash( capacity );
capacity += ( nfailed = parallel_reduce( NW, functor) );
} while( nfailed ); // should iterate at most twice




National

Unordered Map Performance Evaluation ) .

= Parallel-for insert to 88% full with 16x redundant inserts
= NW = number attempts to insert = Capacity * 88% * 16
= Near - contiguous work indices [iw,iw+16) insert same keys
= Far - strided work indices insert same keys

= Single “Device” Performance Tests
= NVidia Kepler K40 (Atlas), 12Gbytes
= Intel Xeon Phi (Knights Corner) COES2, 61 cores, 1.2 GHz, 16Gbytes
= Limit use to 60 cores, 4 hyperthreads/core

N
o

= K40X dramatically better
——Phi-240, far performance

|
\

=+=Phi-240, near | = Xeon Phi implementation
optimized using explicit

nanosec / attempted
insert
=
o

== K40X, far
5 Ardr—r—ir—tr—tr—t—h non-caching prefetch
=#=K40X, near
0  A—i—iei—t—t—i—i " Theory: due to cache
1E+04  1E+05  1E+06  1E+07 coherency protocols and
map capacity atomics’ performance



: S
Outline i) e

What is Kokkos

Evaluation via mini-applications
= MiniMD molecular dynamics
= MiniFE Conjugate Gradient (CG) iterative solver
= MiniFENL sparse matrix construction

Refactoring legacy libraries and applications
= CUDA UVM (unified virtual memory) in the critical path!

Conclusion




MiniMD Performance ) i
Lennard Jones force model using atom neighbor list

. Solve Newton’s equations for N particles .
7 1
. Simple Lennard Jones force model: Fi= > 68[(%)‘ 2(%) ]
J ’ rij< r-cut IJ IJ

. Use atom neighbor list to avoid N2 computations
pos_i1 = pos(i);
for(C JJ = 0; JjJ < num_neighbors(i); jj++) {
J = neighbors(i,jj);
r_ij = pos_i — pos(j); //random read 3 floats
it C Jr_ij] < r_cut)
i += 6%e*( (s/r_ij)"7 — 2*(s/r_ijH)"13 )
}

(1) = f_1;

. Moderately compute bound computational kernel

« On average 77 neighbors with 55 inside of the cutoff radius




MiniMD Performance

Lennard Jones (L)) force model using atom neighbor list

« Test Problem (#Atoms = 864k, ~77 neighbors/atom)

o Neighbor list array with correct vs. wrong layout
« Different layout between CPU and GPU
« Random read of neighbor coordinate via GPU texture fetch

200

M correct layout (with texture)

# correct layout without texture

7 m wrong layout (with texture)

Xeon Xeon Phi K20x

o Large loss in performance with wrong layout
o Even when using GPU texture fetch
o Kokkos, by default, selects the correct layout

Sandia
National
Laboratories




MiniFE CG-Solver on Sandia’s Testbeds ) i,

Laboratories
Kokkos competitive with “native” implementations

" Finite element mini-app in Mantevo (mantevo.org)
= CG solve of finite element heat conduction equation

= Numerous programming model variants
= More than 20 variants in Mantevo repository (eight in release 2.0)

= Evaluating hardware testbeds and programming models

» MiniFE CG-Solve time for 200 iterations on 200"3 mesh

N
o

=
(@)

Time (seconds)
H
N

o ~ 0

K20X IvyBridge  SandyBridge XeonPhi BO XeonPhi CO IBM Power7+

NVIDIA ELL u NVIDIA CuSparse m Kokkos m OpenMP
m MPI-Only # OpenCL = TBB ¥ Cilk+(1 Socket)




MiniFENL: Mini driver Application ) e,

= Solve nonlinear finite element problem via Newton iteration
= Focus on construction and fill of sparse linear system

= Thread safe, thread scalable, and performant algorithms

= Evaluate thread-parallel capabilities and programming models
= Construct maps sparse linear system

= Sparse linear system graph : node-node map

= Element-graph map for scatter-atomic-add assembly algorithm

O Graph-element map for gather-sum assembly algorithm
= Compute nonlinear residual and Jacobian

= |terate elements to compute per-element residual and Jacobian

= Scatter-atomic-add values into linear system
O Save values in gather-sum scratch array

O Iterate rows, gather data from scratch array, sum into linear system

= Solve linear system for Newton iteration




Scatter-Atomic-Add vs. Gather-Sum

Sandia
National
Laboratories

Map: Mesh — Sparse Graph Finite Element Data

Scatter-Atomic-

Add Pattern Element
Computations
Element ‘l’
Computations very large

+ Scatter-Add

Scratch Arrays

v

Gather-SlD

atomic_add

Sparse Linear System
Coefficients

Gather-Sum Pattern




Scatter-Atomic-Add vs. Gather-Sum i) i

= Both are thread-safe and thread-scalable

= Scatter-Atomic-Add
+ Simple implementation
+ Fewer global memory reads and writes
- Atomic operations much slower than corresponding regular operation
- Non-deterministic order of additions — floating point round off variability
- Double precision atomic add is a looped compare-and-swap (CAS)

= Gather-Sum
+ Deterministic order of additions — no round off variability
- Extra scratch arrays for element residuals and Jacobians
- Additional parallel-for

= Performance comparison — execution time
= Neglecting the time to pre-compute mapping(s), assuming re-use
= Cost of atomic-add vs. additional parallel-for for the gather-sum



Performance Comparison: Element+Fill ) e

. __Lgh i —=Phi-60 GatherSum
-

P 0.35
© 03 -
> 0.25 —~— —4Phi-60 ScatterAtomic
9 0.
S 0.2 ——Phi-240 GatherSum
E 0.15 - =#-Phi-240 ScatterAtomic
= o1 :E : : : : : : : —=K40X GatherSum
|-|- ° N
= 0.05 =+-K40X ScatterAtomic
S o

1E+03 1E+04 1E+05 1E+06 1E+07

Number of finite element nodes

= ScatterAtomic as good or better without extra scratch memory

= Phi: ScatterAtomicAdd ~equal to GatherSum
= ~2.1x speed up from 1 to 4 threads/core — hyperthreading

= Kepler: ScatterAtomicAdd ~40% faster than GatherSum
= Fewer global memory writes and reads
= Double precision atomic-add via compare-and-swap algorithm
= Plan to explore element coloring to avoid atomics for scatter-add



Thread Scalable CRS Graph Construction ) o

1. Fill unordered map with elements’ (row-node, column-node)
= Parallel-for of elements, iterate node-node pairs
= Successful insert to node-node unordered map denotes a unique entry
=  Column count = count unique entries for each row-node

2. Construct (row-node, column-node) sparse graph
= Parallel-scan of row-node column counts
= This is now the CRS row-offset array
= Allocate CRS column-index array
= Parallel-for on node-node unordered map to fill CRS column-index array
= Parallel-for on CRS graph rows to sort each row’s column-indices

= Thread scalable pattern for construction
Parallel count

Allocate

Parallel fill

. Parallel post-process

o 0 T o



Performance: CRS Graph Construction )

2
% 1.5
(@]
c
b .
o 1 a—lf =#=Phi-60
\ e Phi20
= N T =-kAOX

0

1E+03 1E+04 1E+05 1E+06 1E+07

Number of finite element nodes

= Graph construction is portable and thread scalable
= Graph construction 2x-3x longer than one Element+Fill

= Finite element fill computation is
= Linearized hexahedron finite element for: —k AT + T? = 0
= 3D spatial Jacobian with 2x2x2 point numerical integration




Outline i) e

What is Kokkos
Evaluation via mini-applications

Refactoring legacy libraries and applications
= CUDA UVM (unified virtual memory) in the critical path!
= From pure MPI parallelism to MPI + Kokkos hybrid parallelism
= Tpetra: Open-source foundational library for sparse solvers
= LAMMPS: Molecular dynamics application

Conclusion




Tpetra: Foundational Layer / Library for ) i
Sparse Linear Algebra Solvers

= Tpetra: Sandia’s templated C++ library for sparse linear algebra
= Distributed memory (MPI) vectors, multi-vectors, and sparse matrices
= Data distribution maps and communication operations
= Fundamental computations: axpy, dot, norm, matrix-vector multiply, ...
= Templated on “scalar” type: float, double, automatic differentation,
polynomial chaos, ...
= Higher level solver libraries built on Tpetra
= Preconditioned iterative algorithms
= |Incomplete factorization preconditioners
= Multigrid solvers

= Early internal prototype for portable thread-level parallelism
= Did not address array layouts or access traits, used raw pointers
= Limited use / usability outside of internal Tpetra implementation




Tpetra: Foundational Layer / Library for ) i
Sparse Linear Algebra Solvers

= Incremental Porting of Tpetra to (new) Kokkos
= Maintain backward internal compatibility during transition

= Change internal implementation of data structures
— Kokkos Views with prescribed layout to match existing layout
— Extract raw pointers for use by existing computational kernels
= Incrementally refactor kernels to use Kokkos Views

= Status
= Vector, MultiVector, and CrsMatrix data structures using Kokkos Views
= Basic linear algebra kernels working
= CUDA, OpenMP, and Pthreads back-ends operational

= CUDA UVM (unified virtual memory) critical for transition
= Sandia’s early access to CUDA 6.0 via Sandia/NVIDIA collaboration
= Refactoring can neglect deep-copy and maintain correct behavior
= Allows incremental insertion of deep-copies as needed for performance




CUDA UVM Expedites Refactoring Legacy Code ) .

= UVM memory space accessible to all execution spaces
= Hard to find all points in legacy code where deep copy is needed
= Start with UVM allocation for all Kokkos View device allocations
= Hide special UVM allocator within Kokkos’ implementation

= Basics of UVM (without CUDA streams)
= Automatic host->device deep copy at kernel dispatch
* For UVM data updated on the host
= Automatic device->host deep copy when accessing UVM on the host
* Per memory page granularity

= Limitations
= Requires compute capability 3.0 or greater (Kepler)
= Total UVM memory space allocations limited by device memory
= Host access to UVM data forbidden during kernel execution
» Enforce by executing with CUDA_LAUNCH_BLOCKING=1




CG-Solve: Tpetra+Kokkos versus MiniFE+Kokkos () s
On dual Intel Sandybridge + K20x testbed

11 Weak Scaling 200”3 elements / compute node

10 i dooccecepececes reccceeseeeees ww....nt"“"*
@ 9 - v Yo = = = == =
s e
R
L7 X -x >
CD B - e e - - a - - e = -
E6  -———=X *
— B

5 C ! 1 I I 1

1 2 4 8 16
# of Compute Nodes -%-Tpetra Cuda -+ Tpetra Pthread
=X MiniFE-Cuda -8 MiniFE-Pthreads

= Performance issues identified

= Currently Tpetra with CUDA back-end slower and not scaling
= Due to Tpetra implementation or CUDA/UVM back-end ?




Analysis of Tpetra slowdown on CUDA

Sandia
ﬂ‘ National
Laboratories

= Profiling problem using MiniFE with and without UVM
= Tpetra refactoring relies upon UVM
= MiniFE quickly modified to use UVM

= |dentified performance issue with kernel launch + UVM

| 2020 ms 2020.5 ms.
] [}

20225 ms 2023 ms
(] (]

2@ 2071.5 ms 2022 ms
i i i

4130 ms 4130.5 ms 4131 ms 41315 ms 4132 ms
(] ] (] (] ]

Kokkos::Impl::ParallelFor<Kr ckos:: ...

Kokkos::Impl::ParallelFo <Kokkos::..

30us kernel launch overhead

<]

|

[>]

MiniFE without UVM (original)

R
300us kernel launch overhead
HE H = = ]

leattee] [2)

MiniFE with UVM allocations




Tpetra/MiniFE/Kokkos/UVM — Epilogue

= Early identification of problem leading to fix by NVIDIA

= Fixed in alpha-driver (#331.56) — soon be publically available

= Win-win: Tpetra/Kokkos expedited porting + early feedback to NVIDIA

Tpetra

// //
/ //////ﬂ/,/////////wf/,////,/// ////

S UL Qi




LAMMPS Porting to Kokkos has begun ) =,

= LAMMPS molecular dynamics application (lammps.sandia.gov)

= Goal
= Enable thread scalability throughout code
= Replace specialized thread-parallel packages
» Reducing code redundancy by 3x

= Leverage algorithmic exploration from miniMD
= MiniMD: molecular dynamics mini-app in Mantevo
= Transfer thread-scalable algorithms from miniMD to LAMMPS

= Release with optional use of Kokkos in April 2014
= Implement framework: data management and device management
= All parts of some simple simulations can run on device via Kokkos




LAMMPS Porting to Kokkos early results h

LAMMPS Strongscaling

IM atoms; Standard Lennard Jones
I | I | [

l Xeon - Kokkos
7/ Xeon - OpenMP

Xeon Phi - Kokkos
7/ Xeon Phi - OpenMP
Kepler - Kokkos
Kepler - Cuda

[—

-

-

-
I

100

Aggregate Compute Time

10

1 2 4 8 16 32
# Nodes

= Strong scaling “aggregate compute time” = wall clock * # compute nodes

= Performing as well or better than original non-portable threaded code

Sandia
National
Laboratories




LAMMPS Hybrid Parallel Execution Performance () &,

= All kernels compiled for both Host and Device
= Choose kernels’ execution space at runtime

= Host-device data transfer managed with DualViews
= Allow legacy code still to run on the host

= Experiment: DeepCopy versus UVM managed data transfers
= Time integration on CPU (1 or 8 Threads), everything else on GPU
= 1000 timesteps, 16k atoms, standard LJ force kernel

Time Step Data Transfer # of Dev->Host Time Dev->Host

DeepCopy (8T)  1,870us 340us 2 (2*740kB) 113us per 740k
UVM (1T) 3,820us *2,290us ~250 (4k pages) ~8us per 4k
UVM (8T) 6,620us *5,090us ~290 (4k pages) ~18us per 4k

= UVM 4k page transfer latency ~best expected for PCl bus
= Slow down when Host has more than one idling thread

= Explicit deep copy of large array out-performs per-page UVM

35




Conclusion i) i,

Laboratories

= Kokkos Layered Libraries / Programming Model
= Data parallel (for, reduce, scan) dispatch to execution spaces
= Multidimensional arrays with polymorphic layout in memory spaces
= Parallel dispatch O polymorphic layout - manage data access pattern
= AoS versus SoA solved with appropriate abstractions using C++ templates
= UnorderedMap with thread scalable insertion

= Evaluation with Mini-Applications
= Polymorphic array layout critical for performance portability

= Kokkos-portable kernels’ performance as good as native
implementations

= Scatter-atomic-add is a performant option for linear system fill
= CRS graph construction can be thread scalable
= Transition of Legacy Codes
" |Incremental porting necessary and tractable with CUDA UVM
= Refactored-in deep copy semantics needed for best performance




	Kokkos, a Manycore Device�Performance Portability Library�for C++ HPC Applications
	Increasingly Complex Heterogeneous Future;�¿ Future Proof Performance Portable Code?
	Outline
	Kokkos: A Layered Collection of Libraries
	Kokkos’ Layered Libraries
	Kokkos Core: Managing Data Access
	Kokkos Core: Fundamental Abstractions 
	Kokkos Core: Multidimensional Array�Allocation, Access, and Layout
	Kokkos Core: Multidimensional Array�Layout and Access Attributes
	Kokkos Core: Deep Copy Array Data�NEVER have a hidden, expensive deep-copy
	Kokkos Core: Dispatch Data Parallel Functors�‘NW’ units of data parallel work
	Kokkos Core: Dispatch Data Parallel Functors�League of Thread Teams (grid of thread blocks)
	Kokkos Core: Manage Memory Access Pattern�Compose Parallel Dispatch ○ Array Layout
	Kokkos Containers
	Kokkos Containers: Unordered Map
	Unordered Map Performance Evaluation
	Outline
	MiniMD Performance�Lennard Jones force model using atom neighbor list
	MiniMD Performance�Lennard Jones (LJ) force model using atom neighbor list
	MiniFE CG-Solver on Sandia’s Testbeds�Kokkos competitive with “native” implementations
	MiniFENL: Mini driver Application
	Scatter-Atomic-Add vs. Gather-Sum
	Scatter-Atomic-Add vs. Gather-Sum
	Performance Comparison: Element+Fill
	Thread Scalable CRS Graph Construction
	Performance: CRS Graph Construction
	Outline
	Tpetra: Foundational Layer / Library for�Sparse Linear Algebra Solvers
	Tpetra: Foundational Layer / Library for�Sparse Linear Algebra Solvers
	CUDA UVM Expedites Refactoring Legacy Code
	CG-Solve: Tpetra+Kokkos versus MiniFE+Kokkos �On dual Intel Sandybridge + K20x testbed
	Analysis of Tpetra slowdown on CUDA
	Tpetra/MiniFE/Kokkos/UVM – Epilogue
	LAMMPS Porting to Kokkos has begun
	LAMMPS Porting to Kokkos early results
	LAMMPS Hybrid Parallel Execution Performance
	Conclusion

