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Increasingly Complex Heterogeneous Future; 
¿ Future Proof Performance Portable Code? 
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Memory Spaces 
  - Bulk non-volatile (Flash?) 
  - Standard DDR (DDR4) 
  - Fast memory (HBM/HMC) 
  - (Segmented) scratch-pad on die 
 
Execution Spaces 
  - Throughput cores (GPU) 
  - Latency optimized cores (CPU) 
  - Processing in memory  
 

Special Hardware 
  - Non caching loads 
  - Read only cache 
  - Atomics 

Programming 
models 
  - GPU: CUDA-ish 
  - CPU: OpenMP 
  - PIM: ?? 



Outline 

 What is Kokkos 
 Layered collection of C++ libraries 
 Thread parallel programming model that managed data access patterns 

 Evaluation via mini-applications 

 Refactoring legacy libraries and applications 
 CUDA UVM (unified virtual memory) in the critical path! 

 Conclusion 

2 



Application & Library Domain Layer 
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Kokkos: A Layered Collection of Libraries 
 Standard C++, Not a language extension 

 In spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ... 
 Not a language extension: OpenMP, OpenACC, OpenCL, CUDA 

 Uses C++ template meta-programming 
 Currently rely upon C++1998 standard (everywhere except IBM’s xlC) 
 Prefer to require C++2011 for lambda syntax 

 Need CUDA with C++2011 language compliance 

 

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ... 

Kokkos Sparse Linear Algebra 
Kokkos Containers 
Kokkos Core 
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Kokkos’ Layered Libraries 
 Core 

 Multidimensional arrays and subarrays in memory spaces 
 parallel_for, parallel_reduce, parallel_scan on execution spaces 
 Atomic operations: compare-and-swap, add, bitwise-or, bitwise-and 

 Containers 
 UnorderedMap – fast lookup and thread scalable insert / delete 
 Vector – subset of std::vector functionality to ease porting 
 Compress Row Storage (CRS) graph 
 Host mirrored & synchronized device resident arrays 

 Sparse Linear Algebra 
 Sparse matrices and linear algebra operations 
 Wrappers for vendors’ libraries  
 Portability layer for Trilinos manycore solvers 
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Kokkos Core: Managing Data Access 
Performance Portability Challenge: 

Require Device-Dependent Memory Access Patterns 
 CPUs (and Xeon Phi) 

 Core-data affinity: consistent NUMA access (first touch) 
 Hyperthreads’ cooperative use of L1 cache 
 Alignment for cache-lines and vector units 

 GPUs 
 Thread-data affinity: coalesced access with cache-line alignment 
 Temporal locality and special hardware (texture cache) 

  ¿ “Array of Structures” vs. “Structure of Arrays” ? 
This is, and has been, the wrong question 

Right question: Abstractions for Performance Portability ? 
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Kokkos Core: Fundamental Abstractions  
 Devices have Execution Space and Memory Spaces 
 Execution spaces: Subset of CPU cores, GPU, ... 
 Memory spaces: host memory, host pinned memory, GPU global memory, 

GPU shared memory, GPU UVM memory, ... 
 Dispatch computation to execution space accessing data in memory spaces 

 

 Multidimensional Arrays, with a twist 
 Map multi-index (i,j,k,...) ↔ memory location in a memory space 
 Map is derived from an array layout 
 Choose layout for device-specific memory access pattern 
 Make layout changes transparent to the user code; 
 IF the user code honors the simple API: a(i,j,k,...) 

Separates user’s index space from memory layout 
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Kokkos Core: Multidimensional Array 
Allocation, Access, and Layout 

 Allocate and access multidimensional arrays 
class View< double * * [3][8] , Device > a(“a”,N,M);  

 Dimension [N][M][3][8] ; two runtime, two compile-time 
 a(i,j,k,l) : access data via multi-index with device-specific map 
 Index map inserted at compile-time (C++ template meta programming) 

 Identical C++ ‘View’ objects used in host and device code 

 Assertions that ‘a(i,j,k,l)’ access is correct  
 Compile-time:  
 Execution space can access memory space (instead of runtime segfault) 
 Array rank == multi-index rank 

 Runtime (debug mode) 
 Array bounds checking 
 Uses Cuda ‘assert’ mechanism on GPU 
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Kokkos Core: Multidimensional Array 
Layout and Access Attributes 

 Override device’s default array layout 
class View<double**[3][8], Layout , Device> a(“a”,N,M);  

 E.g., force row-major or column-major 
 Multi-index access is unchanged in user code 
 Layout is an extension point for blocking, tiling, etc. 

 Example: Tiled layout 
class View<double**, TileLeft<8,8> , Device> b(“b”,N,M);  

 Layout changes are transparent to user code 
 IF the user code honors the a(i,j,k,...) API 

 Data access attributes – user’s intent 
class View<const double**[3][8], Device, RandomRead> x = a ; 

 Constant + RandomRead + GPU → read through GPU texture cache 
 Transparent to user code 
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Kokkos Core: Deep Copy Array Data 
NEVER have a hidden, expensive deep-copy 
 Only deep-copy when explicitly instructed by user code 

 Avoid expensive permutation of data due to different layouts 
 Mirror the layout in Host memory space 

typedef class View<...,Device> MyViewType ; 

MyViewType a(“a”,...);  

MyViewType::HostMirror a_h = create_mirror( a ); 

deep_copy( a , a_h ); deep_copy( a_h , a );  

 Avoid unnecessary deep-copy 
MyViewType::HostMirror a_h = create_mirror_view( a ); 
 If Device uses host memory or if Host can access Device memory space 

(CUDA unified virtual memory)  
 Then ‘a_h’ is simply a view of ‘a’ and deep_copy is a no-op 
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Kokkos Core: Dispatch Data Parallel Functors 
‘NW’ units of data parallel work 

 parallel_for( NW , functor ) 
 Call functor( iw ) with iw ∈ [0,NW) and #thread ≤ NW 

 parallel_reduce( NW , functor ) 
 Call functor( iw , value ) which contributes to reduction ‘value’ 
 Inter-thread reduction via functor.init(value) & functor.join(value,input) 
 Kokkos manages inter-thread reduction algorithms and scratch space  

 parallel_scan( NW , functor ) 
 Call functor( iw , value , final_flag ) multiple times (possibly) 
 if final_flag == true then ‘value’ is the prefix sum for ‘iw’ 
 Inter-thread reduction via functor.init(value) & functor.join(value,input) 
 Kokkos manages inter-thread reduction algorithms and scratch space  
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Kokkos Core: Dispatch Data Parallel Functors 
League of Thread Teams (grid of thread blocks) 

 parallel_for( { #teams , #threads/team } , functor ) 
 Call functor( teaminfo ) 
 teaminfo = { #teams, team-id, #threads/team, thread-in-team-id } 

 parallel_reduce( { #teams , #threads/team } , functor ) 
 Call functor( teaminfo , value ) 

 parallel_scan( { #teams , #threads/team } , functor ) 
 Call functor( teaminfo , value , final_flag ) 

 A Thread Team has 
 Concurrent execution with intra-team collectives (barrier, reduce, scan) 
 Team-shared scratch memory 
 Exclusive use of CPU and Xeon Phi cores while executing 
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Kokkos Core: Manage Memory Access Pattern 
Compose Parallel Dispatch ○ Array Layout 

 Parallel Dispatch 
 Maps calls to functor(iw) onto threads 
 GPU: iw = threadIdx + blockDim * blockIds 
 CPU: iw ∈[begin,end)Th  ; contiguous partitions among threads  

 Multidimensional Array Layout 
 Contract: leading dimension (right most) is parallel work dimension 

 Leading multi-index is ‘iw’ : a( iw , j,k,l) 
 Choose array layout for required access pattern 

 Choose AoS for CPU and SoA for GPU 

 Fine-tuning 
 E.g., padding dimensions for cache line alignment 
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Kokkos Containers 
 Kokkos::DualView< type , device > 

 Bundling a View and its View::HostMirror into a single class 
 Track which View was most recently updated 
 Synchronize: deep copy from most recently updated view to other view 

 Host → device OR device → host 
 Capture a common usage pattern into DualView class 

 Kokkos::Vector< type , device > 
 Thin layer on rank-one View with “look & feel” of std::vector 
 No dynamic sizing from the device execution space 

 Thread scalability issues 
 Aid porting of code using std::vector 

 That does not dynamically resize within a kernels 
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Kokkos Containers: Unordered Map 
 Thread scalable 

 Lock-free implementation with minimal/essential use of atomics 
 API deviates from C++11 unordered map 

 No on-the-fly allocation / reallocation 
 Index-based instead of iterator-based 

 Insert (fill) within a parallel reduce functor 
 Functor: {status, index} = map.insert(key,value); 

 Status = success | existing | failed due to insufficient capacity 
 Reduction on failed-count to resize the map 

 Host:  
UnorderedMap<Key,Value,Device> map ; 
do { 
    map.rehash( capacity ); 
    capacity += ( nfailed = parallel_reduce( NW , functor ) );  
} while( nfailed ); // should iterate at most twice 
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Unordered Map Performance Evaluation 
 Parallel-for insert to 88% full with 16x redundant inserts 

 NW = number attempts to insert = Capacity * 88% * 16 
 Near – contiguous work indices [iw,iw+16) insert same keys 
 Far – strided work indices insert same keys 

 Single “Device” Performance Tests 
 NVidia Kepler K40 (Atlas), 12Gbytes 
 Intel Xeon Phi (Knights Corner) COES2, 61 cores, 1.2 GHz, 16Gbytes 
 Limit use to 60 cores, 4 hyperthreads/core 
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 K40X dramatically better 
performance 
 Xeon Phi implementation 

optimized using explicit 
non-caching prefetch 
 Theory: due to cache 

coherency protocols and 
atomics’ performance 
 



Outline 

 What is Kokkos 

 Evaluation via mini-applications 
 MiniMD molecular dynamics 
 MiniFE Conjugate Gradient (CG) iterative solver 
 MiniFENL sparse matrix construction 

 Refactoring legacy libraries and applications 
 CUDA UVM (unified virtual memory) in the critical path! 

 Conclusion 
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MiniMD Performance 
Lennard Jones force model using atom neighbor list 
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 Solve Newton’s equations for N particles 

 Simple Lennard Jones force model: 

 Use atom neighbor list to avoid N2 computations 

 

 

 

 

 Moderately compute bound computational kernel 

 On average 77 neighbors with 55 inside of the cutoff radius 

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);  
for( jj = 0; jj < num_neighbors(i); jj++) { 
  j = neighbors(i,jj);  
  r_ij = pos_i – pos(j); //random read 3 floats 
  if ( |r_ij| < r_cut ) 
    f_i += 6*e*( (s/r_ij)^7 – 2*(s/r_ij)^13 ) 
} 
f(i) = f_i; 



MiniMD Performance 
Lennard Jones (LJ) force model using atom neighbor list 
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 Test Problem (#Atoms = 864k, ~77 neighbors/atom) 
 Neighbor list array with correct vs. wrong layout 

 Different layout between CPU and GPU 
 Random read of neighbor coordinate via GPU texture fetch  

 
 
 
 
 

 
 

 Large loss in performance with wrong layout 
 Even when using GPU texture fetch 
 Kokkos, by default, selects the correct layout 
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MiniFE CG-Solver on Sandia’s Testbeds 
Kokkos competitive with “native” implementations 
 Finite element mini-app in Mantevo (mantevo.org) 

 CG solve of finite element heat conduction equation 
 Numerous programming model variants 

 More than 20 variants in Mantevo repository (eight in release 2.0) 
 Evaluating hardware testbeds and programming models 
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MiniFENL: Mini driver Application 
 Solve nonlinear finite element problem via Newton iteration 

 Focus on construction and fill of sparse linear system 
 Thread safe, thread scalable, and performant algorithms  
 Evaluate thread-parallel capabilities and programming models 

 Construct maps sparse linear system 
 Sparse linear system graph : node-node map 
 Element-graph map for scatter-atomic-add assembly algorithm 
o Graph-element map for gather-sum assembly algorithm  

 Compute nonlinear residual and Jacobian 
 Iterate elements to compute per-element residual and Jacobian 

 Scatter-atomic-add values into linear system 
o Save values in gather-sum scratch array 

o Iterate rows, gather data from scratch array, sum into linear system 

 Solve linear system for Newton iteration 
 



Gather-Sum Pattern 

Scatter-Atomic-Add vs. Gather-Sum 

Finite Element Data 

very large 
Scratch Arrays 

Sparse Linear System 
Coefficients 

Map: Mesh → Sparse Graph 

Element 
Computations 
+ Scatter-Add  

Element 
Computations 

Gather-Sum 

atomic_add 
add 

Scatter-Atomic-
Add Pattern 
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Scatter-Atomic-Add vs. Gather-Sum 
 Both are thread-safe and thread-scalable 
 Scatter-Atomic-Add 

+ Simple implementation 
+ Fewer global memory reads and writes 
- Atomic operations much slower than corresponding regular operation 
- Non-deterministic order of additions – floating point round off variability 
- Double precision atomic add is a looped compare-and-swap (CAS) 

 Gather-Sum 
+ Deterministic order of additions – no round off variability 
- Extra scratch arrays for element residuals and Jacobians 
- Additional parallel-for 

 Performance comparison – execution time 
 Neglecting the time to pre-compute mapping(s), assuming re-use 
 Cost of atomic-add vs. additional parallel-for for the gather-sum 
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Performance Comparison: Element+Fill 

 ScatterAtomic as good or better without extra scratch memory 
 Phi: ScatterAtomicAdd ~equal to GatherSum 

 ~2.1x speed up from 1 to 4 threads/core – hyperthreading  

 Kepler: ScatterAtomicAdd ~40% faster than GatherSum 
 Fewer global memory writes and reads 
 Double precision atomic-add via compare-and-swap algorithm 
 Plan to explore element coloring to avoid atomics for scatter-add 
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Thread Scalable CRS Graph Construction 
1. Fill unordered map with elements’ (row-node, column-node) 
 Parallel-for of elements, iterate node-node pairs 
 Successful insert to node-node unordered map denotes a unique entry 
 Column count = count unique entries for each row-node 

2. Construct (row-node, column-node) sparse graph 
 Parallel-scan of row-node column counts 
 This is now the CRS row-offset array 

 Allocate CRS column-index array 
 Parallel-for on node-node unordered map to fill CRS column-index array 
 Parallel-for on CRS graph rows to sort each row’s column-indices 

 Thread scalable pattern for construction 
a. Parallel count 
b. Allocate 
c. Parallel fill 
d. Parallel post-process 
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Performance: CRS Graph Construction 

 Graph construction is portable and thread scalable 
 Graph construction 2x-3x longer than one Element+Fill 

 Finite element fill computation is 
 Linearized hexahedron finite element for: −𝒌 ∆𝑻 + 𝑻𝟐 = 𝟎 
 3D spatial Jacobian with 2x2x2 point numerical integration 
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Outline 

 What is Kokkos 

 Evaluation via mini-applications 

 Refactoring legacy libraries and applications 
 CUDA UVM (unified virtual memory) in the critical path! 
 From pure MPI parallelism to MPI + Kokkos hybrid parallelism 
 Tpetra: Open-source foundational library for sparse solvers 
 LAMMPS: Molecular dynamics application 

 Conclusion 
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Tpetra: Foundational Layer / Library for 
Sparse Linear Algebra Solvers 
 Tpetra: Sandia’s templated C++ library for sparse linear algebra 

 Distributed memory (MPI) vectors, multi-vectors, and sparse matrices 
 Data distribution maps and communication operations 
 Fundamental computations: axpy, dot, norm, matrix-vector multiply, ... 
 Templated on “scalar” type: float, double, automatic differentation, 

polynomial chaos, ... 

 Higher level solver libraries built on Tpetra 
 Preconditioned iterative algorithms 
 Incomplete factorization preconditioners 
 Multigrid solvers 

 Early internal prototype for portable thread-level parallelism 
 Did not address array layouts or access traits, used raw pointers 
 Limited use / usability outside of internal Tpetra implementation 
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Tpetra: Foundational Layer / Library for 
Sparse Linear Algebra Solvers 
 Incremental Porting of Tpetra to (new) Kokkos 

 Maintain backward internal compatibility during transition 
 Change internal implementation of data structures 

– Kokkos Views with prescribed layout to match existing layout 
– Extract raw pointers for use by existing computational kernels 

 Incrementally refactor kernels to use Kokkos Views 

 Status 
 Vector, MultiVector, and CrsMatrix data structures using Kokkos Views 
 Basic linear algebra kernels working 
 CUDA, OpenMP, and Pthreads back-ends operational 

 CUDA UVM (unified virtual memory) critical for transition 
 Sandia’s early access to CUDA 6.0 via Sandia/NVIDIA collaboration 
 Refactoring can neglect deep-copy and maintain correct behavior 
 Allows incremental insertion of deep-copies as needed for performance 
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CUDA UVM Expedites Refactoring Legacy Code 

 UVM memory space accessible to all execution spaces 
 Hard to find all points in legacy code where deep copy is needed 
 Start with UVM allocation for all Kokkos View device allocations 
 Hide special UVM allocator within Kokkos’ implementation 

 Basics of UVM (without CUDA streams) 
 Automatic host->device deep copy at kernel dispatch 

 For UVM data updated on the host 
 Automatic device->host deep copy when accessing UVM on the host   

 Per memory page granularity 

 Limitations 
 Requires compute capability 3.0 or greater (Kepler) 
 Total UVM memory space allocations limited by device memory 
 Host access to UVM data forbidden during kernel execution 

Enforce by executing with CUDA_LAUNCH_BLOCKING=1 
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CG-Solve: Tpetra+Kokkos versus MiniFE+Kokkos  
On dual Intel Sandybridge + K20x testbed 
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 Performance issues identified 
 Currently Tpetra with CUDA back-end slower and not scaling 
 Due to Tpetra implementation or CUDA/UVM back-end ? 
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Analysis of Tpetra slowdown on CUDA 

MiniFE without UVM (original) MiniFE with UVM allocations 

30us kernel launch overhead 

300us kernel launch overhead 

 Profiling problem using MiniFE with and without UVM 
 Tpetra refactoring relies upon UVM 
 MiniFE quickly modified to use UVM 
 Identified performance issue with kernel launch + UVM  



Tpetra/MiniFE/Kokkos/UVM – Epilogue 
 Early identification of problem leading to fix by NVIDIA 

 Fixed in alpha-driver (#331.56) – soon be publically available 
 Win-win: Tpetra/Kokkos expedited porting + early feedback to NVIDIA 

32 



LAMMPS Porting to Kokkos has begun 
 LAMMPS molecular dynamics application (lammps.sandia.gov) 

 Goal 
 Enable thread scalability throughout code 
 Replace specialized thread-parallel packages  

  Reducing code redundancy by 3x 

 Leverage algorithmic exploration from miniMD 
 MiniMD: molecular dynamics mini-app in Mantevo 
 Transfer thread-scalable algorithms from miniMD to LAMMPS 

 Release with optional use of Kokkos in April 2014 
 Implement framework: data management and device management 
 All parts of some simple simulations can run on device via Kokkos 
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LAMMPS Porting to Kokkos early results 

 Strong scaling “aggregate compute time” = wall clock * # compute nodes 

 Performing as well or better than original non-portable threaded code 
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LAMMPS Hybrid Parallel Execution Performance 
 All kernels compiled for both Host and Device 

 Choose kernels’ execution space at runtime 

 Host-device data transfer managed with DualViews 
 Allow legacy code still to run on the host 

 Experiment: DeepCopy versus UVM managed data transfers 
 Time integration on CPU (1 or 8 Threads), everything else on GPU 
 1000 timesteps, 16k atoms, standard LJ force kernel 
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Time Step Data Transfer # of Dev->Host Time Dev->Host 

DeepCopy (8T) 1,870us 340us 2 (2*740kB) 113us per 740k 
UVM (1T) 3,820us *2,290us ~250 (4k pages) ~8us per 4k 
UVM (8T) 6,620us *5,090us ~290 (4k pages) ~18us per 4k 

 UVM 4k page transfer latency ~best expected for PCI bus 
 Slow down when Host has more than one idling thread 

 Explicit deep copy of large array out-performs per-page UVM 
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Conclusion 
 Kokkos Layered Libraries / Programming Model 

 Data parallel (for, reduce, scan) dispatch to execution spaces 
 Multidimensional arrays with polymorphic layout in memory spaces 
 Parallel dispatch ○ polymorphic layout → manage data access pattern 
 AoS versus SoA solved with appropriate abstractions using C++ templates 
 UnorderedMap with thread scalable insertion 

 Evaluation with Mini-Applications 
 Polymorphic array layout critical for performance portability 
 Kokkos-portable kernels’ performance as good as native 

implementations 
 Scatter-atomic-add is a performant option for linear system fill 
 CRS graph construction can be thread scalable 

 Transition of Legacy Codes 
 Incremental porting necessary and tractable with CUDA UVM 
 Refactored-in deep copy semantics needed for best performance 
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