KokkosArray
A C++ Library for Manycore Performance-Portability

H. Carter Edwards, Christian Trott, Daniel Sunderland
Sandia National Laboratories

2012 Trilinos User Group

SAND2012-9215P
Unlimited Release
Project Charter

• R&D within ASC CSSE
 – CSSE: Computational Systems and Software Environment
 – “Heterogeneous Computing” project
 • PM: Rob Hoekstra (1426), PI: Carter Edwards (1444)
 • Effective use of heterogeneous architectures
 • Emphasis on heterogeneity at the node-level
 – Heterogeneous parallelism (MPI + threading + vectorization)

• Deliverables
 ➢ Research performance-portable programming models
 ➢ Develop proxy-applications to demonstrate and evaluate programming model
KokkosArray Library

• KokkosArray IS:
 – An implementation of the programming model
 – Consolidation of proxy-applications’ common functionality
 – “Low level” enabling data structures and algorithms
 – Extremely attentive to:
 1. Portability & performance (as per project charter)
 2. Usability: ease of use, error detection, extensibility, maintainability, ...

• KokkosArray IS NOT:
 – A linear algebra library
 – A discretization library
 – A mesh library

➤ Intent: Build such libraries on top of KokkosArray
The Problem / Challenge
Future of HPC: Manycore Accelerators

• Multicore CPU
 – Increasing core counts with decreasing global memory / core
 – Cores share caches and memory controllers
 – Non-uniform memory access (NUMA), performance issues
 – Increasing vector unit lengths
 ➢ Memory access patterns critical for best performance

• Manycore GPU (e.g., NVIDIA Kepler, AMD Fusion)
 – Physically separate memory with data-transfer overhead
 – Work-dispatch interaction between host and device
 – Memory controller optimized for thread-gang (warp) based access
 ➢ Memory access patterns critical for acceptable performance

• Is all about Memory Access Patterns
The Problem / Challenge

Future of HPC: Manycore Accelerators

• Shared Memory Threading within MPI is **required**
 – Cannot run MPI-everywhere on GPU
 – Cannot afford MPI process memory for every core
 – Cannot scale MPI collectives to millions of CPU cores
 • Unless you have heroic hardware: Blue Gene Q

• Memory Access Patterns are Critical
 – Correctness – no race conditions among threads
 – Performance – proper blocking or striding

• Access Pattern Requirements are Device-dependent
 – CPU-core : blocking for cache and cache-lines
 – GPU : striding for coalesced access
 – “array of structures” vs. “structure of arrays”
Programming Model Concept

• Manycore Device
 – Has a separate memory space (physically or logically)
 – Dispatch work to cores/threads of the device
 – Work: computations + data residing on the device
 – Currently supported devices CPU+pthreads, CUDA

• Classic Multidimensional Arrays, *with a twist*
 – Map multi-index \((i,j,k,...) \leftrightarrow\) memory location *on the device*
 • Should be efficient for both memory used and time to compute
 – Map is derived from a **Layout**
 ➢ Choose Layout for device-specific access pattern requirements
 • Layout must change when porting among devices
 – Layout changes are transparent to the user code;
 ➢ **IF** the user code honors the simple array API: \(a(i,j,k,...)\)
Programming Model Implementation

- Standard C++ Library, not a Language extension
 - In *spirit* of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ...
 - Not a language extension like OpenMP, OpenACC, OpenCL, CUDA

- Template Meta-Programming
 - For device-specializations and array layout polymorphism
 - C++1998 standard (would really be nice to have C++2011)

- Extremely Attentive to:
 1. Portability – the project charter R&D constraint
 2. Performance – the project charter R&D objective
 3. Usability – the SQE objective
Current Capabilities

• Multidimensional Arrays
 – Declare dimensions and access data members
 – Allocate and deallocate in Device memory space
 – Deep-copy data between host and device memory space
 – Optionally choose or define your own Layout

• Parallel-For and Parallel-Reduce
 – Define thread-parallel work functors (function + data)
 – Dispatch work to device
 – Optionally wait for dispatched work to complete
 – Reduction is guaranteed deterministic, given same # of threads

• Defer Task-Parallelism, Pipeline-Parallelism (for now)
Multidimensional Array : API

• Multidimensional Array : Basic API
 class View< double ** [3][8] , Device > a(“a”,N,M);
 • Dimensioned as [N][M][3][8] (two runtime, two compile-time)
 • Allocated in memory space of Device
 – a(i,j,k,l) : access data member via multi-index
 • Multi-index is mapped according to Device’s default Layout

• Multidimensional Array : Advanced API
 class View<double**[3][8], Layout , Device> a(“a”,N,M);
 ➢ Multi-index access API is unchanged for user code
 – Override Device’s default layout
 • E.g., force row-major or column-major
 – Layout is an extension point for blocking, tiling, etc.
Multidimensional Array : API

• View Memory Management : Basic API

```cpp
typedef class View<double**,Device> MyMatrixType;
MyMatrixType a("a",N,M); // allocate array
MyMatrixType b = a; // A new view to the same data
```

– As per Trilinos standard practice, views are reference counted
 • Internal reference counting to avoid cluttering user-code

• View Memory Management : Advanced API

```cpp
class View<const double**,Layout,Device,Unmanaged> c = a;
```

– A non-reference counted view
– Faster to construct, assign, and destroy; however,
 ➢ User-code assumes responsibility to destroy ‘c’ before ‘a’
– Can only allocate managed views
Multidimensional Array : API

• Host / Device Deep Copy : Basic API

typedef class View<...,Device> MyViewType;
MyViewType a("a",...);
MyViewType::HostMirror a_host = create_mirror(a);
deep_copy(a, a_host); deep_copy(a_host, a);

➤ NO hidden deep-copy, deep-copy only when told by user-code
 – HostMirror: identical layout in Host space for fast memory-copy

• Host / Device Deep Copy: Advanced API

MyViewType::HostMirror a_host = create_mirror_view(a);
 – If Device uses host memory then ‘a_host’ is simply a view of ‘a’
 – Deep-copy becomes a no-op
 – Avoids deep-copy performance penalty if not needed
Parallel_For API

• Thread-Parallel Calls to a Functor on the Device
 – Dispatch: parallel_for(NP , functor);

• Functor : A function + its calling arguments
 – Simple example:

```plaintext
template< class DeviceType > // allows for partial-specialization
struct AXPY {
  typedef DeviceType device_type ; // run on this device
double a ;                           // parameter
View<double*,device_type> x , y ; // arrays
void operator()( int ip ) const { y(ip) += a * x(ip); } // function
};
```

 – Call `operator()(ip) NP times where ip ∈ [0,NP)`
 – Array data access uses ‘ip’ to avoid race conditions
Functor Pattern

• Dispatch NP units of *Work* to Manycore Device
 – *Work* = computation + data
 – Called ip ∈ [0,NP) times from (up to) NP different threads
 – Functor object is shared by all threads
 • Thus: `void operator()(int ip) const ;`

• Why Functor Pattern?
 – Standard C++ and *Portable*
 – Flexible: as many argument-members as you need

• Why Not: traditional Function + Argument List?
 ➢ Requires language / compiler extensions
 – E.g., CUDA, OpenCL, OpenACC, OpenMP, ...
 – Impedes device-specific specializations
Parallel Work Affinity for NUMA Performance

• **KokkosArray manages Computation + Data Affinity**
 – A CPU-core computes on \(y(ip) \); so \(y(ip) \) should be NUMA-local
 – A simplified model:

![Diagram](attachment:diagram.png)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Parallel_Reduce API
(parallel_for is so easy in comparison)

• Similar to parallel_for, with Reduction Argument
 – Dispatch: `result = parallel_reduce(NP , functor);`
 ∟ Result is deterministic, given the same device and # threads
 • Result is a value, or View to a value, on the host or device
 – Called \(ip \in [0,NP) \) times: functor(ip , contribution);

```
struct DOT {
  typedef DeviceType device_type;
  typedef double value_type; // type of the reduction argument
  View<double*,device_type> x, y;
  void operator()( int ip , value_type & contrib ) const
    { contrib += y(ip) * x(ip); }
  // ... to be continued ...
};
```
Parallel_Reduce API
(what makes it harder)

• Different than parallel_for: *Reduction Argument*
 – Called on up to \(NP \) different threads
 • Producing up to \(NP \) contributions toward the final result
 – Must reduce per-thread contributions
 – Must manage per-thread temporary data for contributions
 – Must yield deterministic result, for a given device and \# threads

• Flexibility and extensibility
 – User defined value_type: scalar, simple ‘struct’, simple array
 • Not just a ‘double’
 – Place result on the host or device
 – Post-process result on the device
Parallel_Reduce API
Inter-Thread Reduction

• Initialize and Join Per-Thread Contributions

```c
struct DOT {
    // ... continued ...
    typedef double value_type;
    static void init( value_type & contrib ) { contrib = 0; }
    static void join( volatile value_type & contrib,
                      const volatile value_type & input )
    { contrib = contrib + input; }
};
```

− Initialize thread’s contrib via Functor::init
− Join threads’ contrib via **commutative** Functor::join
− ‘volatile’ to insure correct inter-thread memory access
 − Prevents compiler from optimizing away join operation
Parallel_Reduce API: Advanced

• Reduction Argument: A ‘struct’

 struct Centroid {
 typedef DeviceType device_type;
 struct value_type { double x[3], mass; }; // struct value_type
 View<double*[3],device_type> point;
 View<double*, device_type> mass;
 void operator()(int ip , value_type & contrib) const {
 contrib.x[0..2] += point(ip,0..2) * mass(ip); // pseudo code
 contrib.mass += mass(ip);
 }
 static void init(value_type & contrib) {...}
 static void join(volatile value_type & contrib ,
 const volatile value_type & input) {...}
 };

Parallel_Reduce API: Advanced

• Reduction Argument: Runtime-sized Array

```c
struct MultiVectorDOT {
    typedef DeviceType device_type;
    typedef double value_type[ ]; // runtime array type
    const unsigned value_count; // runtime array count

    void operator()( int ip, double contrib[ ] ) const;
    static void init( double contrib[ ], unsigned count );
    static void join( volatile double contrib[ ],
                      const volatile double input[ ],
                      unsigned count );
};
```

- Result is an array, or View to an array on the host or device
Parallel_Reduce API: Advanced

“Finalizing” the Reduction Argument

- A final, serial computation performed on the device
- Example: norm2 requires a serial ‘sqrt’ of the dot product result
 - Store result on device; avoid device-host-device round-trip
 - `parallel_reduce(NP, dot, norm2_finalize)`

```c
struct Norm2Finalize {
    typedef DeviceType device_type;
    typedef double value_type;
    View<double,device_type> view;

    // called by one thread with the reduction result:
    void operator() ( const value_type & result ) const {
        *view = sqrt( result );
    }
};
```
Finite-Element Proxy-Applications
see kokkos/array/usecases

- **Explicit Dynamics**: computationally intensive
 - Element stress and internal force contributions to nodes
 - Node gather-assemble forces, apply boundary condition, compute acceleration, integrate motion
 - MPI + KokkosArray hybrid parallel

- **Nonlinear Thermal Conduction**: memory intensive
 - Newton iteration to solve nonlinear equation
 - Element computation of residual and Jacobian
 - Gather-assemble sparse linear system; CG iterative solver
 - Update nonlinear solution
 - MPI + KokkosArray hybrid parallel

- **Same finite element kernel source code on all devices**
 - Template instantiation inserts device specific array-maps
Plans

• Ports to OpenMP, Intel Phi (MIC), and AMD Fusion
• Tiled Array Layouts
• Embedded Data Types:
 - View< Type **[3][8], device >
 - Type can be a UQ expansion, automatic differentiation, ...
• Multi-Functor Dispatch
• “Alpha” Use, Evaluation, and Improvement-Steering by
 - Tpetra, Mark Hoemann
 - UQ-on-GPU LDRD, Eric Phipps
 - LAMMPS ? Exploring via miniMD, up next: Christian Trott
 - Sierra Toolkit ? up last: Daniel Sunderland
 - Your library / application???
• Transition from “Experimental” to “Primary Stable” FY13