Manycore-Portable Multidimensional Arrays for Finite Element Computations

H. Carter Edwards
Sandia National Laboratories

July 12, 2012
2012 SIAM Annual Meeting
Minneapolis, Minnesota

SAND2012-5042C
Strategy / Approach

• Challenge: Manycore Portability with Performance
 – Multicore-CPU and manycore-accelerator (e.g., NVIDIA)
 – Diverse memory access patterns, shared memory utilization, ...

• Via a Library, not a language
 – Concise and simple abstractions, API, and runtime
 – C++ with template meta-programming
 – In *spirit* of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ...

• Data Parallel Operations (parallel_for & parallel_reduce)
 – *Deferred* task parallelism, pipeline parallelism, ...

• Multidimensional Arrays – intuitive for science & engineering
 – “arrays of structs” vs. “structs of arrays” – wrong conversation
 – Abstraction for data placement, locality, mapping
Kokkos Array Abstractions

• Manycore Device – has separate memory space
 – Physically (GPU), Performance (NUMA), Logically (CPU)

• Data Parallel Operations
 – Executed by many threads on the manycore device
 – Performance can be dominated by memory access pattern
 • E.g., NVIDIA coalescing, NUMA regions

• Multidimensional Array
 ➢ Map array data into a manycore device’s memory
 • Parallel partitioning
 • Multi-index computation
 – Data parallel operation + map ⇒ memory access pattern
Kokkos Array Abstraction: Multidimensional Array and its Map

• Homogeneous Collection of Plain-old-data Members
 – Members referenced by a multi-index in a multi-index space

• Multi-Index Map
 – Bijective map : multi-index space ↔ array data members
 • \([0 .. N0 \) \(\times [0 .. N1 \) \(\times [0 .. N2 \) \(\times \ldots \leftrightarrow\) memory locations
 – Many valid maps
 • E.g., Fortran, ‘C’, space-filling-curve, block-cyclic, …
 – Map for best memory access pattern is device-dependent
 – Transparently introduce the best map at compile-time
 • No alteration of the application’s source code
 • C++ template meta-programming
Kokkos Array Abstraction: Parallel Partitioning

• Parallel Partitioning of Data
 – Partition into NP atomic units of parallel work
 – Index space has parallel work dimensions: (NP, N1, N2, …)
 – Limited to 1D for now; deferred 2D+ parallel partitioning

• Parallel Work on Shared Arrays
 – NP atomic units of parallel work: ip ∈ [0 .. NP)
 – Parallel thread-safety:
 • Update only array members with index (ip, *, *, …)
 • Don’t query data being updated by different unit of work

• Example: Finite Element Bases Gradients
 – grad(N-Element, N-Spatial-Dimension, N-Bases-per-Element)
 – Parallel function over elements: compute gradients
Kokkos Array API:
Multi-index Space and Data Access

• Index space known on the host and device
• Data members accessible only on the device

```cpp
void my_function( Kokkos::MDArray<double,MapIntoDevice> grad )
{
    // Access data member within code running on the device
    // using standard multi-index notation
    grad( iElem, iSpace, iBases ) = value;

    assert( 3 == grad.rank() ); // Verify index space rank
    size_t nBases = grad.dimension(2); // Query index space dimension
    size_t nSpace = grad.dimension(1);
    size_t nElem = grad.dimension(0);
}
```
Kokkos Array API: Mirrored Arrays and Deep Copy

• Different Devices have Different Maps
 – Need to access array data in Host memory
 – However, remapping array data is expensive

• HostMirror
 – Array in Host memory space using Device’s map
 – No remapping, fast memory copy
 – If Device = Host the mirror can be a view to the same data

```cpp
array_type X = ... ; // device memory and device’s map
array_type::HostMirror X_host = create_mirror( X );
    // host memory with device’s map

deep_copy( X , X_host ); // copy data device <- host
deep_copy( X_host , X ); // copy data host <- device
```
Kokkos Array API: Parallel Functor

• Execute Functors in Parallel on Accelerator Device
 – **Functor**: A user’s C++ class bundling a function + arguments
 – **Dispatch**
 • `parallel_for(NP, functor_object);`
 • `parallel_reduce(NP, functor_object, result);`
 – Called NP times in parallel: `ip \in [0,NP)`
 • `functor_object(ip);` // `parallel_for`
 • `functor_object(ip, result);` // `parallel_reduce`

• NUMA work and data locality affinity
 – Work unit ‘ip’ performed by thread with NUMA-local data
Why we worry about NUMA

A simplified model:
Kokkos Array API:
Example Parallel Reduce Functor

template< class Device > // template on device
class CentroidFunctor {
public:
 typedef Device device_type ;
 typedef struct { double coord[3] , mass ; } value_type ;
 MDArray<double,device_type> m_coord , m_mass ;

 void operator()(int ip , value_type & update) const
 {
 update.mass += m_mass(ip) ;
 update.coord[k] += m_coord(ip,k) * m_mass(ip,k) ;
 }

 static void join(volatile value_type & update ,
 volatile const value_type & input)
 { update.mass += input.mass ; update.coord[k] += input.coord[k] ;}

 static void init(value_type & output)
 { output.mass = 0 ; output.coord[k] = 0 ; }
};
Finite-Element Mini-Applications Performance Studies

• Single Node Devices
 – Westmere: Xeon 2.93 GHz, 2 cpus X 6 cores x 2 hyperthreads
 – Magny-Cours: Opteron 2.4 GHz, 2 cpus X 8 cores
 – NVIDIA Tesla C2070: 448 cores, 1.2 GHz

• Cray XK6 testbed at Sandia (52 nodes)
 – AMD Opteron Interlagos 2.1 GHz, 16 cores / 2 NUMA regions
 – NVIDIA Tesla M2090: 512 cores, 1.3 GHz
 – Cray Gemini network

• NUMA control via HWLOC
 – http://www.open-mpi.org/projects/hwloc/
Performance-Portable
Finite-Element Mini-Applications

• Explicit Dynamics: computationally intensive
 – Element stress and internal force contributions to nodes
 – Node gather-assemble forces, apply boundary condition, compute acceleration, integrate motion
 – Accelerator device parallel

• Nonlinear Thermal Conduction: memory intensive
 – Newton iteration to solve nonlinear equation
 – Element computation of residual and Jacobian
 – Gather-assemble sparse linear system; CG iterative solver
 – Update nonlinear solution
 – MPI + Accelerator device parallel

• Same finite element kernel source code on all devices
 – Template instantiation inserts device specific array-maps
Explicit Dynamics Mini-Application
Single Node Performance Comparison

Element Computation : Single Prec.

Node Update : Single Prec.

Element Computation : Double Prec.

Node Update : Double Prec.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Explicit Dynamics Mini-Application
NUMA Performance on Westmere

Element Computation: Impact of NUMA

- With HWLOC : float
- With HWLOC : double
- NO HWLOC : float
- NO HWLOC : double

Node Update : Impact of NUMA

- With HWLOC : float
- With HWLOC : double
- NO HWLOC : float
- NO HWLOC : double

- NUMA ‘first touch’ on data in both cases
- Use HWLOC to explicitly place threads with adjacent data
 - Adjacent-rank threads have adjacent data
 - Locality: shared core (hyperthreads) and NUMA affinity
Nonlinear Thermal Mini-Application Element Computation Performance

- No communication
 - Redundant computations at processor boundaries
- Ideal memory access
 - Coalesced
 - Cache friendly
 - NUMA locality
- Computationally intensive
Nonlinear Thermal Mini-Application Gather-Assemble Performance

- No communication
 - Redundant computations at processor boundaries
- Memory access intensive
- Random access
 - NOT Coalesced
 - NOT Cache friendly
 - Significant cross-NUMA reads
Nonlinear Thermal Mini-Application Gather-Assemble Performance

- Communication intensive
 - Sparse matrix row decomposition
 - Sparse matrix-vector multiply imports portion of column vector
 - Dot-product reductions
- Random access
 - Sparse matrix-vector multiply read of column vector
 - Significant cross-NUMA reads
- To Improve NUMA
 - Minimize cross-NUMA reads
 - Nested domain decomposition among NUMA regions
Conclusion & Plans

• Performance-Portability
 – Data access patterns are critical for performance
 – Data parallel functions on multidimensional arrays
 – Abstract & separate array map: index space ↔ device memory
 – Automatically & transparently insert device-optimal array map
 – Identical finite element code on all devices

• Plans
 – Nested domain decomposition for cross-NUMA kernels
 – Rank 2+ parallel extents, array maps with tiling
 – Intel MIC accelerator device
 – Other dispatch patterns: parallel-scan, heterogeneous functors, ...
 – Other kernel domains: stochastic finite elements, ...