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Abstract 

Most computer models for engineering applications are developed to help assess a design 

or regulatory requirement.  As part of this task, the capability to quantify the impact of 

variability and uncertainty in the decision context is critical.  The requirement is often 

stated as:  the probability that some system response quantity exceeds a threshold value is 

less than some required probability.  This presentation will provide an outline and 

comparison of methods that are used for analyzing and propagating aleatory and 

epistemic uncertainties.  The methods are all available in a software tool called 

DAKOTA.   We will specifically focus on five classes of methods:  Latin Hypercube 

sampling, analytic reliability methods, polynomial chaos expansions, Dempster-Shafer 

theory of evidence, and “second-order” probability analysis.  Examples of each of the 

methods as applied to a simple engineering model will be provided.  

 

1.  Introduction 

Most computer models for engineering applications are developed to help assess a design 

or regulatory requirement.  As part of this task, the capability to quantify the impact of 

variability and uncertainty in the decision context is critical.  The requirement is often 

stated as:  the probability that some system response quantity exceeds a threshold value is 

less than some required probability.  This paper will provide an outline and comparison 

of methods that are used for analyzing and propagating aleatory and epistemic 

uncertainties in engineering models.  We will specifically focus on five classes of 

methods:  Latin Hypercube sampling, analytic reliability methods, polynomial chaos 

expansions, Dempster-Shafer theory of evidence, and “second-order” probability 

analysis.  Examples of each of the methods as applied to a simple engineering model will 

be provided.   The computational cost of engineering simulation models is often quite 

expensive:  high fidelity finite-element simulations may require hours or days to run on 

dozens of processors.   Thus, understanding how the uncertainty propagation methods 

work and their relative advantages and costs is very important.   Additionally, response 

surface approximations (RSA) are often used as inexpensive replacements for 
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computationally expensive computer simulations.  Once a RSA has been computed, it is 

cheap to evaluate this “meta-model” or surrogate, and thus the RSA is often used in a 

variety of contexts, including uncertainty quantification.  This paper will not focus on 

RSA.  However, some of the uncertainty quantification methods rely on such 

approximations and they will be mentioned where appropriate.  

 

The outline of the paper is as follows:  Section 2 provides background on uncertainty 

quantification (UQ).  Section 3 describes an engineering example which will be used as a 

basis for examples and comparison of methods.  Sections 4-8 describe particular UQ 

methods, and Section 9 summarizes the methods and presents some current research 

areas of interest. 

 

2.  Uncertainty Quantification  

Incertitude (commonly referred to as “uncertainty”) can be formally classified as aleatory 

uncertainty and epistemic uncertainty.  Guidance from a Department of Energy document 

which provides guidelines for quantifying margins and uncertainties using modeling and 

simulation [Diegert et al.] states: “Where it is practical, calculation input 

characterizations should separate aleatory and epistemic uncertainties.” 

  

Aleatory uncertainty characterizes the inherent randomness in the behavior of the system 

under study.  Alternative terminologies include: variability, stochastic uncertainty, 

irreducible uncertainty, and Type A uncertainty. Aleatory uncertainty is irreducible 

except through design modifications.  Examples of aleatory uncertainty are component 

failures or material properties derived from statistically significant testing under 

conditions relevant to the application.  Aleatory uncertainties are characterized by 

frequency distributions; and aleatory uncertainties propagated through a model will result 

in distributions for key system response quantities that should also carry a frequensic 

interpretation. 

 

Epistemic uncertainty characterizes the lack of knowledge about the appropriate value to 

use for a quantity that is assumed to have a fixed value in the context of a specific 

application.  Alternative terminologies include: state of knowledge uncertainty, 

subjective uncertainty, reducible uncertainty, and Type B uncertainty. Epistemic 

uncertainties are reducible through increased understanding (research), or increased data, 

or through more relevant data. Epistemic uncertainties are characterized degrees of 

“belief” and should not be given a frequensic interpretation. 

 

Currently, the following methods are commonly used to characterize and propagate 

aleatory uncertainty in input parameters through computer models.  These are all based 

on probability theory:  

1. Sampling 

2. Analytic reliability methods 

3. Polynomial Chaos Expansions 

 



Currently, we have the following methods to characterize and propagate epistemic 

uncertainty:  

1. Dempster-Shafer Theory of Evidence 

 

Finally, we have one way which is generally used to propagate uncertainty in combined 

analysis, where we are propagating both aleatory and epistemic uncertainty.  This is 

called “second-order” probability.  The second-order refers to the two types of 

uncertainty and does not refer to a second-order approximation of the underlying 

function.  

     1.  Second-order probability 

 

Sections 4-8 describe these UQ methods in more detail.  Note that all of the methods 

presented in this paper are available for use in the DAKOTA software tool [Eldred et al., 

available at http://www.cs.sandia.gov/DAKOTA]. 

 

3.  Cantilever Beam Example 

This example is taken from the reliability optimization community.  The problem 

involves a simple cantilever beam as shown in Figure 1.  The goal is to understand how 

the deflection of the beam varies with respect to the length, width, and height of the beam 

as well as to applied load and elastic modulus of the beam.  
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Figure 1. Cantilever Beam Schematic 

 

The variables characterizing the beam problem are shown in Table 1, along with nominal 

values.  

 

  

Variable Description Nominal Value 

L Length 1 m 

W Width 1 cm 

H Height 2 cm 

I Area Moment of Inertia 1/12 WH
3
 

P Load 100 N 

E Elastic Modulus of 

Aluminum 6061-T6 

69 GPa 

Table 1.  Variables characterizing the Cantilever Beam Problem 



 

The formula for beam deflection (assuming simplifying assumptions such as isotropic 

material properties of the beam, elastic displacement, and negligible beam mass) is:  

Deflection = PL
3
/3EI.  For this problem with 100N load, the deflection is approximately 

7.2 cm. 

4. Sampling 

The most common method of incorporating uncertainty into simulations is to assume 

certain distributions on the uncertain input values, sample from those distributions, run 

the model with the sampled values, and do this repeatedly to build up a distribution of the 

outputs.  This is classical propagation of uncertainty.  The sampling techniques can be a 

variety of Monte Carlo methods, including stratified sampling (Latin hypercube 

sampling) which spread the samples over the space, or quasi-Monte Carlo sampling, 

which is a way of generating sequences that approximate a uniform distribution.   Figure 

2 shows the concept of sampling, where N samples are taken from distributions on inputs 

(in this case, 3 input variables), each one is run through the simulation model, resulting in 

N realizations on the outputs.   
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Figure 2.  Sampling Approach to Propagate Uncertainties 

 

 

At Sandia, we often use Latin Hypercube Sampling (LHS) [Swiler and Wyss].  LHS is a 

stratified sampling method where one sample is chosen from each of N equally probable 

strata over the support of the distribution.  LHS is more efficient than pure Monte Carlo 

in the sense that it requires fewer samples to achieve the same accuracy in statistics 

(variance of the mean, for example).   

 



A rule of thumb is to have the number of samples be at least 10 times the number of 

uncertain variables.  For example, if you have 15 uncertain variables, you should specify 

at least 150 samples.   

 

For the cantilever beam example, we first demonstrate sampling with one uncertain 

variable.  For this example, we assume that the elastic modulus, E, is normally distributed 

with a mean of 6.9GPa and a standard deviation of 10% of the mean (0.69GPa).   We 

created 1000 Latin Hypercube samples of E.  A histogram of these samples is shown in 

Figure 3.  
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Figure 3.  Histogram of 1000 Input Samples of E 

 

A histogram of the displacement of the beam is shown in Figure 4.  This histogram is 

based on these 1000 input samples of E with the other values held at their nominal value 

specified in Table 1.  Note that the output is slightly non-normal due to the nonlinearity 

of the deflection with respect to E.   
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Figure 4.  Histogram of 1000 Input Samples of Displacement 

 

The next example treats multiple inputs as uncertain, distributed with the probability 

distributions specified in Table 2.  Note that 3 variables are uncertain in this problem, L, 

P, and E.  

 

Variable Distribution Distribution Parameters 

L Normal Mean = 1m 

Std. Dev. = 0.01 m 

W Fixed 1 cm 

H Fixed 2 cm 

P Normal Mean = 100 N 

Std. Dev. = 5 N 

E Normal Mean = 69 GPa 

Std. Dev. = 13.8 GPa 

Table 2.  Uncertain Variable Specification for Sampling 

 

When generating 1000 samples from these three normal distributions and then using the 

sample values to calculate displacement of the beam, we obtain the histogram of 

displacement shown in Figure 5: 
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Figure 5.  Histogram of 1000 Input Samples of Displacement 

 

If we plot the output samples cumulatively, we get the cumulative distribution function 

(CDF) shown in Figure 6:  
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Figure 6.  CDF of 1000 Input Samples of Displacement 



 

We can also visually look at the correlations of the output with respect to the inputs.  

For example, the following two scatter plots in Figures 7 and 8 show that the 

displacement is not strongly correlated to the change in load but very strongly negatively 

correlated to the modulus of elasticity.   The graphs also allow one to quickly identify 

outliers. 
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Figure 7.  Scatter plot of displacement vs. load 
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Figure 8.  Scatter plot of displacement vs. modulus 

 

 



The example presented in Figures 5-8 above, with 3 uncertain variables (L, P, and E), 

will be used as the basis for the subsequent uncertainty analysis methods. 

5.  Analytic Reliability  

 

A full discussion of the theory behind analytic reliability methods will not be presented 

here.  There is a good discussion in Section 6.3 of the DAKOTA User’s Manual [Eldred 

et al.] and in [Haldar and Mahadevan]. Reliability methods provide an alternative 

approach to uncertainty quantification which can be less computationally demanding than 

sampling techniques.  Reliability methods for uncertainty quantification are based on 

probabilistic approaches that compute approximate response function statistics based on 

specified uncertain variable distributions.  These response statistics include response 

mean, response standard deviation, and cumulative or complementary cumulative 

distribution functions (CDF/CCDF).  These methods are often more efficient at 

computing statistics in the tails of the response distributions (events with low probability) 

than sampling based approaches since the number of samples required to resolve a low 

probability can be prohibitive. 

  

The methods all answer the fundamental question:  Given a set of uncertain input 

variables, X, and a scalar response function, g, what is the probability that the response 

function is below or above a certain level, z ?  This probability calculation involves a 

multi-dimensional integral over an irregularly shaped domain of interest.  The reliability 

methods all involve the transformation of the user-specified uncertain variables in x-

space to a space of independent standard Gaussian random variables, possessing a mean 

value of zero and unit variance called u-space.  The region of interest is also mapped to 

the transformed space.  In the transformed space, probability contours are circular in 

nature and the multi-dimensional integrals can be approximated by simple functions of a 

single parameter, β, called the reliability index.  β is the minimum Euclidean distance 

from the origin in the transformed space to the response surface. This point is also known 

as the most probable point (MPP).   The distance of the MPP from the origin has the 

meaning of the number of input standard deviations separating the mean response from a 

particular response threshold.  There are many reliability methods:  most of them involve 

different ways to approximate the limit state, solve for the MPP, or integrate to calculate 

the probabilities.   

 

Note that although analytic reliability methods may require fewer function evaluations 

than sampling methods, they do require that finite difference or analytic gradients of the 

output variable with respect to the uncertain inputs be provided.  Also, Hessian 

information, if available, tends to help the performance of these methods.   Finally, note 

that each point in a cumulative distribution function requires performing an optimization 

run.   

 

Figure 9 shows an example CDF from an analytic reliability calculation, using the inputs 

specified in Table 2.  Note that 11 points were calculated along the CDF, for a total of 

267 function evaluations.  This is a relatively “easy” function for reliability analysis, 

since the inputs are normal and the function is not noisy or ill-behaved with respect to the 



inputs.  The statistics from the CDF in Figure 9 compare well with the statistics from 

sampling. 
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Figure 9.  CDF based on Reliability Method 

 

6.  Polynomial Chaos Expansions 

The polynomial chaos expansion (PCE) method is a general framework for the 

approximate representation of random response functions in terms of finite-dimensional 

series expansions.  PCE is a type of stochastic response surface method [Ghanem and 

Red-Horse].  These methods approximate both the inputs and the outputs of the uncertain 

system through series expansions of standard random variables.  In PCE, the series 

expansion is based on unit Gaussian random variables.  The expansion is based on 

Hermite polynomials which are functions of the Gaussian random variables.   The goal of 

a PCE analysis is to determine the unknown coefficients of the Hermite polynomials in 

the series expansion.   Usually, these coefficients can be calculated from a limited 

number of model simulations.   

Conceptually, the propagation of input uncertainty through a model using PCE consists 

of the following steps: (1) input uncertainties are expressed in terms of a set of unit 

Gaussian random variables, (2) a functional form such as Hermite polynomials is 

assumed for selected outputs, and (3) the parameters of the functional approximation are 

determined.  

An important distinguishing feature of the PCE methodology is that the solution series 

expansions are expressed as random processes, not merely as statistics as in the case of 

many nondeterministic methodologies.  PCE can be most efficient when there is some 

additional information from the physics of the problem about what type of approximating 



polynomials are most appropriate.  In DAKOTA, we have implemented a “black-box” or 

“non-intrusive” version of PCE.  In this approach, a number of samples are taken initially 

of the real function, then those are used to help solve for the coefficients of the 

expansion.   The samples can be based on Latin Hypercube sampling, quadrature points, 

imported from a file, or stochastic collocation points.  The DAKOTA results can give you 

percentile values if you request them.  The DAKOTA output also lists the coefficients of 

the expansion so that you could, if desired, sample from many unit random normal 

variables and construct a distribution of the output based on plugging the unit normal 

variables, the Hermite polynomials, and the expansion coefficients into the correct 

expansion formula.  

 

Figure 10 shows two cumulative distribution function from PCE calculations, again based 

on the inputs shown in Table 2.  One CDF is based an initial set of 250 LHS samples, 

with finite differencing to calculate derivatives, for a total of 1750 function evaluations.  

The second CDF is based on quadrature points.  The order of the quadrature is five in 

each uncertain dimension, for a total of 125 integration points. The expansion order (the 

highest order of the orthogonal polynomials appearing in the expansion) is two for both 

CDFs.  The percentiles for both CDFs were based on using the chaos expansion formulas 

and evaluating them at 10,000 LHS sample points. 
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 Figure 10.  CDF based on Polynomial Chaos Expansion Method 

 

 

7.  Dempster-Shafer Evidence Theory (Epistemic) 

 

The previous uncertainty propagation methods (sampling, analytic reliability, and 

polynomial chaos expansions) dealt with uncertain input variables that can be specified 

by a probability distribution.  These approaches apply primarily to propagating uncertain 



variables characterized by aleatory uncertainty.   This section discusses one approach to 

propagating epistemic uncertain variables.  

 

There are many ways of representing epistemic uncertainty, including fuzzy sets, 

possibility theory, and imprecise probability.  At Sandia we have chosen to use 

Dempster-Shafer, in part because it is a generalization of classical probability theory 

which allows the simulation code to remain black-box (it is non-intrusive to the code) and 

because the Dempster-Shafer calculations use much of the probabilistic framework we 

already have in place. [Oberkampf and Helton]  Dempster-Shafer has two measures of 

uncertainty, belief and plausibility.  Together, these define an interval-valued probability 

distribution, not a single probability distribution.   

 

Dempster-Shafer Theory of Evidence may be used to perform epistemic analysis.  In 

Dempster-Shafer evidence theory, the epistemic uncertain input variables are modeled as 

sets of intervals.  Note that each variable may be defined by one or more intervals.  The 

user assigns a basic probability assignment (BPA) to each interval, indicating how likely 

it is that the uncertain input falls within the interval.  The BPAs for a particular uncertain 

input variable must sum to one.  The intervals may be overlapping, contiguous, or have 

gaps.  Dempster-Shafer has two measures of uncertainty, belief and plausibility.  The 

intervals are propagated to calculate belief (a lower bound on a probability value that is 

consistent with the evidence) and plausibility (an upper bound on a probability value that 

is consistent with the evidence).  Together, belief and plausibility define an interval-

valued probability distribution, not a single probability distribution.   

 

The method for calculating Dempster-Shafer intervals is computationally very expensive.  

Many hundreds of thousands of samples are taken over the space.  Each combination of 

input variable intervals defines an input “cell.”  By interval combination, we mean the 

first interval of the first variable paired with the first interval for the second variable, etc.  

Within each interval calculation, it is necessary to find the minimum and maximum 

function value for that interval “cell.”   These min and max values are aggregated to 

create the belief and plausibility curves.  The Dempster-Shafer method may use a 

surrogate model and/or optimization methods.  The accuracy of the Dempster-Shafer 

results is highly dependent on the number of samples and the number of interval 

combinations.  If one has a lot of interval cells and few samples, the estimates for the 

minimum and maximum function evaluations is likely to be poor.  

 

We demonstrate two examples of the propagation of uncertainty with Dempster-Shafer 

structures.  The Dempster-Shafer structures are shown in Table 3.  Note that for both of 

these examples, width and height of the beam are fixed at 1cm and 2cm, respectively. 

The three uncertain variables are L, E, and P. The first example is very simple: each 

uncertain variable is represented by one interval, which means that the uncertain variable 

can take any number of possible values between the upper and lower bound on that 

interval.  For example, the load P can take a value anywhere between 85 and 115 

Newtons.  Note that this does NOT imply that any value within that interval is equally 

likely (as would be the case with a uniform distribution).  Rather, the interpretation is that 

any value within that interval is a possibility or possible realization.   Table 3b shows the 



second example, where each variable is subdivided into 3 possible intervals.  The middle 

interval is the most likely interval, in that it has a basic probability assignment of 0.5:  

there is a 50% chance that P will fall in the interval [90,110], for example.  The outer 

intervals each have a BPA of 0.25.  The intervals in this example were constructed for the 

purpose of demonstration.  Ideally, one would elicit expert judgment to construct the 

intervals and their associated BPAs.   Also, the intervals defined in Table 3b are all 

contiguous, but there is no requirement that they be:  the intervals can be overlapping or 

disjoint. 

   

Variable Intervals BPA 

L [0.97, 1.03] m 1.0 

P [85,115] N 1.0 

E [27.6,110.4]GPa 1.0 

Table 3a. Epistemic Variables for the Cantilever Beam Problem, Example 1 

 

Variable Intervals BPA 

L [0.97, 0.98] [0.98, 1.02] [1.02,1.03] m 0.25, 0.5, 0.25 

P [85,90] [90,110] [110,115] N 0.25, 0.5, 0.25 

E [27.6,41.4] [41.4, 96.6] [96.6,110.4]GPa 0.25, 0.5, 0.25 

Table 3b. Epistemic Variables for the Cantilever Beam Problem, Example 2 

 

Based on the intervals defined for L, P, and E, we performed the Dempster-Shafer 

calculations.  The resulting belief and plausibility bounds are shown in Figure 11.  For 

example 1, since each uncertain variable is defined by one interval, all we can say is that 

the output falls within one interval.  In example 1, displacement falls between 3.75 cm 

and 20.53 cm.     Note that the Dempster-Shafer calculations for this example were based 

on 1000 samples; the results will change slightly as the number of samples changes.. 

 

The cumulative belief and plausibility functions for Example 2 are much tighter than 

those in Example 1.  This is due to the fact that there was more structure to the intervals 

defining the three uncertain variables in Example 2.  Together, belief and plausibility 

provide bounds as to where the true, unknown cumulative distribution function may fall.   

For a given displacement value, the lower bound of that interval is the belief and the 

upper bound is the plausibility  The bounds on the unknown “true” CDF given by belief 

and plausibility are often quite large, reflecting the uncertainty in the input variables as 

defined by the intervals. 
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Figure 11.  CBF/CPF based on Dempster-Shafer Evidence Theory 

 

 

8.  Second-Order Probability 

 

This section discusses the case where we are trying to propagate both aleatory and 

epistemic uncertainty.  A common situation is where one may know the form of the 

probability distribution for an uncertain variable (for example, that it is distributed 

normally or lognormally), but one is not sure of the parameters governing the 

distribution.  In this case, the analysis is done with an outer loop and an inner loop.  In the 

outer loop, the epistemic variables are specified.  In this example, the epistemic variables 

are specified as intervals on parameter values such as means or standard deviations of 

uncertain variables.  A particular value is selected from within the specified intervals.  

Then, this value is sent to the inner loop.  In the inner loop, the values of the distribution 

parameters are set by particular realizations of the epistemic variables, and the inner loop 

performs sampling on the aleatory variables in the usual way (e.g., a LHS sample is 

taken).   Figure 12 shows the sampling structure of second-order probability. 
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Figure 12.  Second-order Probability 
 

Second-order probability may be expensive since we have two sampling loops.  

However, it has the advantage that it is easy to separate and identify the aleatory vs. 

epistemic uncertainty.   Each particular set of epistemic variable values generates an 

entire CDF for the response quantities based on the aleatory uncertainty.  So, for 

example, if one had 50 values or samples taken of the epistemic variables, one would 

have 50 CDFs.   When you plot the 50 CDFs, you get the upper and lower bound on the 

family.  Thus, the results look very similar to a Dempster-Shafer analysis.   

 

Table 4 outlines the uncertain variables for second-order probability sampling for the 

cantilever beam problem. 

 

Variable Epistemic Mean Distribution 

L [0.98, 1.02] m Normal(epistemic mean, 0.01) m 

P [90,110] N Normal(epistemic mean, 5) N 

E [41.4,96,6] GPa Normal(epistemic mean, 13.8) GPa 

Table 4. Epistemic Variables for the Cantilever Beam Problem, Example 1 

 

 

For the results shown in Figure 13, we took 20 outer loop samples and 100 inner loop 

samples.   We get inner and outer bounds on the family of CDFs generated by the 20 

outer loop samples on the epistemic variables.  Two particular realizations of CDFs 

(based on 100 inner loop samples) are also plotted. 
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Figure 13.  Second-order Probability Results for the Cantilever Beam Problem 

 

9.  Summary of UQ Methods 

This paper has outlined five methods that are used by the engineering community to 

propagate uncertainty in computational models.   These five methods are all available in 

the DAKOTA software tool.  Three of these methods focus on propagation of aleatory 

uncertainties:  sampling, analytic reliability, and polynomial chaos expansions.  

Dempster-Shafer evidence theory is used to propagate epistemic uncertainty, and second-

order probability can handle both.  Table 5 presents a short summary of the UQ methods.  

When choosing a method, one should consider a variety of factors, including the 

computational cost of the function evaluations, the transparency of the method, the type 

of outputs generated, and the question being addressed (e.g., is the goal to get an accurate 

assessment of the response level at a particular percentile, a reliability/failure probability, 

the mean or variance of the output distribution, is an entire output CDF necessary, etc.).   

The transparency of the method is very important in regulatory applications and 

environments where results may have to be repeated under a variety of conditions.  

Sampling methods are the most “transparent” in terms of being able to trace a particular 

set of inputs to a particular output value on the CDF.   One class of methods this paper 

did not address is Bayesian methods.   Bayesian methods require the specification of a 

likelihood function (i.e., the likelihood of obtaining a particular set of computational 

results based on data.)  In general, this is difficult to do in a general-purpose framework 

without a significant set of additional statistical assumptions.  For this reason, Bayesian 

methods have not been included in this presentation. 
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