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ABSTRACT
One of the most pressing issues with petascale analysis is the
transport of simulation results data to a meaningful analy-
sis. Traditional workflow prescribes storing the simulation
results to disk and later retrieving them for analysis and
visualization. However, at petascale this storage of the full
results is prohibitive. A solution to this problem is to run the
analysis and visualization concurrently with the simulation
and bypass the storage of the full results. One mechanism
for doing so is in transit visualization in which analysis and
visualization is run on I/O nodes that receive the full sim-
ulation results but write information from analysis or pro-
vide run-time visualization. This paper describes the work
in progress for three in transit visualization solutions, each
using a different transport mechanism.

Categories and Subject Descriptors
I.6.6 [Computing Methodologies]: Simulation and Mod-
eling—Simulation Output Analysis
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1. INTRODUCTION
In situ visualization refers to running a simulation con-

currently with the visualization of its results. The concept
of running a visualization while the simulation is running
is not new. It is mentioned in the 1987 National Science
Foundation Visualization in Scientific Computing workshop
report [18], which is often attributed to launching the field of
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scientific visualization. However, the interest in in situ visu-
alization has grown significantly in recent years due to recent
problems in the standard simulation-visualization workflow.

Recent studies show that the cost of dedicated interac-
tive visualization computers for petascale is prohibitive [5]
and that the time spent in writing data to and reading data
from disk storage is beginning to dominate the time spent in
both the simulation and the visualization [26, 27, 30]. Con-
sequently, in situ visualization is one of the most important
research topics in large-scale visualization today [2,13].

In transit visualization (also known as staged visualiza-
tion) is a particularly elegant form of in situ visualization
that exploits an I/O transport infrastructure that address
the disk transfer limitations of modern supercomputers. A
modern supercomputer’s compute rate far exceeds its disk
transfer rate. Recent studies show that the latency of the
disk storage can be hidden by having a “staging” job run-
ning separately but concurrently with the main computation
job. This staging job is able to buffer data and write it to
disk while the main job continues to compute [1, 20, 21, 29].
Rather than dump the results straight to disk, studies show
it is feasible to instead (or in addition) perform “in transit”
analysis and visualization on these staging nodes as demon-
strated in Figure 1.
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Figure 1: In transit visualization leverages an I/O
transport layer to intercept data and perform anal-
ysis.



In transit visualization requires the ability to transfer data
from the scientific code to the “staging” area for analysis. In
techniques such as I/O Delegation [20] the applications use
MPI to communicate this data. For I/O Delegation, the
user allocates an additional set of staging processors when
the application is launched. Then, a separate MPI communi-
cator allows the staging processors to perform analysis with-
out interfering with the primary application. This approach
was first demonstrated for high-performance computing in a
seismic imaging application called Salvo [25]. In Salvo, the
user allocated an “I/O Partition” for staging outgoing data
and also performing proprocessing (i.e., FFTs) on incoming
data. I/O delegation is perhaps the most portable approach
for in transit computation, but it requires a tight coupling
of analysis with application and it is impossible to share the
service with multiple applications.

A second more flexible approach for in transit visualiza-
tion is to create the staging area as a separate application
(or service) that communicates with the client application
through a low-level network transport. This approach is ex-
tremely flexible because it allows for the potential “chaining”
of application services, coupling of applications, and appli-
cation sharing. The three projects described in this paper
use this more loosely coupled approach.

This paper presents the work in progress for three projects
performing in transit visualization. Each project uses a
different I/O transport mechanism: the Network Scalable
Service Interface (Nessie) [23], the GLEAN framework [35],
and the Adaptable IO System (ADIOS) [16]. Each project
demonstrates the integration of visualization with a differ-
ent type of simulation. All three projects make use of the
ParaView parallel visualization services [32].

2. RELATED WORK
There exist several systems designed to directly integrate

simulation with visualization such as SCIRun [12], pV3 [11],
and RVSLIB [8]. Other work focuses on integrating simu-
lation codes with end user visualization tools such as Para-
View [10] and VisIt [37].

These solutions require programmers to directly integrate
the simulation with a visualization solution. One of the goals
of in transit visualization is to more loosely couple these
two units so that they may be applied to multiple instances
without further programming. Tools such as ESPN [9] and
ITAPS [4] attempt to provide more general interfaces be-
tween data producers and consumers.

In addition to those discussed here, other projects are also
considering in transit visualization. For example, another
approach leverages the XDMF/HDF5 layer as a transport
mechanism for visualization [3].

3. NESSIE
The NEtwork Scalable Service Interface (Nessie) is a

framework for developing in transit analysis capabilities [23].
It provides a remote-procedure call (RPC) abstraction that
allows the application-developer to create custom data ser-
vices to match the specific needs of the application.

Like Sun RPC [19], Nessie relies on client and server stub
functions to encode/decode (i.e., marshal) procedure call
parameters to/from a machine-independent format. This
approach is portable because it allows access to services on
heterogeneous systems, but it is not efficient for I/O requests

containing raw buffers that do not need encoding. To ad-
dress this marshalling issue, Nessie uses separate communi-
cation channels for control and data messages. A control
message is typically small, identifying the operation to per-
form, where to get arguments, the structure of the argu-
ments, and so forth. In contrast, a data message is typically
large and consists of “raw” bytes that, in most cases, do not
need to be encoded/decoded by the server.

To push control messages to the servers, the Nessie client
uses the RPC-like interface. However, to push or pull
data to/from the client, the server uses a one-sided API
that accesses the system’s native remote direct-memory
(RDMA) capabilities. This server-directed protocol allows
interactions with heterogeneous servers, but also benefits
from allowing the server to control the transport of bulk
data [15, 31]. The server can thus manage large volumes of
requests with minimal resource requirements. Furthermore,
since servers are expected to be a critical bottleneck in the
system, a server-directed approach allows the server to opti-
mize the processing of requests for efficient use of underlying
network and storage devices — for example, re-ordering re-
quests to a storage device [15].

Nessie is designed specifically for HPC systems that sup-
port RDMA and has ports for Portals, InfiniBand, Gemini,
and LUC. Nessie has been used to implement services for
file systems [22], HPC proxies for database access [24], and
data staging for PnetCDF [29]. Ongoing work using Nessie
for in transit analysis of the CTH shock physics code [14] is
described further below.

Rather than require applications to modify code to sup-
port Nessie, a typical service developer uses the RPC frame-
work to develop link-time replacements for libraries already
in use by the application. This is the approach taken for
the PnetCDF staging service, the SQL proxy, and the CTH
fragment-detection service. In the case of CTH, we imple-
ment client and server stubs for the ParaView Coprocessing
library [10] — an API for performing in situ analysis using
ParaView. Instead of performing the analysis on the CTH
compute nodes, our Nessie client marshals requests, sends
data to the staging nodes, and performs the analysis on the
staging nodes. Figure 2 illustrates this process. This ap-
proach allows fragment detection to execute in parallel with
CTH, unlike a tightly coupled in situ approach that requires
CTH to wait for the analysis to complete. This approach
requires no code changes on the part of the CTH developer
and it allows performance analysis comparing in situ verses
in transit approaches. This performance study is ongoing
and will be reported in future work.

���

Client Application

CTH Nessie
Client

Fragment-Detection Service

Nessie Server /
ParaView Coprocessor

Raw
Data

Fragment
Data

Figure 2: In transit fragment detection for the CTH
shock physics code.



4. GLEAN
GLEAN is a flexible and extensible framework that takes

into account application, analysis and system characteristics
in order to facilitate simulation-time data analysis and I/O
acceleration [35]. It is developed by the Mathematics and
Computer Science Division (MCS) and Argonne Leadership
Computing Facility (ALCF) at Argonne National Labora-
tory. To facilitate in transit visualization, GLEAN uses a
client/server architecture to move data out of the simula-
tion application (client) and onto dedicated staging nodes
(server). The GLEAN client runs on compute nodes or on
dedicated I/O nodes. It takes data I/O streams from a run-
ning solver and forwards the data to a GLEAN server. The
GLEAN server runs on staging or visualization nodes that
are connected to the supercomputer via a local network.

GLEAN is used as the data transport method in covis and
in situ experiments using the PHASTA flow solver and Para-
View coprocessor on an IBM BlueGene/P supercomputer.
PHASTA is a parallel, hierarchic (2nd-5th order accurate),
adaptive, stabilized (finite element) transient, incompress-
ible and compressible flow solver [36]. The ParaView copro-
cessor is a library that provides ParaView’s parallel services
to a solver by linking directly with the solver binary targeted
to run on compute nodes [10]. At the end of a timestep or
iteration, the solver makes a function call to pass the current
solution state to the ParaView coprocessor. The coproces-
sor reads instructions from a Python script to build a filter
pipeline for in situ analysis of the solution data. The fil-
ter pipeline extracts meaningful information from the input
data and saves the results using I/O. In this experiment,
GLEAN is used as the I/O framework instead, removing
the need to write to the hard disk.

The GLEAN integration with the ParaView coprocessor
is implemented with a pair of Visualization Toolkit (VTK)
reader and writers. (VTK is the visualization library on
which ParaView is built.) To perform standard disk I/O,
the user connects a geometry writer to the end of the co-
processor filter pipeline. In this experiment, we replace a
standard VTK writer with the GLEAN writer. The GLEAN
writer acts as a GLEAN client to re-route data to a listening
GLEAN server on staging nodes. Once the data has been
moved to the staging nodes, a GLEAN filter re-indexes the
element arrays to account for the aggregation of the data
from a large number of compute nodes to a smaller num-
ber of stage nodes. On the staging nodes, a GLEAN server
combined with a standard ParaView server receives the data.
The VTK GLEAN reader on the ParaView server takes the
data from the GLEAN server and makes it available to the
user interacting with the ParaView server.

Conversion of VTK data objects produced by the Para-
View coprocessor to GLEAN transit buffers does not require
copying of memory. Once the data has been moved to the
staging nodes, a GLEAN filter re-indexes the element arrays
to account for the aggregation of the data from a large num-
ber of compute nodes to a smaller number of stage nodes.
The GLEAN reader requests arrays from the GLEAN server
and re-packs them into VTK data objects, without copying
the data, to serve to the consuming filters of the ParaView
server.

We conducted in transit visualization experiments on In-
trepid, an IBM BlueGene/P at ALCF, with 160,000 cores,
and the Eureka visualization cluster with 400 cores and 200
GPUs. A ParaView server with coupled GLEAN server

Figure 3: Cut plane through the synthetic jet simu-
lated with PHASTA on Intrepid and visualized con-
currently on Eureka.

ran on Eureka, and the PHASTA solver coupled with the
ParaView coprocessor ran on Intrepid. The demonstration
problem simulated flow control over a full 3D swept wing
as shown in Figure 3. Synthetic jets on the wing pulsed
at 1750Hz, producing unsteady cross flow that increase or
decrease the lift, or even reattach a separated flow.

Runs used meshes of size 22M, 416M, and 3.3B elements.
At full scale, the experiment used the total amount of avail-
able cores on both systems, while a ParaView GUI connected
to the ParaView server on Eureka interacted with the solver
data offloaded using GLEAN transport from Intrepid and
staged on Eureka.

5. ADIOS
The Adaptable I/O System framework (ADIOS) [16] is a

next-generation I/O framework, which provides innovative
solutions to a variety of I/O challenges facing large-scale
scientific applications. ADIOS is designed to separate the
I/O API from the actual implementation of the I/O meth-
ods. This design specification enables the users to easily,
and without any application source code modifications, se-
lect I/O methods that are optimized for performance and
functionality on the target platform. ADIOS also includes a
new self-describing file format, which has shown scalability
at leadership scale (> 100K cores) [17] and high consistent
throughput for both writing and reading [28, 34]. Due to
its componentized architecture, many institutions have con-
tributed to the development of ADIOS methods. In fact,
applications utilizing ADIOS have received over 24% of the
allocated time at Oak Ridge Leadership Computing Facility.

By decoupling the APIs from the implementation, ADIOS
also enables output in a variety of formats ranging from
ASCII to parallel HDF5, as well as allowing the usage of
new data staging techniques [6,34] that can bypass the stor-
age system altogether. In ADIOS, the user is provided the
flexibility of selecting the I/O technique through a single
change in an application specific XML file thus allowing an
easy transition from file-based coupling to in-memory cou-
pling [6, 38].

This external XML file is also used to describe the data
and additionally can be used to add annotations that can aid
data processing downstream from the application, especially



during in transit visualization. For example, users can add
extra information to the XML file to describe the schema
for visualization.

ADIOS uses the DataSpaces method [6] to provide the ab-
straction of a virtual semantically specialized shared space
that can be associatively and asynchronously accessed us-
ing simple, yet powerful and flexible, operators (e.g., put()
and get()) with appropriate data selectors. These operators
are location and distribution agnostic, allowing the in tran-
sit visualization to reference data without explicitly dealing
with discovery and transfer. Additionally, the DataSpaces
staging area exists as a separate application (see Figure 1),
providing fault isolation for the application. Thus, failures
in the coupled codes do not have to propagate to the ap-
plication. DataSpaces can also hold multiple versions of a
named dataset, for example, multiple timesteps from an ap-
plication. DataSpaces also manages the available buffering
in the staging area autonomously by evicting the oldest ver-
sions. This eviction policy is particularly apt for typical
visualization scenarios where the data generation rate from
the application needs to be decoupled from the data con-
sumption rate of visualization.

Applications already utilizing the ADIOS API can imme-
diately use the DataSpaces method for in transit visualiza-
tion. DataSpaces and ADIOS allow reader applications (e.g.
ParaView server or a coupled application [7]) to retrieve an
arbitrary portion of a dataset; however, in order to address
the unavailability of some timesteps we have had to mod-
ify the read semantics for the reading application. Data
sets are referenced by a timestep and only a single timestep
can be retrieved at a time. Additionally, new error codes
from the file-open operation indicate whether the requested
timestep is still available, whether newer steps are available,
or whether a timestep will never be available because the
producer has terminated.

Our in transit visualization application (see Figure 4) in-
volves five separate applications.

Figure 4: Using ADIOS/DataSpaces for in transit
analysis and visualization

Pixie3D is an MHD code for plasma fusion simulation.
Pixplot is a parallel analysis code for Pixie3D output that

creates a larger dataset suitable for visualization.
Pixmon creates 2D slices of the 3D output of Pixie3D and

to presents them through ESiMon [33] to monitor the
run.

ParaView server (with an ADIOS reader plugin) can read
either from a file or from a staging area.

DataSpaces serves these four applications.

The visualization server is controlled by a ParaView client;
therefore the retrieval rate of individual timesteps is vary-
ing. In our actual simulation run, Pixie3D generated about
100MB of data every second while Pixplot processed every
30th step and wrote about 500MB every 30 seconds. One
compute node for staging was enough to hold 20 timesteps
(generated in 10 minutes) of Pixplot result data at once
and to comfortably analyze the run with ParaView. Since
DataSpaces can scale to hundreds of nodes and provides
both low latency and high bandwidth for data exchange, it
can store all timesteps of a run of this nature if needed.

6. CONCLUSION
An in situ visualization system requires flexibility if it is to

be applied to multiple problem domains, and we find the in
transit approach provides a convenient mechanism to loosely
couple simulation and visualization components. As noted
in this paper, we are pursuing the use of the parallel Para-
View server with several different I/O transport mechanisms
and simulations. This work will simplify the creation of in
situ services in simulation runs.
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