
Examples of In Transit Visualization

Kenneth Moreland
Sandia National Laboratories

kmorel@sandia.gov

Ron Oldfield
Sandia National Laboratories

raoldfi@sandia.gov

Pat Marion
Kitware, Inc.

pat.marion@kitware.com

Sebastien Jourdain
Kitware, Inc.

sebastien.jourdain@kitware.com

Norbert Podhorszki
Oak Ridge National Laboratory

pnorbert@ornl.gov

Venkatram Vishwanath
Argonne National Laboratory

venkatv@mcs.anl.gov

Nathan Fabian
Sandia National Laboratories

ndfabia@sandia.gov

Ciprian Docan
Rutgers University

docan@caip.rutgers.edu

Manish Parashar
Rutgers University

parashar@rutgers.edu

Mark Hereld
Argonne National Laboratory

hereld@mcs.anl.gov

Michael E. Papka
Argonne National Laboratory

papka@anl.gov

Scott Klasky
Oak Ridge National Laboratory

klasky@ornl.gov

ABSTRACT
One of the most pressing issues with petascale analysis is the
transport of simulation results data to a meaningful analy-
sis. Traditional workflow prescribes storing the simulation
results to disk and later retrieving them for analysis and
visualization. However, at petascale this storage of the full
results is prohibitive. A solution to this problem is to run the
analysis and visualization concurrently with the simulation
and bypass the storage of the full results. One mechanism
for doing so is in transit visualization in which analysis and
visualization is run on I/O nodes that receive the full sim-
ulation results but write information from analysis or pro-
vide run-time visualization. This paper describes the work
in progress for three in transit visualization solutions, each
using a different transport mechanism.

Categories and Subject Descriptors
I.6.6 [Computing Methodologies]: Simulation and Mod-
eling—Simulation Output Analysis

Keywords
in situ, in transit, staging, parallel scientific visualization

1. INTRODUCTION
In situ visualization refers to running a simulation con-

currently with the visualization of its results. The concept
of running a visualization while the simulation is running
is not new. It is mentioned in the 1987 National Science
Foundation Visualization in Scientific Computing workshop
report [18], which is often attributed to launching the field of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PDAC’11, November 14, 2011, Seattle, Washington, USA.
Copyright 2011 ACM 978-1-4503-1130-4/11/11 ...$10.00.

scientific visualization. However, the interest in in situ visu-
alization has grown significantly in recent years due to recent
problems in the standard simulation-visualization workflow.

Recent studies show that the cost of dedicated interac-
tive visualization computers for petascale is prohibitive [5]
and that the time spent in writing data to and reading data
from disk storage is beginning to dominate the time spent in
both the simulation and the visualization [26, 27, 30]. Con-
sequently, in situ visualization is one of the most important
research topics in large-scale visualization today [2,13].

In transit visualization (also known as staged visualiza-
tion) is a particularly elegant form of in situ visualization
that exploits an I/O transport infrastructure that address
the disk transfer limitations of modern supercomputers. A
modern supercomputer’s compute rate far exceeds its disk
transfer rate. Recent studies show that the latency of the
disk storage can be hidden by having a “staging” job run-
ning separately but concurrently with the main computation
job. This staging job is able to buffer data and write it to
disk while the main job continues to compute [1, 20, 21, 29].
Rather than dump the results straight to disk, studies show
it is feasible to instead (or in addition) perform “in transit”
analysis and visualization on these staging nodes as demon-
strated in Figure 1.

Vis

Simulation

Computational Nodes

Staging
Nodes

Simulation Results

Visualization Results

Vis ClientInteractive Vis Control

Figure 1: In transit visualization leverages an I/O
transport layer to intercept data and perform anal-
ysis.

In transit visualization requires the ability to transfer data
from the scientific code to the “staging” area for analysis. In
techniques such as I/O Delegation [20] the applications use
MPI to communicate this data. For I/O Delegation, the
user allocates an additional set of staging processors when
the application is launched. Then, a separate MPI communi-
cator allows the staging processors to perform analysis with-
out interfering with the primary application. This approach
was first demonstrated for high-performance computing in a
seismic imaging application called Salvo [25]. In Salvo, the
user allocated an “I/O Partition” for staging outgoing data
and also performing proprocessing (i.e., FFTs) on incoming
data. I/O delegation is perhaps the most portable approach
for in transit computation, but it requires a tight coupling
of analysis with application and it is impossible to share the
service with multiple applications.

A second more flexible approach for in transit visualiza-
tion is to create the staging area as a separate application
(or service) that communicates with the client application
through a low-level network transport. This approach is ex-
tremely flexible because it allows for the potential “chaining”
of application services, coupling of applications, and appli-
cation sharing. The three projects described in this paper
use this more loosely coupled approach.

This paper presents the work in progress for three projects
performing in transit visualization. Each project uses a
different I/O transport mechanism: the Network Scalable
Service Interface (Nessie) [23], the GLEAN framework [35],
and the Adaptable IO System (ADIOS) [16]. Each project
demonstrates the integration of visualization with a differ-
ent type of simulation. All three projects make use of the
ParaView parallel visualization services [32].

2. RELATED WORK
There exist several systems designed to directly integrate

simulation with visualization such as SCIRun [12], pV3 [11],
and RVSLIB [8]. Other work focuses on integrating simu-
lation codes with end user visualization tools such as Para-
View [10] and VisIt [37].

These solutions require programmers to directly integrate
the simulation with a visualization solution. One of the goals
of in transit visualization is to more loosely couple these
two units so that they may be applied to multiple instances
without further programming. Tools such as ESPN [9] and
ITAPS [4] attempt to provide more general interfaces be-
tween data producers and consumers.

In addition to those discussed here, other projects are also
considering in transit visualization. For example, another
approach leverages the XDMF/HDF5 layer as a transport
mechanism for visualization [3].

3. NESSIE
The NEtwork Scalable Service Interface (Nessie) is a

framework for developing in transit analysis capabilities [23].
It provides a remote-procedure call (RPC) abstraction that
allows the application-developer to create custom data ser-
vices to match the specific needs of the application.

Like Sun RPC [19], Nessie relies on client and server stub
functions to encode/decode (i.e., marshal) procedure call
parameters to/from a machine-independent format. This
approach is portable because it allows access to services on
heterogeneous systems, but it is not efficient for I/O requests

containing raw buffers that do not need encoding. To ad-
dress this marshalling issue, Nessie uses separate communi-
cation channels for control and data messages. A control
message is typically small, identifying the operation to per-
form, where to get arguments, the structure of the argu-
ments, and so forth. In contrast, a data message is typically
large and consists of “raw” bytes that, in most cases, do not
need to be encoded/decoded by the server.

To push control messages to the servers, the Nessie client
uses the RPC-like interface. However, to push or pull
data to/from the client, the server uses a one-sided API
that accesses the system’s native remote direct-memory
(RDMA) capabilities. This server-directed protocol allows
interactions with heterogeneous servers, but also benefits
from allowing the server to control the transport of bulk
data [15, 31]. The server can thus manage large volumes of
requests with minimal resource requirements. Furthermore,
since servers are expected to be a critical bottleneck in the
system, a server-directed approach allows the server to opti-
mize the processing of requests for efficient use of underlying
network and storage devices — for example, re-ordering re-
quests to a storage device [15].

Nessie is designed specifically for HPC systems that sup-
port RDMA and has ports for Portals, InfiniBand, Gemini,
and LUC. Nessie has been used to implement services for
file systems [22], HPC proxies for database access [24], and
data staging for PnetCDF [29]. Ongoing work using Nessie
for in transit analysis of the CTH shock physics code [14] is
described further below.

Rather than require applications to modify code to sup-
port Nessie, a typical service developer uses the RPC frame-
work to develop link-time replacements for libraries already
in use by the application. This is the approach taken for
the PnetCDF staging service, the SQL proxy, and the CTH
fragment-detection service. In the case of CTH, we imple-
ment client and server stubs for the ParaView Coprocessing
library [10] — an API for performing in situ analysis using
ParaView. Instead of performing the analysis on the CTH
compute nodes, our Nessie client marshals requests, sends
data to the staging nodes, and performs the analysis on the
staging nodes. Figure 2 illustrates this process. This ap-
proach allows fragment detection to execute in parallel with
CTH, unlike a tightly coupled in situ approach that requires
CTH to wait for the analysis to complete. This approach
requires no code changes on the part of the CTH developer
and it allows performance analysis comparing in situ verses
in transit approaches. This performance study is ongoing
and will be reported in future work.

���

Client Application

CTH Nessie
Client

Fragment-Detection Service

Nessie Server /
ParaView Coprocessor

Raw
Data

Fragment
Data

Figure 2: In transit fragment detection for the CTH
shock physics code.

4. GLEAN
GLEAN is a flexible and extensible framework that takes

into account application, analysis and system characteristics
in order to facilitate simulation-time data analysis and I/O
acceleration [35]. It is developed by the Mathematics and
Computer Science Division (MCS) and Argonne Leadership
Computing Facility (ALCF) at Argonne National Labora-
tory. To facilitate in transit visualization, GLEAN uses a
client/server architecture to move data out of the simula-
tion application (client) and onto dedicated staging nodes
(server). The GLEAN client runs on compute nodes or on
dedicated I/O nodes. It takes data I/O streams from a run-
ning solver and forwards the data to a GLEAN server. The
GLEAN server runs on staging or visualization nodes that
are connected to the supercomputer via a local network.

GLEAN is used as the data transport method in covis and
in situ experiments using the PHASTA flow solver and Para-
View coprocessor on an IBM BlueGene/P supercomputer.
PHASTA is a parallel, hierarchic (2nd-5th order accurate),
adaptive, stabilized (finite element) transient, incompress-
ible and compressible flow solver [36]. The ParaView copro-
cessor is a library that provides ParaView’s parallel services
to a solver by linking directly with the solver binary targeted
to run on compute nodes [10]. At the end of a timestep or
iteration, the solver makes a function call to pass the current
solution state to the ParaView coprocessor. The coproces-
sor reads instructions from a Python script to build a filter
pipeline for in situ analysis of the solution data. The fil-
ter pipeline extracts meaningful information from the input
data and saves the results using I/O. In this experiment,
GLEAN is used as the I/O framework instead, removing
the need to write to the hard disk.

The GLEAN integration with the ParaView coprocessor
is implemented with a pair of Visualization Toolkit (VTK)
reader and writers. (VTK is the visualization library on
which ParaView is built.) To perform standard disk I/O,
the user connects a geometry writer to the end of the co-
processor filter pipeline. In this experiment, we replace a
standard VTK writer with the GLEAN writer. The GLEAN
writer acts as a GLEAN client to re-route data to a listening
GLEAN server on staging nodes. Once the data has been
moved to the staging nodes, a GLEAN filter re-indexes the
element arrays to account for the aggregation of the data
from a large number of compute nodes to a smaller num-
ber of stage nodes. On the staging nodes, a GLEAN server
combined with a standard ParaView server receives the data.
The VTK GLEAN reader on the ParaView server takes the
data from the GLEAN server and makes it available to the
user interacting with the ParaView server.

Conversion of VTK data objects produced by the Para-
View coprocessor to GLEAN transit buffers does not require
copying of memory. Once the data has been moved to the
staging nodes, a GLEAN filter re-indexes the element arrays
to account for the aggregation of the data from a large num-
ber of compute nodes to a smaller number of stage nodes.
The GLEAN reader requests arrays from the GLEAN server
and re-packs them into VTK data objects, without copying
the data, to serve to the consuming filters of the ParaView
server.

We conducted in transit visualization experiments on In-
trepid, an IBM BlueGene/P at ALCF, with 160,000 cores,
and the Eureka visualization cluster with 400 cores and 200
GPUs. A ParaView server with coupled GLEAN server

Figure 3: Cut plane through the synthetic jet simu-
lated with PHASTA on Intrepid and visualized con-
currently on Eureka.

ran on Eureka, and the PHASTA solver coupled with the
ParaView coprocessor ran on Intrepid. The demonstration
problem simulated flow control over a full 3D swept wing
as shown in Figure 3. Synthetic jets on the wing pulsed
at 1750Hz, producing unsteady cross flow that increase or
decrease the lift, or even reattach a separated flow.

Runs used meshes of size 22M, 416M, and 3.3B elements.
At full scale, the experiment used the total amount of avail-
able cores on both systems, while a ParaView GUI connected
to the ParaView server on Eureka interacted with the solver
data offloaded using GLEAN transport from Intrepid and
staged on Eureka.

5. ADIOS
The Adaptable I/O System framework (ADIOS) [16] is a

next-generation I/O framework, which provides innovative
solutions to a variety of I/O challenges facing large-scale
scientific applications. ADIOS is designed to separate the
I/O API from the actual implementation of the I/O meth-
ods. This design specification enables the users to easily,
and without any application source code modifications, se-
lect I/O methods that are optimized for performance and
functionality on the target platform. ADIOS also includes a
new self-describing file format, which has shown scalability
at leadership scale (> 100K cores) [17] and high consistent
throughput for both writing and reading [28, 34]. Due to
its componentized architecture, many institutions have con-
tributed to the development of ADIOS methods. In fact,
applications utilizing ADIOS have received over 24% of the
allocated time at Oak Ridge Leadership Computing Facility.

By decoupling the APIs from the implementation, ADIOS
also enables output in a variety of formats ranging from
ASCII to parallel HDF5, as well as allowing the usage of
new data staging techniques [6,34] that can bypass the stor-
age system altogether. In ADIOS, the user is provided the
flexibility of selecting the I/O technique through a single
change in an application specific XML file thus allowing an
easy transition from file-based coupling to in-memory cou-
pling [6, 38].

This external XML file is also used to describe the data
and additionally can be used to add annotations that can aid
data processing downstream from the application, especially

during in transit visualization. For example, users can add
extra information to the XML file to describe the schema
for visualization.

ADIOS uses the DataSpaces method [6] to provide the ab-
straction of a virtual semantically specialized shared space
that can be associatively and asynchronously accessed us-
ing simple, yet powerful and flexible, operators (e.g., put()
and get()) with appropriate data selectors. These operators
are location and distribution agnostic, allowing the in tran-
sit visualization to reference data without explicitly dealing
with discovery and transfer. Additionally, the DataSpaces
staging area exists as a separate application (see Figure 1),
providing fault isolation for the application. Thus, failures
in the coupled codes do not have to propagate to the ap-
plication. DataSpaces can also hold multiple versions of a
named dataset, for example, multiple timesteps from an ap-
plication. DataSpaces also manages the available buffering
in the staging area autonomously by evicting the oldest ver-
sions. This eviction policy is particularly apt for typical
visualization scenarios where the data generation rate from
the application needs to be decoupled from the data con-
sumption rate of visualization.

Applications already utilizing the ADIOS API can imme-
diately use the DataSpaces method for in transit visualiza-
tion. DataSpaces and ADIOS allow reader applications (e.g.
ParaView server or a coupled application [7]) to retrieve an
arbitrary portion of a dataset; however, in order to address
the unavailability of some timesteps we have had to mod-
ify the read semantics for the reading application. Data
sets are referenced by a timestep and only a single timestep
can be retrieved at a time. Additionally, new error codes
from the file-open operation indicate whether the requested
timestep is still available, whether newer steps are available,
or whether a timestep will never be available because the
producer has terminated.

Our in transit visualization application (see Figure 4) in-
volves five separate applications.

Figure 4: Using ADIOS/DataSpaces for in transit
analysis and visualization

Pixie3D is an MHD code for plasma fusion simulation.
Pixplot is a parallel analysis code for Pixie3D output that

creates a larger dataset suitable for visualization.
Pixmon creates 2D slices of the 3D output of Pixie3D and

to presents them through ESiMon [33] to monitor the
run.

ParaView server (with an ADIOS reader plugin) can read
either from a file or from a staging area.

DataSpaces serves these four applications.

The visualization server is controlled by a ParaView client;
therefore the retrieval rate of individual timesteps is vary-
ing. In our actual simulation run, Pixie3D generated about
100MB of data every second while Pixplot processed every
30th step and wrote about 500MB every 30 seconds. One
compute node for staging was enough to hold 20 timesteps
(generated in 10 minutes) of Pixplot result data at once
and to comfortably analyze the run with ParaView. Since
DataSpaces can scale to hundreds of nodes and provides
both low latency and high bandwidth for data exchange, it
can store all timesteps of a run of this nature if needed.

6. CONCLUSION
An in situ visualization system requires flexibility if it is to

be applied to multiple problem domains, and we find the in
transit approach provides a convenient mechanism to loosely
couple simulation and visualization components. As noted
in this paper, we are pursuing the use of the parallel Para-
View server with several different I/O transport mechanisms
and simulations. This work will simplify the creation of in
situ services in simulation runs.

7. ACKNOWLEDGMENTS
Funding for this work was provided by the SciDAC Insti-

tute for Ultrascale Visualization and by the Advanced Sim-
ulation and Computing Program of the National Nuclear
Security Administration.

Sandia National Laboratories is a multi-program labora-
tory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.

This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which
is supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-06CH11357.

8. ADDITIONAL AUTHORS

9. REFERENCES
[1] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky,

K. Schwan, and F. Zheng. DataStager: Scalable data
staging services for petascale applications. In
Proceedings of the 18th ACM International Symposium
on High Performance Distributed Computing (HPDC
’09), 2009. DOI=10.1145/1551609.1551618.

[2] S. Ahern, A. Shoshani, K.-L. Ma, et al. Scientific
discovery at the exascale. Report from the DOE
ASCR 2011 Workshop on Exascale Data Management,
Analysis, and Visualization, February 2011.

[3] J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert,
and J.-G. Piccinali. Parallel computational steering
and analysis for hpc applications using a paraview
interface and the hdf5 dsm virtual file driver. In
Eurographics Symposium on Parallel Graphics and
Visualization, pages 91–100, 2011.
DOI=10.2312/EGPGV/EGPGV11/091-100.

[4] K. Chand, B. Fix, T. Dahlgren, L. F. Diachin, X. Li,
C. Ollivier-Gooch, E. S. Seol, M. S. Shephard,
T. Tautges, and H. Trease. The ITAPS iMesh
interface. Technical Report Version 0.7, U. S.
Department of Energy: Science Discovery through
Advanced Computing (SciDAC), 2007.

[5] H. Childs. Architectural challenges and solutions for
petascale postprocessing. Journal of Physics:
Conference Series, 78(012012), 2007.
DOI=10.1088/1742-6596/78/1/012012.

[6] C. Docan, M. Parashar, and S. Klasky. DataSpaces:
An interaction and coordination framework for
coupled simulation workflows. In 19th ACM
International Symposium on High Performance and
Distributed Computing (HPDC’10), Chicago, IL, June
2010.

[7] C. Docan, F. Zhang, M. Parashar, J. Cummings,
N. Podhorszki, and S. Klasky. Experiments with
memory-to-memory coupling for end-to-end fusion
simulation workflows. In 10th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid’10), pages 293–301, Melbourne,
Australia, May 2010.

[8] S. Doi, T. Takei, and H. Matsumoto. Experiences in
large-scale volume data visualization with RVSLIB.
Computer Graphics, 35(2), May 2001.

[9] A. Esnard, N. Richart, and O. Coulaud. A steering
environment for online parallel visualization of legacy
parallel simulations. In Proceedings of the 10th
International Symposium on Distributed Simulation
and Real-Time Applications (DS-RT 2006), pages
7–14, October 2006. DOI=10.1109/DS-RT.2006.7.

[10] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer,
P. Marion, B. Geveci, M. Rasquin, and K. E. Jansen.
The ParaView coprocessing library: A scalable,
general purpose in situ visualization library. In
Proceedings of the IEEE Symposium on Large-Scale
Data Analysis and Visualization, October 2011.

[11] R. Haimes and D. E. Edwards. Visualization in a
parallel processing environment. In Proceedings of the
35th AIAA Aerospace Sciences Meeting, number
AIAA Paper 97-0348, January 1997.

[12] C. Johnson, S. G. Parker, C. Hansen, G. L.
Kindlmann, and Y. Livnat. Interactive simulation and
visualization. IEEE Computer, 32(12):59–65,
December 1999. DOI=10.1109/2.809252.

[13] C. Johnson, R. Ross, et al. Visualization and
knowledge discovery. Report from the DOE/ASCR
Workshop on Visual Analysis and Data Exploration at
Extreme Scale, October 2007.

[14] E. S. H. Jr., R. L. Bell, M. G. Elrick, A. V.
Farnsworth, G. I. Kerley, J. M. McGlaun, S. V.
Petney, S. A. Silling, P. A. Taylor, and L. Yarrington.
CTH: A software family for multi-dimensional shock
physics analysis. In R. Brun and L. Dumitrescu,

editors, Proceedings of the 19th International
Symposium on Shock Physics, volume 1, pages
377–382, Marseille, France, July 1993.

[15] D. Kotz. Disk-directed I/O for MIMD multiprocessors.
In H. Jin, T. Cortes, and R. Buyya, editors, High
Performance Mass Storage and Parallel I/O:
Technologies and Applications, chapter 35, pages
513–535. IEEE Computer Society Press and John
Wiley & Sons, 2001.

[16] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan.
Adaptable, metadata rich IO methods for portable
high performance IO. In IEEE International
Symposium on Parallel & Distributed Processing,
IPDPS’09, May 2009.
DOI=10.1109/IPDPS.2009.5161052.

[17] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield,
T. Kordenbrock, K. Schwan, and M. Wolf. Managing
variability in the IO performance of petascale storage
systems. In Proceedings of the Conference on High
Performance Computing, Networking, Storage and
Analysis, SC’10, New Orleans, LA, November 2010.

[18] B. H. McCormick, T. A. DeFanti, and M. D. Brown,
editors. Visualization in Scientific Computing (special
issue of Computer Graphics), volume 21. ACM, 1987.

[19] S. Microsystems. RPC: remote procedure call protocol
specification, version 2. Technical Report RFC 1057,
Sun Microsystems, Inc., June 1988.

[20] A. Nisar, W. keng Liao, and A. Choudhary. Scaling
parallel I/O performance through I/O delegate and
caching system. In Proceedings of the 2008
ACM/IEEE Conference on Supercomputing,
November 2008.

[21] R. A. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam,
R. Riesen, M. R. Varela, and P. C. Roth. Modeling
the impact of checkpoints on next-generation systems.
In Proceedings of the 24th IEEE Conference on Mass
Storage Systems and Technologies, San Diego, CA,
September 2007.

[22] R. A. Oldfield, A. B. Maccabe, S. Arunagiri,
T. Kordenbrock, R. Riesen, L. Ward, and P. Widener.
Lightweight I/O for scientific applications. In
Proceedings of the IEEE International Conference on
Cluster Computing, Barcelona, Spain, Sept. 2006.

[23] R. A. Oldfield, P. Widener, A. B. Maccabe, L. Ward,
and T. Kordenbrock. Efficient data-movement for
lightweight I/O. In Proceedings of the 2006
International Workshop on High Performance I/O
Techniques and Deployment of Very Large I/O
Systems, Barcelona, Spain, Sept. 2006.

[24] R. A. Oldfield, A. Wilson, G. Davidson, and C. Ulmer.
Access to external resources using service-node
proxies. In Proceedings of the Cray User Group
Meeting, Atlanta, GA, May 2009.

[25] R. A. Oldfield, D. E. Womble, and C. C. Ober.
Efficient parallel I/O in seismic imaging. International
Journal of High Performance Computing Applications,
12(3):333–344, Fall 1998.

[26] T. Peterka, H. Yu, R. Ross, and K.-L. Ma. Parallel
volume rendering on the IBM Blue Gene/P. In
Proceedings of Eurographics Parallel Graphics and
Visualization Symposium 2008, 2008.

[27] T. Peterka, H. Yu, R. Ross, K.-L. Ma, and R. Latham.
End-to-end study of parallel volume rendering on the
IBM Blue Gene/P. In Proceedings of ICPP ’09, pages
566–573, September 2009.
DOI=10.1109/ICPP.2009.27.

[28] M. Polte, J. Lofstead, J. Bent, G. Gibson, S. Klasky,
Q. Liu, M. Parashar, N. Podhorszki, K. Schwan,
M. Wingate, and M. Wolf. ...and eat it too: High read
performance in write-optimized HPC I/O middleware
file formats. In Proceedings of Petascale Data Storage
Workshop 2009 at Supercomputing 2009, November
2009.

[29] C. Reiss, G. Lofstead, and R. Oldfield.
Implementation and evaluation of a staging proxy for
checkpoint I/O. Technical report, Sandia National
Laboratories, Albuquerque, NM, August 2008.

[30] R. B. Ross, T. Peterka, H.-W. Shen, Y. Hong, K.-L.
Ma, H. Yu, and K. Moreland. Visualization and
parallel I/O at extreme scale. Journal of Physics:
Conference Series, 125(012099), 2008.
DOI=10.1088/1742-6596/125/1/012099.

[31] K. E. Seamons and M. Winslett. Multidimensional
array I/O in Panda 1.0. Journal of Supercomputing,
10(2):191–211, 1996.

[32] A. H. Squillacote. The ParaView Guide: A Parallel
Visualization Application. Kitware Inc., 2007. ISBN
1-930934-21-1.

[33] R. Tchoua, S. Klasky, N. Podhorszki, B. Grimm,
A. Khan, E. Santos, C. Silva, P. Mouallem, and
M. Vouk. Collaborative monitoring and analysis for
simulation scientists. In 2010 International Symposium
on Collaborative Technologies and Systems, (CTS
2010), pages 235–244, Chicago, IL, USA, May 2010.

[34] Y. Tian, S. Klasky, H. Abbasi, J. Lofstead, R. Grout,
N. Podhorszki, Q. Liu, Y. Wang, and W. Yu. Edo:
Improving read performance for scientific applications
through elastic data organization. In IEEE Cluster
2011, Austin, TX, 2011.

[35] V. Vishwanath, M. Hereld, V. Morozov, and M. E.
Papka. Topology-aware data movement and staging
for I/O acceleration on BlueGene/P supercomputing
systems. In IEEE/ACM International Conference for
High Performance Computing, Networking, Storage
and Analysis (SC 2011), November 2011.

[36] C. H. Whiting and K. E. Jansen. A stabilized finite
element method for the incompressible Navier–Stokes
equations using a hierarchical basis. International
Journal for Numerical Methods in Fluids,
35(1):93–116, January 2001.

[37] B. Whitlock. Getting data into VisIt. Technical
Report LLNL-SM-446033, Lawrence Livermore
National Laboratory, July 2010.

[38] F. Zhang, C. Docan, M. Parashar, and S. Klasky.
Enabling multi-physics coupled simulations within the
PGAS programming framework. In IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pages 84–93, 2011.

	Introduction
	Related Work
	Nessie
	GLEAN
	ADIOS
	Conclusion
	Acknowledgments
	Additional Authors
	References

