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Outline of talk
 Context:  The Asynchronous Ballistic Reversible Computing

(ABRC) model of physical reversible computation
 Motivation & Overview 

 Current project at Sandia to implement ABRC in SCE:
 Review of last year’s study of ballistic fluxon propagation in LJJs.
 This year’s goal:  Implement the simplest nontrivial ABRC function.
 Preliminary results:  A working implementation!  (In simulation)
 Looking forwards: Automate the circuit discovery process.

 Conclusion

 Collaborators:  Rupert Lewis, Nancy Missert, David Henry, Matt Wolak, 
Erik DeBenedictis (all at Sandia)
 Also with: Rudro Biswas (Purdue), Karpur Shukla (Flame U.)

 Thanks also to: K. Osborn, L. Yu (LPS)
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Why do we need a new reversible 
computation paradigm for SCE?
 In general, we’d like improved, more efficient SC logic families.

 Cost-efficient in terms of various cost measures—energy, area, delay…
 Improving energy efficiency by extreme amounts absolutely 

requires the application of reversible computing principles…
 This is guaranteed by fundamental physics (Landauer’s Principle).

 However, most existing adiabatic schemes for reversible computing 
require that every digital transition must be driven by a (typically 
externally-supplied) clock/power signal…
 Distributing these signals throughout a chip imposes area overheads
 Also, adiabatic transitions tend to be slow (vs. relaxation timescale)

 An alternative vision of ballistic reversible computing could 
potentially be faster and simpler than adiabatic approaches…
 But traditional models of ballistic computing were synchronous—thus, still 

required pervasive clocks, and/or dissipative synchronization mechanisms!
 Research challenge: Develop a new technology for asynchronous

ballistic reversible computing in superconducting electronics.
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Asynchronous Ballistic Reversible Computing

 Problem: Conservative (dissipationless) dynamical 
systems generally tend to exhibit chaotic behavior…
 This results from direct nonlinear interactions between 

multiple continuous dynamical degrees of freedom (DOFs)
 E.g., positions/velocities of ballistically-propagating pulses

 Core insight: In principle, we can greatly reduce or 
eliminate this tendency towards dynamical chaos…
 We can do this by avoiding any direct interaction between 

continuous DOFs of different ballistically-propagating signals
 Require localized pulses to arrive asynchronously—and 

furthermore, at clearly distinct, non-overlapping times
 Device’s dynamical trajectory then becomes independent of 

the precise (absolute and relative) pulse arrival times
 As a result, timing uncertainty per logic stage can now 

accumulate only linearly, not exponentially
– Only occasional re-synchronization will be needed

 For devices to still be capable of doing logic, they must now 
maintain an internal discrete (digitally-precise) state variable

 No power-clock signals, unlike in adiabatic designs
 Devices simply operate whenever data pulses arrive
 The operation energy is carried by the pulse itself

 Most of the energy is preserved in outgoing pulses
– Signal restoration can be carried out incrementally

 Goal of current project: Demonstrate ABRC principles in 
an implementation based on fluxon dynamics in SCE
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WRSPICE simulations of discrete LJJ
 Preliminary effort completed in FY18

 ASC (Sep. ‘18) 10.1109/TASC.2019.2904962

 Modeled buildable test structures in XIC

 Confirmed ballistic fluxon propagation
 Verified

predicted dLJJ
line impedance 
of 16 Ω 
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 Another FY18 task was:  Characterize the simplest nontrivial ABRC device functionalities, 
given a few simple design constraints applying to an SCE-based implementation, such as:
 (1) Bits encoded in fluxon polarity; (2) Bounded planar circuit conserving flux; (3) Physical symmetry.

 Determined through theoretical analysis that the simplest such function is the following
1-Bit, 1-Port Reversible Memory Cell (RM):
 Due to its simplicity, this is the preferred target for 

our detailed circuit design efforts looking forwards…

+Φ଴

Ballistic interconnect (PTL or LJJ)

Moving
fluxon

−Φ଴

Stationary
SFQ

Some planar, unbiased, reactive SCE circuit (to be 
designed) w. a continuous superconducting boundary
• Only contains L’s, M’s, C’s, and unshunted JJs
• Keep junctions subcritical when possible (avoids RN)
• Conserves total flux, approximately nondissipative

−Φ଴ +Φ଴

Desired circuit behavior (NOTE: conserves flux, 
respects T symmetry & logical reversibility):
• If polarities are opposite, they are swapped (shown)
• If polarities are identical, input fluxon reflects

back out with no change in polarity (not shown)
• Elastic scattering type interaction:  Input fluxon

kinetic energy is (nearly) preserved in output fluxon

Simplest Fluxon-Based ABRC Function

RM icon:

RM Transition Table



RM—First working implementation!
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 DeBenedictis: “Try just putting a JJ across the loop.”
 This actually works!

 JJ sized to = about 5 LJJ unit
cells (~1/2 pulse width)
 I first tried it twice as large, &

fluxons annihilated instead…
 “If a 15uA JJ rotates by 2π, 

maybe ½ that will rotate by 4π”

 Loop inductor sized so 1 SFQ
will fit in the loop (but not 2)
 JJ a bit below critical with 1

 WRSPICE simulaƟons with +/−1
fluxon initially in the loop
 Uses ic parameter, & uic

option to .tran command
 Produces initial ringing due to 

overly-constricted initial flux
 Can eliminate via small shunt G



WRspice simulation results
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Polarity mismatch  Exchange Polarity match  Reflect (=Exchange)

Loop current −6μA Loop current +6μA

Junction phase 0

← 2Φ0 flux crossing junction

Junction phase 4π

Loop current +6μA

Junction phase 0

Zero net flux transfer

Junction current ↓ Junction current ↑ Junction current ↑



Next Steps re: RM Design
 Understand better, at a theoretical level, the engineering 

requirements for this circuit to work properly.
 And, can we generalize this understanding to more complex cases?

 Goal: Design circuits for a wide variety of other ABRC functions.

 Detailed design & empirical testing of a physical prototype.
 Lay out artwork, extract parasitics, fabricate a test chip, and 

experimentally test the circuit behavior in the lab.

 Carry out further elaborations of design to fine-tune dynamic 
response for high-fidelity preservation of pulse shape.
 Should be able to use 3D physics modeling, solve inverse problem to 

craft a very high-quality custom layout (similar to metamaterials).

 Investigate applications, e.g.:
 Can this device be extended to become the basis for a relatively dense 

SFQ memory fabric (compared to e.g. arrays of NDRO cells)? 
 Develop suitable row/column interface logic
 Optimize the cell design for more compact area
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Automation of Circuit Discovery
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 Due to the novelty of our new logic style, the principles to design much 
improved/more complex ABRC circuits aren’t obvious…
 Solution:  Automate our circuit-discovery methodology!

 Started developing a new tool, named SCIT
 Superconducting Circuit Innovation Tool

 Outline of the SCIT processing flow:
1. Define circuit design requirements
2. Enumerate possible circuit topologies 

 In order of increasing complexity
3. Delegate topologies to MPC nodes
4. Sweep over device parameter space
5. Generate a netlist for each test design
6. Simulate netlist locally (in e.g. WRspice)
7. Interpret & summarize resulting traces
8. Filter for results with desired properties
9. Facilitate visualization of candidate designs

 Challenges to be solved include:  
 Identifying state changes in arbitrary circuits 

SCIT Software Architecture

Simulator (WRspice)
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Topology Enumeration Algorithm12

 Two-terminal circuit primitives:
 L – Wire segment with inductance.
 C – Capacitive coupling between nodes.
 B – Josephson junction.
 M – Mutual inductive coupling between wire segments.

 An algorithm to enumerate all -primitive planar circuits:
 Recursively, enumerate all -primitive circuits; for each:

 For each primitive branch in the circuit,
– For each device type L,C,B:

» Generate each possible in-line device insertion on that branch

 For each primitive loop in the circuit,
– For each device type L,C,M,B:

» Generate each possible device placement across that loop
» Special case for M:  Couple two wire segments.

 Base case for recursion:
 One loop with two primitives, I/O port (P) and wire (L).
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Conclusion13

 Key result:  We have simulated the first concrete 
working example of an SCE circuit implementing one of 
the reversible functions in the new ABRC model.
 Provides a reversible memory cell functionality using just 1 JJ.

 Next steps include:
 Prototype & test this circuit in a suitable process.
 Identify additional functions in the ABRC model that may be 

amenable to similarly straightforward implementations.
 Implement circuit search tool (SCIT) for more rapid discovery of 

circuits for more complex ABRC functionalities.

 Impact:  ABRC could become the foundation for an 
important new class of low-energy SCE logic families.
 Our present project is starting to lay the groundwork.


