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Outline of talk ) i

= Context: The Asynchronous Ballistic Reversible Computing
(ABRC) model of physical reversible computation
= Motivation & Overview

= Current project at Sandia to implement ABRC in SCE:
= Review of last year’s study of ballistic fluxon propagation in LlJs.
= This year’s goal: Implement the simplest nontrivial ABRC function.
= Preliminary results: A working implementation! (In simulation)
= Looking forwards: Automate the circuit discovery process.

= Conclusion

= Collaborators: Rupert Lewis, Nancy Missert, David Henry, Matt Wolak,
Erik DeBenedictis (all at Sandia)

= Also with: Rudro Biswas (Purdue), Karpur Shukla (Flame U.)
= Thanks also to: K. Osborn, L. Yu (LPS)




Why do we need a new reversible g
computation paradigm for SCE?

= |n general, we'd like improved, more efficient SC logic families.
= Cost-efficient in terms of various cost measures—energy, area, delay...
= |Improving energy efficiency by extreme amounts absolutely
requires the application of reversible computing principles...
= This is guaranteed by fundamental physics (Landauer’s Principle).
= However, most existing adiabatic schemes for reversible computing

require that every digital transition must be driven by a (typically
externally-supplied) clock/power signal...

= Distributing these signals throughout a chip imposes area overheads
= Also, adiabatic transitions tend to be slow (vs. relaxation timescale)
= An alternative vision of ballistic reversible computing could
potentially be faster and simpler than adiabatic approaches...

= But traditional models of ballistic computing were synchronous—thus, still
required pervasive clocks, and/or dissipative synchronization mechanisms!

= Research challenge: Develop a new technology for asynchronous
ballistic reversible computing in superconducting electronics.




Asynchronous Ballistic Reversible Computing (i) &

in Superconducting Electronics (LDRD at Sandia)

Problem: Conservative (dissipationless) dynamical
systems generally tend to exhibit chaotic behavior...

=  This results from direct nonlinear interactions between
multiple continuous dynamical degrees of freedom (DOFs)

= E.g., positions/velocities of ballistically-propagating pulses

Core insight: In principle, we can greatly reduce or
eliminate this tendency towards dynamical chaos...
=  We can do this by avoiding any direct interaction between
continuous DOFs of different ballistically-propagating signals
Require localized pulses to arrive asynchronously—and
furthermore, at clearly distinct, non-overlapping times

= Device’s dynamical trajectory then becomes independent of
the precise (absolute and relative) pulse arrival times

= As aresult, timing uncertainty per logic stage can now
accumulate only linearly, not exponentially
— Only occasional re-synchronization will be needed

= For devices to still be capable of doing logic, they must now
maintain an internal discrete (digitally-precise) state variable
No power-clock signals, unlike in adiabatic designs
= Devices simply operate whenever data pulses arrive
= The operation energy is carried by the pulse itself

= Most of the energy is preserved in outgoing pulses
— Signal restoration can be carried out incrementally

Goal of current project: Demonstrate ABRC principles in

an implementation based on fluxon dynamics in SCE
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WRsPICE simulations of discrete LUJ @
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‘ Simplest Fluxon-Based ABRC Function

Another FY18 task was: Characterize the simplest nontrivial ABRC device functionalities,
given a few simple design constraints applying to an SCE-based implementation, such as:

= (1) Bits encoded in fluxon polarity; (2) Bounded planar circuit conserving flux; (3) Physical symmetry.

Determined through theoretical analysis that the simplest such function is the following

1-Bit, 1-Port Reversible Memory Cell (RM): —— RM Transition Table =——
* Due to its simplicity, this is the preferred target for Input Output
our detailed circuit design efforts looking forwards... Syndrome Syndrome
RMicon: ———() +1(+1) —  (+1)+
_ +1(-1) — (+1)-1
Stationary 1) - (I
Moving -1(-1) — (-1

fluxon

Some planar, unbiased, reactive SCE circuit (to be

%

&
o ,- designed) w. a continuous superconducting boundary
* Only contains L's, M’s, C’s, and unshunted JJs
« Keep junctions subcritical when possible (avoids Ry)
« Conserves total flux, approximately nondissipative

Ballistic interconnect (PTL or LJJ)

Desired circuit behavior (NOTE: conserves flux,

9<

respects T symmetry & logical reversibility):
If polarities are opposite, they are swapped (shown)
If polarities are identical, input fluxon reflects
back out with no change in polarity (not shown)
Elastic scattering type interaction: Input fluxon

kinetic energy is (nearly) preserved in output fluxon



RM—First working implementation!

= DeBenedictis: “Try just putting a JJ across the loop.”
= This actually works!

= JJsized to = about 5 LJJ unit
cells (~1/2 pulse width)

= | first tried it twice as large, &
fluxons annihilated instead...

%) “If a 15uA JJ rotates by 2,
maybe % that will rotate by 4n”

= Loop inductor sized so 1 SFQ
will fit in the loop (but not 2)

= ]JJ a bit below critical with 1

=  WRSPICE simulations with +/-1
fluxon initially in the loop

= Uses ic parameter, & uic
option to . tran command

= Produces initial ringing due to
overly-constricted initial flux

Can eliminate via small shunt G
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WRspice simulation results )
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Next Steps re: RM Design )
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= Understand better, at a theoretical level, the engineering
requirements for this circuit to work properly.
= And, can we generalize this understanding to more complex cases?
= Goal: Design circuits for a wide variety of other ABRC functions.
= Detailed design & empirical testing of a physical prototype.
= Lay out artwork, extract parasitics, fabricate a test chip, and
experimentally test the circuit behavior in the lab.
= Carry out further elaborations of design to fine-tune dynamic
response for high-fidelity preservation of pulse shape.
= Should be able to use 3D physics modeling, solve inverse problem to
craft a very high-quality custom layout (similar to metamaterials).
" |nvestigate applications, e.q.:

= Can this device be extended to become the basis for a relatively dense
SFQ memory fabric (compared to e.g. arrays of NDRO cells)?
= Develop suitable row/column interface logic
= Optimize the cell design for more compact area




Automation of Circuit Discovery

Due to the novelty of our new logic style, the principles to design much

improved/more complex ABRC circuits aren’t obvious...
= Solution: Automate our circuit-discovery methodology!

= Started developing a new tool, named SCIT
= Superconducting Circuit Innovation Tool

= Qutline of the SCIT processing flow:
Define circuit design requirements

Enumerate possible circuit topologies
= |n order of increasing complexity
Delegate topologies to MPC nodes

N

Sweep over device parameter space
Generate a netlist for each test design
Simulate netlist locally (in e.g. WRspice)
Interpret & summarize resulting traces
Filter for results with desired properties
Facilitate visualization of candidate designs

= Challenges to be solved include:
= |dentifying state changes in arbitrary circuits

O N WL AW

SCIT Software Architecture

’ Enumerate I Vlsuallze

| Sweep ' <
I Generate IE E’ Interpret I
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.| Topology Enumeration Algorithm

= Two-terminal circuit primitives:

L — Wire segment with inductance. L :
= C-— Capacitive coupling between nodes. —cr M
= B |—e

= M — Mutual inductive coupling between wire segments.

B —Josephson junction.

o= | |=—o

= An algorithm to enumerate all N-primitive planar circuits:

= Recursively, enumerate all (N — 1)-primitive circuits; for each:

= For each primitive branch in the circuit,
— For each device type L,C,B:

» Generate each possible in-line device insertion on that bra

= For each primitive loop in the circuit,
— For each device type L,C,M,B:

» Special case for M: Couple two wire segments.
Base case for recursion:
= One loop with two primitives, 1/O port (P) and wire (L).

n'ch’L@_./

» Generate each possible device placement across that loop @
PN



.| Conclusion

= Key result: We have simulated the first concrete
working example of an SCE circuit implementing one of
the reversible functions in the new ABRC model.
= Provides a reversible memory cell functionality using just 1 JJ.

= Next steps include:
= Prototype & test this circuit in a suitable process.

= |dentify additional functions in the ABRC model that may be
amenable to similarly straightforward implementations.

= |mplement circuit search tool (SCIT) for more rapid discovery of
circuits for more complex ABRC functionalities.

= Impact: ABRC could become the foundation for an
important new class of low-energy SCE logic families.
= Qur present project is starting to lay the groundwork.



