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Abstract—Continuing to improve computational energy effi-

ciency will soon require developing and deploying new operation-

al paradigms for computation that circumvent the fundamental 

thermodynamic limits that apply to conventionally-implemented 

Boolean logic circuits. In particular, Landauer’s principle tells us 

that irreversible information erasure requires a minimum energy 

dissipation of kT ln 2 per bit erased, where k is Boltzmann’s cons-

tant and T is the temperature of the available heat sink. Howev-

er, correctly applying this principle requires carefully characteri-

zing what actually constitutes “information erasure” within a 

given physical computing mechanism. In this paper, we show 

that abstract combinational logic networks can validly be consid-

ered to contain no information beyond that specified in their in-

put, and that, because of this, appropriately-designed physical 

implementations of even multi-layer networks can in fact be up-

dated in a single step while incurring no greater theoretical mini-

mum energy dissipation than is required to update their inputs. 

Furthermore, this energy can approach zero if the network state 

is updated adiabatically via a reversible transition process. Our 

novel operational paradigm for updating logic networks suggests 

an entirely new class of hardware devices and circuits that can be 

used to reversibly implement Boolean logic with energy dissipa-

tion far below the Landauer limit. 

Keywords—thermodynamics of computation; reversible compu-

ting; adiabatic computing; nonlinear dynamics; chaotic computing 

I. INTRODUCTION 

The limits to the energy efficiency of conventional infor-
mation processing technology are fast approaching, with ther-
mal noise expected to become an important limiting factor wi-
thin the next decade or two [1,2].  However, communication 
theorists have known since Shannon [3] that even a noisy chan-
nel can still be used to reliably communicate information at 
any rate up to the channel capacity 
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where B is the channel bandwidth and PS, PN denote signal and 
noise power, respectively.  Even when the signal-to-noise ratio 
PS/PN is relatively small, the channel capacity may still be am-
ple in a high-bandwidth communication medium; this observa-
tion forms the basis of our ubiquitous modern wireless tele-
communication infrastructure.  Analogously, reliable computa-
tion can theoretically still be performed even using noisy cir-
cuits, since a computational dataflow can be viewed as being a 
special case of a communication channel that just happens to 
transform the data in transit.  This observation suggests that ap-
propriately designed circuits may perform reliable computa-
tions at extremely low signal energies, operating in a regime 
where thermal noise dominates.  Our goal, in this line of 
thought, is to identify a specific new computational mechanism 
and operating conditions under which the energy dissipation 
per useful computational operation is negligible. 

A canonical example of a system having no (or negligible) 
energy dissipation is a system at (or near) thermal equilibrium, 
that is, a system occupying some thermally distributed ensem-
ble of states at some uniform temperature T.  Thermal states 
cannot dissipate energy because they already are at their maxi-
mum entropy. Of course, an equilibrium thermal state is static-
ally distributed, and is not itself actively carrying out a useful 
computation. However, in a complex, spatially-extended sys-
tem, the static structure of an equilibrium state of the system 
can reflect the logical structure of a computation.  Furthermore, 
if we perturb the system in such a way as to carry out gradual, 
adiabatic transitions between near-equilibrium states, so that 
the system’s state is no longer static but quasistatic, the se-
quence of equilibrium states that is visited may represent a ser-
ies of useful computations.  This is the essential idea behind re-
versible computing [4,5]. 

As the size of our computational devices pushes further into 
the deep nanoscale, approaching molecular and atomic dimen-
sions, and as the energy of their information-bearing signals 
approaches the characteristic thermal energy kT, the tendency 
is for the thermal and logical degrees of freedom of the system 
to become more closely intertwined with each other, and so un-
derstanding the nature of thermal states and how they arise be-
comes increasingly important to the process of designing a new 
mechanism to carry out an intended logical function. 
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It is a very general feature of complex, nonlinearly-coupled 
dynamical systems that their degrees of freedom may often 
evolve chaotically [6,7,8], in which case the dynamical state 
converges towards a so-called strange attractor, in which the 
dynamical orbits exhibit a fractal dimension and the long-term 
state distribution resembles that of a thermal system in an equi-
librium state at some nonzero effective temperature T, exhibit-
ing characteristic thermal fluctuations (a.k.a. “noise) of RMS 
magnitude kT/2 in the energy (potential or kinetic) associated 
with each dynamical degree of freedom, which may be any 
generalized position or momentum coordinate variable within 
the system.  In a conservative system (such as any closed phys-
ical system), there will be in general many different strange at-
tractors, corresponding to different values of the total internal 
energy U and associated temperature T of the system, as well 
as to distinct large-scale system configurations.  Different ini-
tial states will in general converge towards different strange at-
tractors, allowing us to use such attractors to represent comput-
ational states corresponding to distinct logical input cases. 

II. GENERAL APPROACH 

To evaluate candidate new computing mechanisms for suit-
ability within this new conceptual framework, we can use de-
tailed circuit simulations (initially, say, using compact device 
models such as those provided by the NEEDS project1), to-
gether with a detailed statistical analysis of simulation results, 
to identify methods for extracting useful computational results 
from the behavior of networks of dynamically-interacting, non-
linear nanodevices.  In principle, such networks could imple-
ment reliable computation even at very low signal energies 
where thermal noise is dominant.  Although individual degrees 
of freedom within the circuit may evolve chaotically on short 
timescales, over longer timescales, average properties of the 
trajectory can still reliably communicate results of the desired 
computation.   

We anticipate that this new approach to achieving ultra-low 
energy dissipation may turn out to be simpler than traditional 
approaches to reversible computing using adiabatic retractile 
cascades, which apply larger signal energies and recover them 
adiabatically over the course of a long, complex, controlled sta-
ging sequence.  In contrast, in the new approach, we can carry 
out multiple levels of logic reversibly within a single adiabatic 
transition of the overall state of the circuit. 

Our approach relates somewhat to previous approaches to 
computing using the chaotic dynamics of nonlinear systems, 
such as, for example, “reservoir computing” [9,10,11].  How-
ever, as it has been framed in past work, reservoir computing 
typically invokes the application of artificial neural networks to 
learn how to interpret the dynamical trajectory of an arbitrarily-
selected underlying chaotic system.  These networks cannot ne-
cessarily be assumed to operate with very low energy cost.  In 
contrast, our present proposal is to design the underlying sys-
tem from the beginning so that its dynamical behavior, albeit 
chaotic and noisy on short timescales, is nevertheless predicta-
ble and easy to interpret on longer timescales. 

                                                           
1See https://nanohub.org/groups/needs.  

In other words, although the degrees of freedom within a 
noise-dominated nonlinear system will, in general, evolve cha-
otically, if we are careful, we can, in principle, design our com-
putational mechanisms so that the particular attractor to which 
the dynamical trajectory converges still reliably depends on the 
input to the circuit and on the logical structure of the computa-
tion.  In this vision, a desired result can be reliably obtained by 
appropriately measuring (e.g., by effectively averaging) the 
network outputs over longer time periods; this longer timescale 
effectively confines our attention to a narrowband slice of the 
noise spectrum, which therefore contains less noise power.  
This method is analogous to how, in communications, even a 
low-power (but narrow-band) signal can be reliably distin-
guished from higher-power background noise, if the noise is 
spread out over a relatively broad spectrum.   

Our design strategy is that the nature of the interactions 
between devices in our model will be explicitly crafted in such 
a way that the statistical properties of the dynamical trajectory 
of the local degrees of freedom at specific points in the net-
work will reflect the desired digital information that would be 
obtained at the corresponding points in a conventional logic 
circuit.  Through detailed simulations and analysis over several 
design iterations, we will converge onto network-design tech-
niques and measurement technologies that best implement such 
a mapping. 

We expect this approach will prove to allow computations 
to be carried out with extremely low energy dissipation.  Con-
ventional wisdom says that digital information requires stored 
signal energies to be of a magnitude that is well above the ther-
mal energy kT (which is ~26 meV at room temperature) to be 
reliably distinguished from thermal noise, and we know from 
fundamental entropy considerations that at least kT ln 2 energy 
per bit must be dissipated whenever digital information is irre-
versibly discarded [12].  Although these observations limit the 
energy efficiency of conventionally-designed digital circuits, 
the novel insight that enables our new approach is that down-
stream logic nodes technically contain no new (independent) 
information since they depend deterministically on the input to 
the computation.   

It may be the case that the energy scale of each input signal 
still has to be above the thermal noise energy, but because the 
low-power signal that is conveyed through the network from 
the input nodes as they are transitioned over a long time period 
is confined to a very narrow frequency band (perhaps at base-
band or near DC), the downstream influences of the input, even 
after many stages of intermediate transformation by noisily 
fluctuating devices, can still remain reliably detectable, and as 
long as the system always remains close to the particular equil-
ibrium state (a.k.a. strange attractor) selected by the instantane-
ous input configuration, the energy dissipated per useful device 
operation over the course of the transition and measurement 
process can in principle be much less than kT ln 2 without in-
curring the usual overhead, in terms of staged control sequenc-
ing, that is required by traditional approaches to multi-stage 
reversible logic [5]. 

At this point, the above discussion still remains rather pre-
liminary, in that it just outlines the essential seed of this new 
idea; these arguments still need to be validated by a more de-



tailed investigation.  However, this line of thought is already 
clarifying, for us, how to correctly interpret and reapply the 
known thermodynamic limits of computation.  Although this 
line of work may be considered high-risk by industry engin-
eers, it is highly innovative in that it shows how to use a deep-
er, more thorough understanding of how to correctly apply fun-
damental principles to (potentially) vastly improve the energy 
efficiency that is achievable in real computing systems. 

In later sections of this paper, we will outline one potential 
initial approach for translating the above general insights into a 
particular (very simple) circuit model suitable for simulation 
and possible eventual implementation.  However, the general 
points made above are not confined to the following material; 
rather, there is a very wide range of possible circuit models that 
could be explored as a basis for realizing the above concepts. 

III. CLARIFYING LANDAUER’S PRINCIPLE 

Before we describe our particular model in detail, we wish 
to clarify the nature of the fundamental thermodynamic limits 
of computation, so that it is more clear how our new paradigm 
will avoid running afoul of some of the limits on energy dissi-
pation that apply to more conventional approaches. 

In his landmark paper [12], Rolf Landauer of IBM analyzed 
the minimum energy dissipation during the erasure of a bit of 
information (considered in the abstract, as well as in the 
context of a simple, general model system, namely, a bistable 
potential energy well) and found that this energy loss could 
never be less than kT ln 2, where k is Boltzmann’s constant and 
T is the temperature of the system.  This principle can be un-
derstood to apply generally to any possible mechanism for stor-
ing digital information, and in fact, it follows rigorously as a 
direct logical consequence of the microscopic invertibility of 
fundamental physical dynamics (including quantum time evo-
lution), together with a pragmatic definition of physical entro-
py as comprising any and all information that cannot be de-
computed (evolved back into a fixed standard microstate) by 
any invertible process that is practical for us to arrange.2 

Given this perspective, “erasing” some digital information 
that is encoded in a physical state simply means undergoing a 
process that transforms the physically-encoded information 
into another form (e.g., heat) from which a standard state is not 
reversibly recoverable, which puts this information in the cate-
gory of non-invertibly-decomputable information or entropy.  
Meanwhile, thermodynamic temperature T is defined by 
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where ∂S is the infinitesimal entropy increase that results from 
adding infinitesimal energy ∂E to an equilibrium system (heat 
bath) at temperature T.  It follows immediately from this defin-
ition that if an amount of entropy ∆S = k ln 2 = 1 bit will even-

                                                           
2We can nevertheless imagine totally impractical processes that could, in 

principle, restore a standard state; for example, if we could somehow cause 
the entire microscopic time-evolution of the system (and its environment) to 

exactly reverse its direction, the system would eventually return to a (poten-

tially standardized) initial state. 

tually be ejected from a giv-
en system into a relatively 
large external environment 
or heat sink at temperature 
T, then an amount of energy 
∆E = T∆S = kT ln 2 must be 
accordingly invested into 
that environment (in the 
form of heat) in order to in-
crease its entropy by the re-
quired amount.  Thus, any 
bit of physical information 
that gets (by definition irrev-
ocably) transformed into en-
tropy must eventually result 
in this much energy dissipa-
tion, if entropy is not to 
build up within the compu-
ter indefinitely. This consti-
tutes a simple proof of Lan-
dauer’s principle that is 
completely general, in the sense that it is independent of the 
details of any particular physical implementation of an infor-
mation-storing device. 

However, when applying Landauer’s principle to the analy-
sis of the energy efficiency limits of physical systems that, 
themselves, implement rather complex computing structures, 
one must be careful to apply it appropriately.  In particular, for 
systems that are more complex in structure than (say) a single 
two-state memory cell, one must be careful to quantify their in-
formation content appropriately. 

How is the quantity of information characterized?  As was 
first elucidated by Boltzmann [13] in the development of his 
pioneering H-theorem,3 and later elaborated upon and applied 
by Shannon [3] in the context of communications theory, the 
most natural measure H of entropy (and indeed, the only one 
exhibiting the desired properties) for a system X that has W 
possible ways of arranging its microscopic constituents, ar-
rangements which we may label x1, …, xW, is: 
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where pi denotes the probability that the system may be found 
in microstate xi. This entropy measure H is maximized when 
every pi = 1/W, in which case (assigning physical entropy S = 
H and letting Boltzmann’s constant k = log e denote the natural 
logarithmic unit), we have 

 ,lnWkS   

the equation which is famously carved on Boltzmann’s tomb-
stone (Fig. 1).4 

                                                           
3 Boltzmann actually defined his expression for H to be the negative of 

that in (2), and showed that it always decreases (rather than increases). 
4 Photo credit: Detail of image https://commons.wikimedia.org/wiki/File:-

Zentralfriedhof_Vienna_-_Boltzmann.JPG from the English language Wiki-

Fig. 1. Boltzmann’s Legacy.  Entropy 

S is a measure of information; it char-

acterizes the number of ways W of ar-

ranging a system.   



Now, let’s drill down a little further into this defini-
tion. What is the physical meaning of a way of arranging 
the system?  In modern physics, this refers to a possible 
pure quantum state of the system that is distinguishable 
from other such states in a given set (i.e., their state 
vectors are pairwise mutually orthogonal).  A given 
mixed state ρ of a quantum system is simply a statistical 
ensemble of pure states comprising an orthogonal set of 
basis states of the system, in the specific basis that dia-
gonalizes the mixed state’s density matrix. 

For a system whose configuration may vary continu-
ously (along various degrees of freedom, e.g., the posi-
tions of constituent particles), in general the possible 
quantum states of that system include ones where the 
probability amplitude may be “smeared out” over a sub-
stantial volume in configuration space.  In such states, 
the positions of the constituent particles are not individu-
ally well-defined, but may be entangled (quantum-mech-
anically correlated) with each other in complex ways. 

Let us consider again what we just said above: In general, a 
distinguishable physical microstate may involve a complex, 
correlated configuration of many degrees of freedom (many 
subsystems).  In particular, it does not necessarily always con-
sist of the state of just a single, small isolated system, such as 
(for example) a one-bit memory storage cell. 

Why is this observation useful?  Because it tells us that, if 
we can arrange for the distinguishable states of a physical sys-
tem that we can measure in a given context to themselves be 
complex, spatially-extended objects, whose structure may re-
flect (for example) multiple consecutive stages of a desired 
computation, then the fact that this complex structure is made 
up of many smaller parts does not imply that it actually con-
tains many bits of information—only that the individual states 
in question each have a complex form.  Information, as always, 
is quantified by simply counting the distinguishable states, or 
more generally, by measuring the entropy of the set of states as 
in (2), in cases where the set of likely states is more constrain-
ed than the maximal set, and/or is nonuniform in terms of the 
states’ statistical probabilities. 

In subsequent sections of this paper, we elaborate further 
on how this insight allows us, in principle, to update, in a sin-
gle step, an entire combinational logic network that may be 
multiple layers deep without necessarily requiring the usual 
Landauer-erasure minimum energy dissipation of kT ln 2 for 
each internal logic node that is updated. 

In the next section, we define a simple network model of 
combinational logic circuits for later reference.  Then in secs. 
V-VI, we briefly discuss how logical states of nodes corres-
pond to physical microstates, while logic gates correspond to 
dynamical interactions between nodes.  Then in section VII, we 
restrict our attention to a simple conservative Hamiltonian dyn-
amical model of logic circuits, which will allow us to illustrate 
the central idea of our approach. 
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IV. STATES OF A COMBINATIONAL LOGIC NETWORK 

In the abstract, we can (quite conventionally) describe a 
combinational logic network in terms of a tuple (N, G), where 
N = {N1, …, Nn} is a set of n logic nodes and G = {G1, …, Gm} 
is a set of m logic gates (meaning, gate instances), and where 
we stipulate that n ≥ m, that is,  there are at least as many nodes 
as there are gates, because each gate has (at least) one unique 
output node, and there may be other nodes that are only inputs 
to the network.  Fig. 2 illustrates a simple example network, 
using the conventional graphic notation for a few basic Boole-
an gates.  An individual deterministic logic gate Gj, where 1 ≤ j 
≤ m, can be described, in the most general sense, in terms of a 

tuple Gj = (I, O, f ), where I  N is the gate’s set of input nodes, 

O  N is the gate’s set of output nodes, and 

 |||| }1,0{}1,0{: OIf   

is a function that maps possible assignments of bit values {0,1} 
to the gate’s |I| input nodes to the resultant assignment of bit 
values to the gate’s |O| output nodes.  The output sets O of the 
various gates must have a null intersection; that is to say, each 
node can be the output of at most one gate.  In addition, to say 
that the given network of logic gates is combinational means 
that the induced directed graph describing the possible paths 
through the network that pass only forwards through gates 
(from an input node to an output node) does not include any 
directed cycles; that is, there is no way to get from a given 
node back to itself while passing only forwards through gates. 

With these definitions, it follows that the assignment of bit 
values to all nodes is uniquely determined by the assignment of 
values to those nodes that are inputs to the network (i.e., those 
that are not outputs of any gates).  Letting there be i < n such 
nodes, the number of possible states of the network (consistent 
with the specified action of all gates) is actually only 2i, not 2n, 
and thus, the actual amount of information in the state of the 
network is only i bits, not n bits.  This is our first clue that it 
ought to be theoretically possible to change the state of such a 
network while dissipating only i×(kT ln 2) amount of energy, 
not n×(kT ln 2), even when the inputs are destructively over-
written (prior input values are erased).  In other words, internal 
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Fig. 2. A Simple Example Combinational Logic Network.  (Full adder.) 

 



nodes of a combinational logic network are not necessarily 
subject to Landauer’s principle because (when constrained by 
the gate behavior) they do not actually contain any additional 
information (independent of the network inputs).  Note that this 
discussion assumes that the states of the network’s internal and 
output nodes are in fact determined by the input nodes; we will 
see later that this can remain essentially true despite the effects 
of thermal noise and propagation delays through the network. 

V. MICROSCALE NODE CONFIGURATION 

What do we mean when we say that a bit value (0 or 1) is 
assigned to a node in a logic network?  Simply that the node (in 
isolation) has at least two microstates (measurably distinguish-
able quantum states), and that (at least) one of these is labeled 
“0” and (at least) one of them is labeled “1”; the currently “as-
signed” bit value is then just the label corresponding to the 
state that would be found if the node were measured (using a 
measurement that can reliably distinguish the state) at a given 
time.  Most generally, the digital states of interest might actual-
ly each correspond to a large set of (in principle) distinguisha-
ble quantum states, but where not all of the measurable distinc-
tions are considered relevant in determining the bit values.  So 
for example, in typical voltage-coded logic, a range of measur-
able node voltages between [V0L, V0H] might all be considered 
to represent logic “0”, while another range [V1L, V1H] (where 
typically V1L > V0H) might all be considered to represent logic 
“1.” Although in principle, the voltage might be able to be 
measured more accurately than is implied by just distinguish-
ing these two sets, in practice, only the distinction between 
those two sets is used. 

Now, the actual microstate of the node’s physical hardware 
may in general be traversing a complex trajectory through a 
high-dimensional configuration space, comprising many de-
grees of freedom.  For example, large numbers of conduction 
electrons may be flitting around chaotically through a solid 
conductor, scattering off of lattice defects and surface irregu-
larities and atoms of trapped impurities.  Even in a small deep-
nanoscale device, such as a single-electron transistor or a rod in 
some molecular mechanical logic, the various degrees of free-
dom may in general be oscillating or fluctuating in complex 
patterns. However, regardless of the details, the system remains 
in principle characterizable by a density matrix which can be 
diagonalized into a set of measurably distinguishable quantum 
states. Each of these states may involve wavefunctions of 
electrons (or other moving particles) that are smeared out over 
a molecular orbital, or even over the entire volume of a large 
conductor, but that is fine.  We can imagine that the individual 
electron positions are evolving along stochastic trajectories 
which are guided by the wavefunction amplitudes, in a Bohm-
ian perspective [14].  Viewed on short timescales (if we could 
“snapshot” the electron motions) the evolution of the system 
would be noisy, but on longer timescales, where the short-
timescale fluctuations are “averaged out,” it is smooth.  This is 
merely to say that the isolated node exhibits a reliably-measur-
able, persistent distinction between its “0” and “1” macrostates, 
which are (by assumption) distinguishable. 

VI. CONNECTING NODES TOGETHER 

Now, what happens when multiple logic nodes are connec-
ted together and made to interact with each other by logic gate 
hardware?  The detailed physical behavior of course depends 
on the precise gate structure and mechanism, but a general pic-
ture is as follows.  The gate introduces an interaction between 
the subsystems comprising the various nodes that impinge up-
on it. For functional or bidirectional-constraint type gates not 
exhibiting internal state, simple kinds of interactions could be 
represented by a Hamiltonian potential energy function. 

More generally, certain kinds of gate device hardware may 
exhibit hysteretic effects, or some type of nonvolatile/persistent 
internal memory, such as memristors or Flash memory cells; 
such gates may introduce their own internal state variables 
which evolve on longer timescales; the new state variables may 
also contribute corresponding kinetic-type energy terms to the 
system’s overall Hamiltonian, such as in, for example, the spin 
energy of a NEMS flywheel structure, or the magnetic field en-
ergy of a nanomagnet, a spintronic device, or a superconduc-
tive current loop.  However, for the moment, we will set such 
possibilities aside. 

The most general types of gates may also permit not just 
conservative (energy-conserving/elastic) interactions between 
node structures, but also dynamic flows of matter currents be-
tween them (e.g. short-circuit or leakage currents in electronic 
devices, spin currents in spintronic devices, and more generally 
flows down chemical gradients).  Such flows typically are dis-
sipative, and will cause a given structure to exceed the theoreti-
cal minimum energy dissipation that is of interest to us in this 
paper.  For purposes of the present paper, we prescribe avoid-
ing such behaviors; in future work, we will investigate to what 
extent reintroducing them may be helpful or necessary for im-
proving the stability of a system.  But for the moment, let our 
focus be on nodes that are interacting with each other through a 
simple, conservative Hamiltonian-type gate interaction. 

VII. EXAMPLE HAMILTONIANS FOR  

STANDARD BOOLEAN GATES 

In this section, we present a very basic dynamical model of 
networks of Boolean AND and NOT gates to illustrate our 
general picture, and serve as a starting point for later studies. 

As a simple example, imagine that each node Ni in the logic 
network includes a single microscopic generalized-position de-
gree of freedom (not necessarily a spatial position) represented 
by a continuous coordinate variable xi.  This could be a voltage, 
a superconducting current, or any other continuous variable. In 
general, this “position” variable can fluctuate dynamically; to 
enable such dynamics, we will include a kinetic energy term in 
our Hamiltonian of the simple nonrelativistic form 

 ,
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where vi = dxi/dt denotes the velocity of the generalized posi-
tion coordinate, and mi denotes a generalized effective mass as-
sociated with the given degree of freedom.  For this abstract 



example, units are arbitrary, so for simplicity, we can let each 
mi = 1 unit, for the time being, without loss of generality. 

Now, in the most general circumstances, the position xi 
may be fluctuating around dynamically, but we can imagine 
that, in the system’s lowest-energy state where all coordinates 
are at rest, the value of the position would tell us something 
about the node’s logic value, in the sense that certain positions, 
if measured consistently, would imply a certain logic value. 

Again, units are meaningless here, so for simplicity let  
xi = 1 unit be interpreted as logic 1, and let xi = 0 be interpreted 
as logic 0. 

For our present purposes, we will assign the input nodes to 
the network as outputs of special 0-input, 1-output “gates” cal-
led memory cells, so that we may include these in our model. 
Therefore, the number of nodes equals the number of gates, n = 
m, and so without loss of generality, we can identify node and 
gate indices with each other; that is, let the output node of each 
gate Gi be node Ni. 

Let a memory cell have a potential energy function of the 

form 2

2
1 )( iii sxrkTE  , where si is the constant logic value 

(0 or 1) nominally being stored at a given time, and r is a factor 
determining the reliability with which the cell’s value is main-
tained.  Note that therefore the cell comprises a harmonic oscil-
lator, whose ground state corresponds to the nominal bit value. 

A more refined model of a memory cell for future consider-
ation might be a bistable potential well with an energy barrier 
between 0 and 1 states of magnitude rkT; such a cell could pre-
serve its state over some timescale without the need for extern-
al control to maintain a constant bias. 

Now, let a Boolean NOT gate or logical inverter have the 

potential energy function 2

2
1 )1(  jii xxbkTE , where j is 

the index of the inverter’s input node.  Again this describes a 
quadratic potential, and the factor b determines the magnitude 
of the energy associated with the NOT-gate constraint that 
nominally, we should have xi = 1 – xj (if the output were exact).  
Fig. 3 illustrates the shape of this potential energy surface, with 
the x and y axes corresponding to coordinates xi and xj.  

Finally, let a Boolean AND gate have a potential energy 

function 2

2

1 )( kjii xxxakTE   , where j, k are the indices of 

the AND gate’s input nodes.  The factor a determines the mag-
nitude of the energy associated with the AND-gate constraint 
that nominally, we should have xi = xjxk (if the output were ex-
actly correct). 

This gate set (AND and NOT) comprises a universal set, 
that is, it is sufficient for constructing arbitrary combinational 
Boolean logic functions. 

The act of measuring the output of a logic cell and storing a 
corresponding new value in a memory cell is not yet modeled 
in terms of a detailed mechanism; first we want to understand 
better what the behavior of the above model looks like, in 
terms of its chaotic nonlinear dynamics, and in the presence of 
thermal noise.  For the time being, updating the state of the 
memory cell can be simply modeled at an abstract level by 

gradually transitioning the value of the input parameter s from 
old value to new value over a time t. 

VIII. ANALYSIS AND SIMULATION PLAN 

In principle, running our model simply consists of allowing 
all of the generalized coordinates in the system to simultane-
ously evolve, with all nodes in a complex combinational net 
fluctuating dynamically under the influence of thermal noise 
and neighboring nodes’ configurations.  We may consider how 
the distribution of final output configurations evolves over time 
as the model is run from a given initial system configura-
tion.  It would be interesting to study how the dynamical beha-
vior changes as we scale down the magnitudes of the gate int-
eraction energies a and b, relative to the energy scale r of the 
input memory cell. 

Next, we may consider also what happens to the system on 
longer timescales, when the bias states s of the input memory 
nodes are transitioned between 0 and 1 (or vice-versa) over 
time t.  Given our conservative Hamiltonian model, the adiaba-
tic theorem implies that asymptotically, as t → ∞, the energy 
dissipation (heating) of the system as a result of the transition 
should approach zero.  But we may wish to examine how this 
behavior is affected by the relative energy scales of the logic 
gates versus the input memory, and how this affects the trade-
offs between speed, energy dissipation, and reliability for this 
network model.  For finite transition timescales, it would be in-
teresting to study the precise trajectory along which the distrib-
ution of downstream nodes’ values changes, to see how quick-
ly reliable results can be inferred from output node values. It 
would also be interesting to study how, exactly, the asymptoti-
cally small thermal excitation of the system flows through the 
network from the sole energy input to the system, namely the 
transitioning of the memory node.  

It would be straightforward to run simulations of this sys-
tem to obtain results that cannot be easily inferred analytically.  
Even without explicit modeling of an external heat bath, the 

Fig. 3. Potential energy surface for an example NOT gate interaction term in 

our example Hamiltonian model of Boolean logic. 



system, with its many nonlinearly-interacting degrees of free-
dom, can be expected to evolve chaotically and to exhibit an 
effective temperature. 

An easy way to initialize the system would be to set all of 
the generalized-position coordinates to their ideal values given 
the initial logic input, and assign their initial velocities random-
ly using the Maxwell-Boltzmann distribution (that is, letting 
the average energy per generalized-position coordinate be kT).  
Although initially the entire system energy will be found in the 
kinetic energy terms of the Hamiltonian (all of the potential 
energy terms being 0 in the ground state configuration), within 
a short time, the energy will become randomly distributed over 
all terms of the Hamiltonian as per the equipartition theorem, 

with an average energy of kT
2
1 per microscopic degree of free-

dom (including both the position coordinates and their corres-
ponding velocities). 

It would be straightforward to generate phase diagrams of 
the various coordinates and to collect time-averaged statistics 
regarding the coordinates of the output nodes, and verify on the 
basis of these that, as expected, the correct digital value can be 
reliably determined via measurements over relatively long 
timescales. 

As of this writing, a simulator along the lines described 
above, called DYNAMIC, is currently being prototyped in the 
Python language.  Our core framework for simulating arbitrary 
networks of Hamiltonian interactions is functioning, but still 
needs more testing on complex networks, and the results need 
to be visualized and analyzed. We intend to release this soft-
ware as open source once it has been completed. 

IX. CONCLUSION 

In this paper, we have argued that there is a potentially via-
ble approach for implementing extremely energy-efficient 
Boolean logic (with potentially much less than kT energy dissi-
pation per useful logic operation) that has not previously been 
explored in detail.  This new approach can be understood as 
emerging from the convergence of several key insights: 

1. As per Shannon [3], we can still communicate reliably 
at some rate even at signal power levels below the noise 
floor, and furthermore, computation can be viewed as 
merely a special case of communication; 

2. Thermal equilibrium states are inherently nondissipa-
tive, and the static structure of a particular such state can 
reflect the logical structure of a particular computation; 

3. Networks of conservatively-interacting nonlinear devi-
ces exhibiting chaotic dynamical behavior are effective-
ly thermal systems, and thus are also nondissipative 
once their dynamical orbits have converged onto a par-
ticular strange attractor, which corresponds to a thermal 
equilibrium state.  Yet, interactions beween such devices 
can be tailored so as to embody desired computational 
structures, such that their time-averaged behavior re-
flects specific computational results. 

4. A state reflecting the computational structure of a deep 
combinational Boolean logic network can be adiabatic-
ally updated in a single step, rather than through a 

staged sequence of transitions.  This does not violate 
Landauer’s principle, because the values of downstream 
nodes do not represent independent bits of information 
being erased.  Rather, the states of the network are spa-
tially extended entities, and so the network can be up-
dated all at once with no merging of states, and therefore 
no loss of information or entropy generation. 

These insights open the door to the exploration of a funda-
mental new class of devices and circuits for carrying out comp-
utations reversibly while dissipating << kT energy per useful 
operation.  We can imagine working with assemblages of non-
linear devices coupled via conservative interactions.  Even 
though the state of such networks may evolve chaotically and 
be unpredictable on short timescales, over longer timescales 
their statistical behavior can be arranged to embody desired 
computational results.  This approach is inherently insensitive 
to noise, as we are dealing with thermal equilibrium states of 
the degrees of freedom of interest.  Because of this, the infor-
mation-bearing degrees of freedom do not even need to be per-
fectly isolated from their thermal environment, since at equil-
ibrium (when the temperatures of the dynamical system and its 
environment are the same) any dissipative losses will be exact-
ly counterbalanced by fluctuations induced by the thermal env-
ironment, as per the fluctuation-dissipation theorem. 

Although this vision of a new paradigm for energy-efficient 
computing is still very preliminary, we have made initial steps 
towards its realization by describing and implementing a sim-
ple, classical Hamiltonian dynamical model which illustrates 
how the interactions between degrees of freedom could in prin-
ciple be tailored so that their long-term statistical behavior will 
reflect computationally meaningful information. Further re-
search is needed to characterize the limits and tradeoffs of this 
approach, explore variations on the underlying theme, translate 
this conceptual picture into concrete physical implementations 
leveraging manufacturable device and circuit structures, and 
determine whether these types of designs can yield practical 
benefits. 

We also hope that the above line of work will contribute to 
a broader, deeper understanding of the more general notion of 
energy-efficient computation using nonlinear dynamics at the 
edge of chaos, which has been alluded to in recent works [15]. 
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