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Abstract—At roughly kT energy dissipation per operation, the 

thermodynamic energy efficiency “limits” of Moore’s Law were 

unimaginably far off in the 1960s. However, current computers 

operate at only 100-10,000 times this limit, forming an argument 

that historical rates of efficiency scaling must soon slow. This 

paper reviews the justification for the ~kT per operation limit in 

the context of processors for von Neumann-class computer 

architectures of the 1960s. We then reapply the fundamental 

arguments to contemporary applications and identify a new 

direction for future computing in which the ultimate efficiency 

limits would be much further out. New nanodevices with high-

level functions that aggregate the functionality of several logic 

gates and some local memory may be the right building blocks 

for much more energy efficient execution of emerging 

applications—such as neural networks. 

Keywords—logic-memory integration; processing in memory; 

thermodynamic limits of computing; superconducting circuits 

I. INTRODUCTION 

In 1965, Gordon Moore observed that the number of 
components per integrated circuit was increasing exponentially 
and predicted that this trend would continue [1]. Together with 
corresponding increases in the energy efficiency and 
performance per unit cost of digital logic circuits, this trend 
enabled exponential growth in the capability, economic utility, 
and ubiquity of computing systems over the ensuing half-
century. However, many observers believe this growth trend 
will soon slow down or stall due to CMOS approaching 
physical limits to its energy efficiency [2]. 

In considering strategies for avoiding this, it is important to 
distinguish between processing and memory functions. 
Nonvolatile memory technologies (e. g. flash memory) require 
no power to simply retain stored data, so simply stacking up 
more layers of memory on a chip will be able to raise the 
effective areal density of digital storage for some time to come. 
Moreover, as storage sizes continue to increase, one can co-
locate a proportional amount of processing circuitry for an 
almost negligible extra cost—as long as most of this circuitry 
is turned off (i. e., not dissipating any power) most of the time. 
When some local transformation of data is needed, it can 

happen locally, minimizing the energy cost incurred for data 
movement in contrast to the traditional approach of a von 
Neumann computer where the overall system is divided into 
separate processing and memory subsystems with a long path 
between them that must be used every time data is accessed. 

Provided that integration of logic and memory can 
minimize energy dissipation for data movement, the problem 
of how to minimize the energy dissipation for the logic itself 
remains. Landauer [3] observed that there is a fundamental 
thermodynamic limit of energy dissipation for logically 
irreversible operations (those that cause a merging of digital 
states) of a magnitude that is proportional to the reduction in 
Shannon entropy of the digital state ensemble. For the class of 
“typical” operations that Landauer studied in detail, namely, 
traditional Boolean logic operations with unknown (and 
equiprobable) inputs that are not preserved, the minimum 
dissipation is on the order of kT, where k is Boltzmann’s 
constant and T is the temperature of the system’s thermal 
environment. In the case of the irreversible erasure of exactly 
one bit of information that is equally likely to have been in the 
0 or 1 state before erasure, the limit comes out to kT ln 2. This 
formula is frequently cited as constituting a general limit on 
energy dissipation for digital logic operations, but this can be 
misleading for two reasons: 

First, the exact magnitude of the Landauer limit depends on 
the type of logic operation being considered. For example, 
reversible operations do not reduce the entropy of the digital 
state ensemble at all, and theoretically do not require any 
minimum energy dissipation; yet they are still computationally 
universal [4]. Unfortunately, pure reversible computations 
generally incur some algorithmic overheads [5]. 

Second, even in the case of operations that are not perfectly 
reversible, the exact magnitude of the Landauer limit depends 
on the probabilities that states will be merged and thus also on 
the relative probabilities of the various inputs. These 
considerations should be taken into account when considering 
the Landauer limit in new contexts. 

It is often argued that these fundamental thermodynamic 
limits are not practically relevant, because the energy 
efficiency of logic will plateau long before the fundamental 
limits are reached unless formidable practical challenges are 
met. However, if these challenges are successfully met, and 
efficiency continues scaling at near historical rates, a gap of 

100-10,000 between fundamental and practical limits will 
close within a few decades. 
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In this paper, we identify a class of 
conceptually useful digital operations that are 
irreversible—and thus can avoid the overhead of 
fully-reversible logic—but for which the 
Landauer minimum energy cost can be well 
below kT ln 2 per operation under inputs 
characteristic of contemporary applications. The 
example we provide—the updating of a digital 
“synapse” when presented with data to be 
learned—is relevant in the context of brain-
inspired “neuromorphic” computing schemes that 
are currently under consideration. 

II. CLARIFYING THE LANDAUER LIMIT 

We begin by revisiting the reasoning from 
Landauer’s 1961 paper [3] that led to what is now 
widely known as the “Landauer limit”—although 
the current meaning of that phrase is not from the 
paper. Landauer considered a physical device in 
contact with an environment at temperature T, 
and a finite number of distinguishable states of 
this device that are used to encode data. He 
associated the quantity 

 
j

jej ppkS log  

with the contribution of the information-bearing degrees of 
freedom to the thermodynamic entropy of the device, where j 
labels the device data states and pj denotes their respective 
probabilities of occurrence. Now, if the device undergoes a 
transformation that deterministically maps initial data states 
having nonzero probabilities into a smaller number of final 
data states, then the final entropy Sf is necessarily smaller than 
the initial entropy Si. Thermodynamically, Landauer argued, 
this requires that the entropy of the surrounding thermal 
environment increase by at least an amount Si – Sf, which in 
turn requires an environmental heating of at least (Si – Sf)T > 0. 
This is Landauer’s Principle. It has become customary to 
express this relation in terms of the Shannon entropy (or 
Shannon “information”) of the data-state probability 
distribution, expressed in units of “bits” as 

 .log2
j

jj ppH  

With this, the environmental heating is 

 ).)(2ln( fienv HHkTE   

This is origin of the “Landauer limit,” as it is most commonly 
known. It specifies a lower bound on the dissipative cost of “kT 
ln 2 per lost bit” in logically irreversible (many-to-few) 
transformations, and specifically as “kT ln 2 per erased bit” for 
erasure (many-to-one) transformations that map all initial states 
into a single final state (so Hf = 0). (It should be noted that 

“bit” is used here as a unit of information, and may be 
fractional.) 

For illustrative purposes, we consider evaluation of the 
Landauer “limit” in detail for a specific example—one from 
Landauer’s original paper [3]—that involves a common 
Boolean operation (AND). The truth table, rendered in the 
visually distinctive white characters and black background of 
[3], is shown for in Fig. 1A for this circuit (diagram in Fig. 1B 
inset). The truth table is represented in a new form in Fig. 1B 
that better highlights the initial-to-final state mergings that 
occur in this logically irreversible transformation. Probabilities 
pj, the entropies Si, Sf, and their difference (Si – Sf) (in units of 
k) are all tabulated for the case where the eight possible input 
vectors are equiprobable—also as assumed by Landauer. The 

entropy change is Si – Sf = 0.824 k ≈ k, corresponding to a 

lower bound on the energy dissipation of ~kT.
1
 

We emphasize that, as is clear in Fig. 1, the value of ~kT 
energy dissipation per use obtained for this example is as much 
a result of the assumed input probability distribution as it is of 
the state mapping implemented by the gate. Some groups of 
input states merge into a single output state whose probability 
is equal to the sum of the probabilities of the contributing input 
states: the three input combinations pq=00, 01, and 10 to an 
AND gate merge into the single output state r1=0, which 
lowers the entropy, whereas only the pq=11 input state yields 
the r1=1 output state, and so does not contribute to the entropy 
change. Thus, we can say that although the particular 
transformation in Fig. 1 is not fully logically reversible, it is 
partially or conditionally reversible (a notion elaborated upon 
in [7]); that is, there is a certain precondition on the inputs 
(here pq=11) under which no state mergings will occur. In the 
general case, the entropy reduction associated with the full 
transformation depends on the input probabilities, which 

                                                           
1
 Landauer’s original paper miscalculated the entropy difference of 

this example as 1.18 k. This was later corrected in [6]. 

A. Landauer's analysis of AND gate and wire (figure 5 from [3])

Si terms Sf terms

Prob. (in k's) p q r p1 q1 r1 Prob. (in k's)

0.1250 0.2599 1 1 1 1 1 1 0.1250 0.2599

0.1250 0.2599 1 1 0 0 0 1 0.1250 0.2599

0.1250 0.2599 1 0 1 1 1 0 0.3750 0.3678

0.1250 0.2599 1 0 0 0 0 0 0.3750 0.3678

0.1250 0.2599 0 1 1 1 1 0

0.1250 0.2599 0 1 0 0 0 0

0.1250 0.2599 0 0 1 1 1 0

0.1250 0.2599 0 0 0 0 0 0

Si: 2.0794 k Sf (k's) 1.2555

B. Alternative presentation of Landauer's table: Si - Sf (k's) 0.8240

p q r

0.1250 0.2599 0 0 0

0.1250 0.2599 0 0 1 p1 q1 r1

0.1250 0.2599 0 1 0 0 0 0 0.3750 0.3678

0.1250 0.2599 0 1 1 0 0 1 0.1250 0.2599

0.1250 0.2599 1 0 0 1 1 0 0.3750 0.3678

0.1250 0.2599 1 0 1 1 1 1 0.1250 0.2599

0.1250 0.2599 1 1 0 Sf (k's): 1.2555

0.1250 0.2599 1 1 1 Si - Sf (k's): 0.8240

Si: 2.0794 k

Fig. 1. Example from [3].
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“prescale” contributions from all of the various inputs—those 
that satisfy the precondition as well as those that do not. 

The assumption of a uniform input distribution, almost 
ubiquitous since Landauer, is entirely reasonable for common 
Boolean gates and logic circuits operating as they might in an 
unspecified general-purpose machine executing an unknown 
computational task. Uniform probabilities are assigned when 
there is no reason to expect otherwise. Under this assumption, 
the information loss for most common Boolean logic gates is 
Hi – Hf ~ 1 bit per use, yielding a Landauer limit of ~kT energy 
dissipation per use for uniformly distributed inputs. Since 
Boolean gates have been the established building blocks of 
digital computers for over half a century, and since the 
ubiquitous assumption of uniform probabilities has seemed 
reasonable for gates and logic circuits in the kinds of digital 
computers that have been in use during this period, the 
Landauer limit is often interpreted as a dissipation bound of at 
least “kT ln 2 per use” (or “kT ln 2 per operation”). This is a 
useful shorthand under the assumptions that justify it, but only 
under these assumptions. 

In cases like those of interest in this paper, where input 
probabilities are expected to be highly skewed, Landauer’s 
original argument must be revisited if it is to be properly 
applied. In such cases, evaluation of the Landauer minimum 
can yield dissipation bounds much lower than kT ln 2. This 
obviously conflicts with the “shorthand” Landauer limit of kT 
ln 2 energy dissipation per use, but not with the “actual” 
Landauer minumum of kT ln 2 per lost bit calculated as above 
for nonuniformly distributed inputs. There is no 
contradiction—far less than one bit per use can be lost on 
average when the input distribution is highly skewed and the 

information loss is Hi – Hf <Hi ≪ 1 bit.  

Nonuniform input distributions can thus yield dissipation 
bounds lower than kT ln 2 per use with no violation of the 
Landauer limit as defined above. We should emphasize that 
although some have questioned Landauer’s assumptions and 
his application of equilibrium thermodynamics to this problem, 
his essential result—a dissipative contribution of kT ln 2 per bit 
of irreversible information loss—is upheld in a wide variety of 
proofs and derivations that sidestep these objections and even 
quantify information differently (e.g. [8], [9], [10]). We should 
also note the distinction between information loss reductions 
resulting from skewed input distributions, which reduce the 
probability of state mergers overall, and elimination of 
information loss by eliminating state merging altogether as in 
reversible computing [4]. Finally, we note that acceptance of 
the Landauer limit does not amount to a claim that it can be 
achieved. We discuss both Landauer limit reductions in 
scenarios with heavily skewed input distributions and the 
achievability of these reduced limits in the following sections. 

III. A SIMPLE LEARNING MACHINE 

We now apply the analysis of [3] to a device with a 
functionality and input environment inspired by emerging 
applications such as neuromorphic computing. Instead of an 
AND gate with uniform inputs, we will consider an artificial 
synapse of sorts with a nonuniform input distribution and show 

that the minimum energy dissipation per operation can be 
much less than kT. 

While learning is essential, most experiences do not cause a 
given synapse to change state. We will exploit the low 
probability of actual learning to lower minimum energy. For 
example, readers of this paper will have already learned the 
alphabet as a child. By now, there is nothing more to learn by 
seeing the letter “L” one more time. However, seeing the letter 

“Л ” may invoke learning and cause synapse changes for 

readers who are unfamiliar with the letter equivalent to “L” in 
Russian (Cyrillic). This will be a rare event. 

We consider a single simplified artificial synapse as the 
machine in our example, and analyze a system comprising an 
array of these machines. The system is a functionally enhanced 
memory tasked with learning or creating a model of a slowly 
changing environment from partial observations. The 

environment comprises of an array of nn (here n=3) data 
items or pixels that take the values −1 and +1. We will 
ultimately analyze two different scenarios for the environment, 
one where all the pixels are spatially independent and the other 
where the pixels in a row are perfectly correlated. Observations 
are of one pixel (or row) at a time, with probability p that a 
specific pixel (respectively, row) is observed in each step in 
cases of spatially independent (respectively, correlated) pixels. 

The system has an internal nn array of functionally enhanced 
storage cells and shift registers that drives both the row and 
column of the internal array with the observed pixel value of 
−1 or +1. When the selected cell receives (−1, −1) or (+1, +1), 
it remembers the stimulus value. Each pixel in the environment 
changes with time at a rate corresponding to a probability q of 
a change per observation. The system will be modeled in 
steady state, so an initial condition is not needed. Table I is an 
example data set corresponding to the problem description 
above. The system could drive multiple rows and columns at 
once and include both −1 and +1 data values in the same 
observation, but this will not be considered here. 

An implementation of the example system is illustrated in 

Fig. 2A, which is an nn array of the synapse machines in a 
framework that transmits data in Table I past the array as 
shown. The function being analyzed will be just one of the 
synapses in the array, which is modeled as a magnetic core. 
Magnetic cores are used as a behavioral illustration at this point 

TABLE I: DATA TO BE LEARNED 

Step Row Column Response 

1 −1 on bottom −1 on left Learn −1 

2 −1 on middle −1 on left Learn −1 

3 +1 on bottom +1 on center Learn +1 

4 −1 on bottom −1 on left −1 already learned 

many repetitions with no learning 

n-3 −1 on bottom −1 on left −1 already learned 

n-2 −1 on middle −1 on left −1 already learned 

n-1 +1 on bottom +1 on center +1 already learned 

n +1 on bottom +1 on left Learn +1 
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Fig. 2: Two versions of system 

A. Learning machine (cores) 

B. MeRAM equiv. 

because readers are likely to be 
familiar with their operation, 
but we will mention a 
nanodevice (MeRAM) before 
the end of this section that is 
compatible with the same 
analysis. 

The system monitors a 
stream of 2n parallel data 
inputs from the environment 
(one for each row and column), 
which is assumed to be 
ongoing and which is not 
destroyed or erased by the 
system. For the case of single 
pixel observations, the stream 

provides a single nonzero, 1, 
stimulus on each set of 2n data 
inputs as shown in Fig. 2A to 
write into the corresponding 
core. (In the case of the 
spatially correlated 
environment, the stream 

contains multiple 1 inputs to 
update an entire row of cores 
with the same value.) As the 
data flows downward through 
the 2n shift registers, the values 
on the bottom row are translated into current in the blue and 
red wires. The wires become rows and columns of an array 

tilted at 45 where the row-column intersections each flow 
through the center of a core. Each core flips to align with its 
magnetic field, but only if the field is above a threshold and a 
core will not flip if it is already in the correct 
state. The system would be engineered to flip 

magnetization at 1.5 units of current flowing 
through each core. Thus, a core exposed to +1 on 
the row wire and +1 on the column wire will have 
total current +2 and would flip magnetization to 
the green state provided it was not in the right 
state already. Vice versa for −1 and a red state. 
Magnetic cores dissipate energy when they 
change state, but nearly zero energy otherwise. 
Unless the two currents are in the same direction, 
the total current will be below the threshold and 
there will no state change and no energy 
dissipation associated with core state changes. 

Fig. 2A illustrates the system processing the 
data in Table I, specifically at the processing of 
step n. Steps 1-3 cause the system to learn pixels, 
setting the three non-white cores shown in Fig. 
2A; the white cores are irrelevant to the 
discussion and could be either red or green. The 
system then experiences a long sequence of steps 
containing repeating known pixels. In the last row 
of Table I, the learning machine observes a 
change in the external data set. The {bottom, left} 
pixel changes from −1 to 1 and is recorded as the 
leftmost core in Fig. 2A flips. We now consider 

lower bounds on the energy dissipation for this machine. 

IV. DISSIPATION ANALYSIS FOR THE LEARNING MACHINE 

In this section, we obtain lower dissipation bounds for the 
learning machine of Sec. III, Each magnetic core behaves as a 
finite-state automaton, as does the entire learning machine. We 
consider both of the scenarios for the pixel environment and 
the input streams mentioned in the previous section. We will 
start with a limiting dissipation analysis of a single core, which 
will apply equally to both cases. We will then calculate the 
limiting dissipation of the entire learning machine and 
elucidate the differences in the dissipation for the two cases. 

Dissipation bounds are obtained from a fundamental 
physical description of Finite State Automata (FSA) driven by 
Independent Identically Distributed (IID) information sources 
[11], extended for the present paper to accommodate FSA 
driven by inputs with temporal correlations and thus for 
learning scenarios in changing environments. Landauer’s focus 
was combinational logic, but his analysis can be applied a 
manner that yields the same result for the case at hand (see Fig. 
3). 

The FSA description of each core is as follows: The FSA 
state s corresponds to the current magnetization state of the 
core. FSA inputs l and r correspond to the current states in the 
blue and red wire respectively. The next state of the core s′ 
depends upon its current state s and the input values on the 
wires. We use the random variables S, S′, L and R for a 
statistical description of the current and next state of the core, 
and for the two inputs, respectively. Assuming that the 
magnetization states of the core are perfectly distinguishable, 
the minimum energy dissipated into the environment as the 

Learning Machine (Synapse)

Probability of seeing learnable data (+,+ or -,-):

Probability data has changed since last learned:

P(null)

P(reinforce)

P(new data)

Si terms

Prob. (in k's) left right fie ld Sf terms

0.00495 0.0263 -1 -1 -1 left 

wire

right 

wire

field 

dir.

Prob. in (k's)

0.09900 0.2290 -1 0 -1 -1 -1 -1 0.0050 0.0265

0.09900 0.2290 0 -1 -1 -1 0 -1 0.0990 0.2290

0.09900 0.2290 0 0 -1 0 -1 -1 0.0990 0.2290

0.09900 0.2290 0 1 -1 0 0 -1 0.0990 0.2290

0.09900 0.2290 1 0 -1 0 1 -1 0.0990 0.2290

0.00005 0.0005 1 1 -1 1 0 -1 0.0990 0.2290

0.00005 0.0005 -1 -1 1 -1 0 1 0.0990 0.2290

0.09900 0.2290 -1 0 1 0 -1 1 0.0990 0.2290

0.09900 0.2290 0 -1 1 0 0 1 0.0990 0.2290

0.09900 0.2290 0 0 1 0 1 1 0.0990 0.2290

0.09900 0.2290 0 1 1 1 0 1 0.0990 0.2290

0.09900 0.2290 1 0 1 1 1 1 0.0050 0.0265

0.00495 0.0263 1 1 1 Sf (k's): 2.3425

Si: 2.3431 k Si - Sf (k's): 0.0006

Fig. 3. Analysis method of [Landauer 61] applied to synapse function
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core (in steady state) undergoes a transition from s to s′ is Eenv 

≥ kT ln 2 [H(S|LR) − H(S′|LR)] per operation where H(S|LR) 
and H(S′|LR) are the conditional Shannon entropies of the core 
state distribution given the inputs, before and after the state 
transition respectively. The inputs (l, r) = (+1, +1) and (l, r) = 
(−1, −1) write +1 and −1 into the core states respectively, 
regardless of the previous state. This merging of the core states 
for certain l and r inputs is the source of the irreversibility and 
energy dissipation into the environment.  

We have calculated the limiting dissipation for the learning 
machine with p = 0.01 and q = 0.01. Recall that p is the 
probability of seeing learnable data, i.e. the probability of 
seeing the inputs (l, r) = (+1, +1) or (l, r) = (−1, −1). q is the 
probability that given the presence of learnable data, the data 
value changes in the environment since the last time that data 
was observed. The input probabilities are functions of p, q, and 
the steady state core state distribution is P(S =+1) = P(S =−1) = 
0.5. The lower bound on energy dissipation calculated for a 
single core of the learning machine—both from the FSA 
description and the modified Landauer-like analysis of Fig. 3— 

is Eenv ≥ 0.0006 kT per operation. The 1,000 difference 
between the limiting dissipation for the magnetic core and the 
“kT ln 2 per operation” rule of thumb stems largely from the 
input probabilities selected for this learning example, which 
correspond to learning with a slowly-changing environment. 

 We now extend our analysis to the entire learning machine 
for the two scenarios introduced in the previous section. The 
magnetic cores are assumed not to interact with one other. In 

the first case, the pixels in the 33 environment are spatially 
independent and the cores updated one at a time randomly. The 
limiting dissipation bound for the entire learning machine will 
be equal to the sum of the dissipation bounds for the nine 
individual cores. For p = 0.01 and q = 0.01, we have the lower 
bound on the energy dissipated into the environment for the 

nine-core learning machine to be Eenv ≥ 9  0.0006 kT = 
0.0054 kT. In the second case, updating an entire row with 
correlated inputs, will produce correlations between the cores 
of each row. As a result, the limiting dissipation of the entire 
learning machine will be < 9 times that of a single core. Using 
the same values for p and q as before, we have the lower bound 

on the energy dissipation of the learning machine of Eenv > 
0.00168 kT. Thus, the limiting dissipation values for variations 
of the learning machine can vary significantly, depending upon 
the characteristics of the input environment and the updating 
scheme employed, even for a fixed limiting dissipation values 
for the individual cores. 

We next consider the principle of aggregation, which we 
will define as follows: The minimum energy dissipation of a 
function will always be less than or equal to the minimum for a 
realization as a disaggregated group of lower level (often non-
optimal) primitives. To illustrate, consider the magnetic core 
from the learning machine. Each of the nine magnetic cores is 
functionally equivalent to the logic circuit in Fig. 3 comprised 
of NAND primitives (two of which use three-valued inputs). A 
dissipation analysis of this circuit using the same input 
distribution as the magnetic core implementation, and 
assuming that the gate operations are not conditioned upon l 

and r inputs, gives a dissipation bound of Eenv > 2.8939 kT. 

This is ≫ 0.0006 kT, the large difference attributable to a 

highly non-optimal disaggregation of the logic function using 
gate-level primitives. This dramatically illustrates both the 
aggregation principle and the need for careful analysis and 
interpretation.  

We reiterate that the behavior of a magnetic core is well 
known to engineers due to its historical use in computers, and 
thus serves as a suitable example device to illustrate 
aggregation. However, legacy core memory cells are 
macroscopic devices and their practical dissipation would be 
orders of magnitude above the dissipation limits obtained here, 
both because of dissipation associated with changes in the core 
magnetization and that associated with generation of the 
required wire currents on each use. 

A MagnetoElectric RAM (MeRAM) [12] is a modern 
nanodevice that exhibits similar behavior, but with currents 
replaced by voltages. The MeRAM equivalent of the learning 
machine’s array is shown in Fig. 2B, using the MeRAM 
schematic symbol and limiting the diagram to cell writing (the 
device terminal needed for reading is not connected). An 
MeRAM-based implementation of our synapse would provide 
an aggregated realization of the function and have a much 
lower dissipation than a macroscopic core, while still being 
over the theoretical minimum. We will see how minimal 
dissipation might actually be approached in an already- 
available technology in the following section. 

V. APPROACHING FUNDAMENTAL LIMITS 

The Landauer limit is a lower bound on dissipation per 
operation that will be approachable to varying degrees in 
various technology contexts. We considered an example above, 
inspired by learning applications, for which the Landauer limit 

evaluated for individual devices is ≪kT per operation. We now 

consider the physical possibility of approaching this limit. 

As an example of a device that could very nearly achieve 
the Landauer limit in the learning machine discussed above, we 
propose and partially analyze a Josephson Junction- (JJ-) based 
negative-inductance Superconducting QUantum Interference 
Device (nSQUID) circuit with the behavior needed for the 
minimum energy model to apply. In contrast to the MeRAM, 
this circuit appears to have the necessary properties to 
approach the energy minimum in Fig 3. Furthermore, the key 
nSQUID subcircuit has been constructed and measured in other 
contexts (i.e., a shift register, not an array). The measurements 
show about 1 kT per operation, which is extraordinary by most 
standards yet above the sub-kT minimum suggested by Fig. 3. 

We provide an introduction to the nSQUID, but readers 
will need to reference [13] for enough details to duplicate the 
results. The nSQUID circuit illustrated in Fig. 4A has current 
from the Vdc supply pass through the two branches on the left 
to ground. A common mode bias current I+ originates with Vdc 
and flows through L1 and L2 in the same direction. Current can 
also flow or circulate in opposite directions through L1 and L2, 
which we designate I-. Circulating current represents a 0 or 1 
data value depending on whether the rotation is clockwise or 
counterclockwise. 



 

 

The circuit is laid out with L1 and L2 as one-turn inductors 
wrapping in opposite directions around the empty square in the 
center of Fig. 4B. Due to the reversed wrapping, I+ flowing 
equally through L1 and L2 creates no net magnetic field, but 
magnetic fields from the I- current representing data adds and 
creates a larger magnetic field. 

Quantum mechanics forces the magnetic field threading a 
superconducting loop to be quantized, which impacts the 
circulating current defining data bits, but has no effect on the 
bias current because there is no magnetic field. 

Due to both the effects of quantized magnetic field and the 
classical inductance, varying the bias current smoothly shifts 
the circuit from having a single potential to two potentials. Fig. 
5 is a plot of the energy in the nSQUID as a function of the 
current that defines the data I-. The curves vary by the amount 
of common mode current I+, which rises from low values at the 
top to higher values as the curves move downward (however, 
further increase in I+ does not result in a deeper double-welled 
potential). The units are not relevant to the point of this paper 
but are the same as in [13]. 

A key step toward reaching the low energy limit is to 
properly implement a protocol for erasing information when 
there is an unequal distribution of 0’s and 1’s. Three 
increasingly sophisticated erasure protocols will be described 
below, with the last being sufficient for the purposes of this 
paper. 

Slowly lowering the energy barrier between data states 0 
and 1 is sufficient to achieve dissipation of kT ln 2, which is the 
minimum possible when p0 = p1 = 0.5, where pj is the 
probability of a bit assuming value j. 

When p0 p1, entropy S is less than one bit, and it ought to 

be possible to erase the information with just –TS heat 
generation. The protocol [14] is easy to explain and 
understand, but achieves optimal efficiency only in the limit of 
infinite time. Starting with a large energy barrier separating 0 
and 1, the first step is to tilt the energy landscape so that the 
less probable bit value is at a higher energy 
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where here the approximation holds for large ∆E. This tilt puts 
the system into a thermodynamic equilibrium, yet with a high 
energy barrier that prevents rapid transitions. The barrier is 
then gradually lowered, which gradually causes the states to 
merge. This protocol approaches minimum dissipation as the 
rate of lowering becomes infinitely slow. 

The protocol most applicable to this paper erases a 

nonuniform bit (where p0  p1) in a specified time tf with 
minimum heat generation given that constraint. The required 
protocol was derived by Zulkowski in [15] and dissipates heat 

of –TS + O(1/tf). It should not be surprising that this exceeds 
heat dissipation of the previous protocol, but is still minimal. 
The first term is the cost of erasing the information and the 
second term is the familiar result that the energy efficiency of 
adiabatic systems varies inversely with the speed of operation. 
As described in in [15], the protocol uses waveform Vt for tilt 
and Vb for the height of the separating barrier. The variable V is 
usually reserved for voltage, which will be confusing in 
subsequent discussion because nSQUID circuits are controlled 
by currents. Therefore we will call the waveforms in [15] It and 
Ib. The exact waveforms depend on p0, p1, and the available 
time tf, but essentially the barrier goes down then up while the 
tilt goes up. 

An nSQUID circuit has essentially the same tilt and barrier 
height controls as the bit erasure protocol in [15]. Specifically, 
barrier height is controlled by the current I+ flowing through 
the circuit in common mode, as illustrated in Fig. 4A. Tilt can 
be in the form of a magnetic field covering the entire array, or 
two additional wires 
shown in Fig. 4A as 

+e and –e. 

However, the 
example in Fig. 2 also 
has an array structure 
with row-column 
addressing. In general, 
row-column addressing 
means each cell 
receives separate 
signals from the row 
and column to which it 
is connected. These 
signals arrive in four 
combinations: 
unselected, half-
selected (in two 
versions corresponding 
to just the row or just 
the column), and 
selected. While the 
nSQUID has two 
controls (tilt and barrier 

Fig.4: nSQUID circuit and layout, from [13]  
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Fig. 5: Energy landscape 



 

 

height), these are not combined properly for row-column 
addressing. The sum of the row and column currents will 
control the barrier height of the nSQUID in this paper. In a 
minor variation of the problem definition, the tilt signal could 
be applied globally—such as with a magnetic field enveloping 
the entire array or a single current routed to every cell. 

We devise a signaling protocol for both addressing and 
erasure [15]. In simple words, unselected cells hold data 
indefinitely. Selection occurs when the erasure waveforms are 
applied to both the row and column conductors of a cell, in 
which case they combine and efficiently erase the information. 
Half-selected cells only get half the erasure waveform, which 
by careful engineering causes the cell to retain data. 

The protocol requires three common mode current levels 
Iselect, Ihalf, and Ih (Ih stands for I-hold and is the current when 
unselected) for the nSQUID such that: 

A. The currents are equally spaced and in a particular order, 

specifically Ih = Ihalf + I = Iselect + 2I for a current spacing I. 

B. The nSQUID holds data reliably when Ihalf  I+  Ih, 
even when the energy landscape is tilted to the maximum 
required by the protocol in [15]. 

C. The protocol in [15] will function properly when Iselect  

Ib(t)  Ihalf, meaning the bit erasure protocol does not require 
currents outside the range between half-selection and selection. 

This implies Ib(t) – Ih  Ihalf – Ih = −I. 

Table II shows a way to combine array addressing and 

erasure; it is laid out like a 22 memory with the lower right 
cell selected. Unselected rows receive no current and columns 
receive Ih, thus causing all unselected cells to hold their state. 
To select a cell, the cell’s row and column each receive a 
(negative) current change of ½(Ib(t)−Ih), resulting in the 
selected cell being exposed to the proper waveform Ib(t) for the 
erasure protocol. All half-selected cells hold data reliably 
because they receive a current greater than Ihalf. 

TABLE II: Currents applied to nSQUID array 

 

Unselected 
column 
Icol = Ih 

Selected 
column 
Icol = Ih+½(Ib(t)-Ih) 

Unselected row 
Irow=0 

I+ = Ih I+ = Ih+½(Ib(t)-Ih) 

 Ihalf+½I 

Selected row 
Irow=½(Ib(t)-Ih) 

I+ = Ih+½(Ib(t)-Ih) 

 Ihalf+½I  

I+= Ih-(Ib(t)-Ih) = 
Ib(t) 

The effectiveness of the protocol requires the nSQUID 
meet requirements A-C. To show feasibility, Fig. 6 includes 
curves from the nSQUID circuit equations in [13] at an 
operating point that supports addressing. For addressing, we 
choose current values of Ih = 2.2, Ihalf = 2.8, and Iselect = 3.4, 

which have equal spacing I = 0.4. Fig. 6A shows three 
curves from Fig. 5 with the values specified above, plus tilt. 
Two of the curves are bistable and the third is not. For 

additional assurance, Fig. 6B shows a series of curves Iselect  

I+  Ihalf where the bistable well decreases in depth. 

VI. TOWARDS A ROADMAP FOR SUB KT COMPUTING 

The ideas above include ingredients for the design of new 
kinds of computing systems with extremely low energy 
dissipation. While the best CMOS today dissipates about 10

4
 

kT per operation, the record for low-loss logic is Er  1 kT [13]. 
It is reasonable to expect Er will be reduced to 0.1 kT, 0.01 kT, 
and so forth—and similarly for non-logic functions like the 
synapse example presented earlier. Let us outline steps for the 
development of ultra low energy computing based on ideas in 
the preceding sections: 

A. To approach the thermodynamic limits of standard 
Boolean gates in the traditional computing paradigm, it is 
reasonable to assume equiprobable inputs and irreversible loss 
of input information, leading to a “rule of thumb” lower 
dissipation bound of “kT per operation.” For such scenarios, 
this rule of thumb accurately reflects the spirit of Landauer’s 
analysis of [3], but in other scenarios the dissipation bounds 
must be revisited. 

B. Reversible logic styles in the sense of [4], [5], [7] may 
become viable in the near future. While these can have 
arbitrarily low dissipation in principle, any specific 
implementation technology will have some practical minimum 

dissipation Er per operation. With Er  1 kT today [13], 
reversible logic is near the threshold of yielding benefit over 
conventional logic for some applications. 

C. A hybrid of steps A and B could lead to complete 
systems. Reversible logic creates intermediate variables that 
must be preserved until they can be decomputed, incurring a 
cost of ~Er every time the temporary variable propagates 
through a reversible gate. Reversible gates from step B could 
be used when such signals need to propagate kT/Er steps, 
otherwise Boolean gates from step A would be used. 

D. Minimum energy requirements may be reduced in 

Fig 6: Array addressing and erasure protocol at the same time 
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contexts where the probabilities of various inputs are 
nonuniform and known. The options below become available 
once input probabilities for gates have been found by analysis 
or simulation. 

E. Based on section VI of this paper, the engineer could use 
a technology-limited Zulkowski eraser as a primitive. While 
the discussion in section VI discussed asymptotically efficient 
erasure, let us assume that a real Zulkowski eraser would have 
parasitic dissipation of ~Er because it uses the same technology 
as reversible logic. This changes criteria C above by making it 
more effective to erase a signal containing between ~Er and 
~kT/Er information instead of saving and decomputing or 
erasing it inefficiently. 

F. More energy efficient versions of the gates in step A can 
be designed with advance knowledge of their input 
distributions from step D. This leads to a general class of 
thermodynamically-optimized logical primitives, namely, 
operations that are conditionally reversible [7] (i.e., transform 
some subset of the input states reversibly). This approach could 
reach the thermodynamic minimum dissipation for a logic 
circuit specified in advance, but will not help design the logic 
circuit in the first place. 

G. As an independent research path, the strategies above 
add motivation for the development of non-von Neumann 
computer architectures. Gates in a well-designed CPU of a von 
Neumann computer should have nearly equiprobable input 
combinations. If not, many gates will be inefficiently used and 
the design could be improved irrespective of any arguments in 
this paper. However, it is not bad design for a state-containing 
device to be idle most of the time because it is serving the 
useful function of holding information. Therefore, an 
integrated logic-memory architecture could offer more 
opportunities to apply items A-F above and thereby reduce 
dissipation. 

H. For all the above steps, discovery of new computing 
devices could improve energy efficiency through the 
aggregation principle discussed in Sec. IV. The opportunity is 
to seek out new electronic devices that perform more and more 
sophisticated functions. For example, the magnetic core 
performs an AND function, makes a decision about whether to 
change the stored state, and stores state, all in one device. The 
MeRAM in Fig. 2B and the handling of the 9-core array as a 
single unit are examples of this principle. 

I. While steps A-H merely quantify the limiting dissipation 
for a design, this quantity could be used as an objective 
function for design optimization. Logic design includes choices 
on how to encode information on wires and states. It also 
includes choosing amongst multiple gate-level 
implementations of a given function. In traditional logic 
design, these choices should all lead to correct designs that 
nonetheless vary in terms of speed, complexity, and energy 
consumption. However, the designs also differ in terms of 
minimum energy. If the designer is interested in the ultimate 
potential of a computing technology, the limiting dissipation 
computed in the steps above could guide a search for the 
design choices that yield minimum energy. 

VII. CONCLUSIONS  

In this paper, we have described a path to reduced energy 
consumption in computers over the long term. Moore’s Law 
and the principles of minimum energy for logic were properly 
stated in the 1960s, yet they are often interpreted specifically in 
context of CMOS microprocessors and generic Boolean logic 
gates. Within this narrow context, the theoretical efficiency 
limits are just 10

2
-10

4
 beyond current technologies, which is 

not enough headroom to continue the long-term energy 
efficiency scaling that is part of Moore’s Law. 

We updated the example in Landauer’s 1961 paper from an 
AND gate to a more modern synapse-like device and found a 
substantially lower theoretical bound on dissipation. A key 
difference is that our modern example exploits nonuniform 
input probabilities. The new theoretical bound may justify the 
perception that Moore’s Law (defined for energy efficiency) 
can be extended further into the future than expected. 

These ideas suggest research directions. One is the 
continued lowering of parasitic energy losses, Er above. 
Another is a search for nanodevices that perform higher-level 
computations directly. These nanodevices would have lower 
energy dissipation than equivalent implementations using 
discrete gates, particularly if optimized for input statistics. 
There will be a need for many such nanodevices. 
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